Displaying publications 81 - 100 of 1133 in total

Abstract:
Sort:
  1. Aljaafari MN, AlAli AO, Baqais L, Alqubaisy M, AlAli M, Molouki A, et al.
    Molecules, 2021 Jan 26;26(3).
    PMID: 33530290 DOI: 10.3390/molecules26030628
    The emergence of antimicrobial resistance (AMR) has urged researchers to explore therapeutic alternatives, one of which includes the use of natural plant products such as essential oils (EO). In fact, EO obtained from clove, oregano, thymus, cinnamon bark, rosemary, eucalyptus, and lavender have been shown to present significant inhibitory effects on bacteria, fungi, and viruses; many studies have been done to measure EO efficacy against microorganisms. The strategy of combinatory effects via conventional and non-conventional methods revealed that the combined effects of EO-EO or EO-antibiotic exhibit enhanced efficacy. This paper aims to review the antimicrobial effects of EO, modes of EO action (membrane disruption, efflux inhibition, increase membrane permeability, and decrease in intracellular ATP), and their compounds' potential as effective agents against bacteria, fungi, and viruses. It is hoped that the integration of EO applications in this work can be used to consider EO for future clinical applications.
    Matched MeSH terms: Oils, Volatile/pharmacology; Oils, Volatile/therapeutic use*; Plant Oils/pharmacology; Plant Oils/therapeutic use
  2. Wang J, Mahmood Q, Qiu JP, Li YS, Chang YS, Chi LN, et al.
    Biomed Res Int, 2015;2015:617861.
    PMID: 25685798 DOI: 10.1155/2015/617861
    Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.
    Matched MeSH terms: Plant Oils*
  3. Lahijani P, Zainal ZA, Mohamed AR, Mohammadi M
    Bioresour Technol, 2014 Apr;158:193-200.
    PMID: 24607454 DOI: 10.1016/j.biortech.2014.02.015
    CO2 gasification of oil palm shell (OPS) char to produce CO through the Boudouard reaction (C + CO2 ↔ 2CO) was investigated under microwave irradiation. A microwave heating system was developed to carry out the CO2 gasification in a packed bed of OPS char. The influence of char particle size, temperature and gas flow rate on CO2 conversion and CO evolution was considered. It was attempted to improve the reactivity of OPS char in gasification reaction through incorporation of Fe catalyst into the char skeleton. Very promising results were achieved in our experiments, where a CO2 conversion of 99% could be maintained during 60 min microwave-induced gasification of iron-catalyzed char. When similar gasification experiments were performed in conventional electric furnace, the superior performance of microwave over thermal driven reaction was elucidated. The activation energies of 36.0, 74.2 and 247.2 kJ/mol were obtained for catalytic and non-catalytic microwave and thermal heating, respectively.
    Matched MeSH terms: Plant Oils/chemistry*
  4. Jusoh S, Sirat HM, Ahmad F
    Nat Prod Commun, 2013 Sep;8(9):1317-20.
    PMID: 24273875
    The essential oils from the leaves, pseudostems, rhizomes and fruits of Alpinia rafflesiana were isolated by hydrodistillation. The oils were analysed by capillary GC and GC-MS. The most abundant components in the leaf oil were trans-caryophyllene (32.61%), caryophyllene oxide (8.67%), (2E,6Z)-farnesol (4.91%) and alpha-terpineol (4.25%), while 1,8-cineole (32.25%), myrcene (13.63%), alpha-terpineol (9.90%) and trans-caryophyllene (9.80%) were the main constituents in the pseudostem oil. The rhizome constituted of tetracosane (42.61%), tau-cadinol (7.46%), alpha-terpineol (6.71%) were the major components, whereas tetracosane (13.39%), (2E,6E)-farnesol (7.31%), alpha-terpineol (8.51%) and caryophyllene oxide (8.05%) were the main components in the fruit oil. Antimicrobial assay revealed that all the essential oils showed moderate to weak inhibition against the tested microorganisms. The leaf oil was the most active and inhibited both S. aureus and E. coli with MIC values of 7.81 microg/mL and 15.6 microg/mL, respectively.
    Matched MeSH terms: Oils, Volatile/chemistry*
  5. Syam AM, Hamid HA, Yunus R, Rashid U
    ScientificWorldJournal, 2013;2013:268385.
    PMID: 24363616 DOI: 10.1155/2013/268385
    Many kinetics studies on methanolysis assumed the reactions to be irreversible. The aim of the present work was to study the dynamic modeling of reversible methanolysis of Jatropha curcas oil (JCO) to biodiesel. The experimental data were collected under the optimal reaction conditions: molar ratio of methanol to JCO at 6 : 1, reaction temperature of 60°C, 60 min of reaction time, and 1% w/w of catalyst concentration. The dynamic modeling involved the derivation of differential equations for rates of three stepwise reactions. The simulation study was then performed on the resulting equations using MATLAB. The newly developed reversible models were fitted with various rate constants and compared with the experimental data for fitting purposes. In addition, analysis of variance was done statistically to evaluate the adequacy and quality of model parameters. The kinetics study revealed that the reverse reactions were significantly slower than forward reactions. The activation energies ranged from 6.5 to 44.4 KJ mol⁻¹.
    Matched MeSH terms: Plant Oils/chemistry*
  6. Latip RA, Lee YY, Tang TK, Phuah ET, Tan CP, Lai OM
    Food Chem, 2013 Dec 15;141(4):3938-46.
    PMID: 23993569 DOI: 10.1016/j.foodchem.2013.05.114
    The stearin fraction of palm-based diacylglycerol (PDAGS) was produced from dry fractionation of palm-based diacylglycerol (PDAG). Bakery shortening blends were produced by mixing PDAGS with either palm mid fraction, PMF (PDAGS/PMF), palm olein, POL(PDAGS/POL) or sunflower oil, SFO (PDAGS/SFO) at PDAGS molar fraction of XPDAGS=0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%. The physicochemical results obtained indicated that C16:0 and C18:1 were the dominant fatty acids for PDAGS/PMF and PDAGS/POL, while C18:1 and C18:2 were dominant in the PDAGS/SFO mixtures. SMP and SFC of the PDAGS were reduced with the addition of PMF, POL and SFO. Binary mixtures of PDAGS/PMF had better structural compatibility and full miscibility with each other. PDAGS/PMF and PDAGS/SFO crystallised in β'+β polymorphs in the presence of 0.4-0.5% PDAGS while PDAGS/POL resulted in β polymorphs crystal. The results gave indication that PDAGS: PMF at 50%:50% and 60%:40% (w/w) were the most suitable fat blend to be used as bakery shortening.
    Matched MeSH terms: Plant Oils/chemistry*
  7. Ahmad Tarmizi AH, Niranjan K, Gordon M
    Food Chem, 2013 Jan 15;136(2):902-8.
    PMID: 23122143 DOI: 10.1016/j.foodchem.2012.08.001
    The aim of this study was to investigate the effect of atmospheric frying followed by drainage under vacuum on the stability of oil, compared to similar frying with drainage at atmospheric pressure. Changes in the oil were assessed by the free fatty acid (FFA) content, p-anisidine value (AnV), colour, viscosity, fatty acid profile and concentration of tocols. The rate of FFA formation in the case of vacuum drainage was found to be about half that of atmospheric drainage. Oil deterioration by oxidation and polymerisation was also reduced by the use of vacuum drainage. The AnV of the oil after vacuum drainage was lower by about 12%, the total colour difference was improved by 14% and viscosity was slightly reduced after 5 days of frying, compared to the values for oil that had been drained at atmospheric pressure. There was a reduction in the loss of polyunsaturated fatty acids in the case of vacuum drainage after 5 days of frying but differences in retention of tocols were only evident in the first two days of frying.
    Matched MeSH terms: Plant Oils/chemistry*
  8. Din MF, Mohanadoss P, Ujang Z, van Loosdrecht M, Yunus SM, Chelliapan S, et al.
    Bioresour Technol, 2012 Nov;124:208-16.
    PMID: 22989648 DOI: 10.1016/j.biortech.2012.08.036
    High PHA production and storage using palm oil mill effluent (POME) was investigated using a laboratory batch Bio-PORec® system under aerobic-feeding conditions. Results showed that maximum PHA was obtained at a specific rate (q(p)) of 0.343 C-mol/C-molh when air was supplied at 20 ml/min. The PHA yield was found to be 0.80 C-mol/C-mol acetic acid (HAc) at microaerophilic condition and the mass balance calculation showed that PHA production increased up to 15.68±2.15 C-mmol/cycle. The experiments showed that short feeding rate, limited requirements for electron acceptors (e.g. O(2), NO(3)) and nutrients (N and P) showed lower tendency of glycogen accumulation and contributed more to PHA productivity.
    Matched MeSH terms: Plant Oils/chemistry*
  9. Tang SY, Sivakumar M, Nashiru B
    Colloids Surf B Biointerfaces, 2013 Feb 1;102:653-8.
    PMID: 23107943 DOI: 10.1016/j.colsurfb.2012.08.036
    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future.
    Matched MeSH terms: Oils/chemistry*
  10. Han NS, Basri M, Abd Rahman MB, Abd Rahman RN, Salleh AB, Ismail Z
    J Cosmet Sci, 2012 Sep-Oct;63(5):333-44.
    PMID: 23089355
    Oil-in-water (O/W) nanoemulsions play an important key role in transporting bioactive compounds into a range of cosmeceutical products to the skin. Small droplet sizes have an inherent stability against creaming, sedimentation, flocculation, and coalescence. O/W emulsions varying in manufacturing process were prepared. The preparation and characterization of O/W nanoemulsions with average diameters of as low as 62.99 nm from palm oil esters were carried out. This was achieved using rotor-stator homogenizer and ultrasonic cavitation. Ultrasonic cell was utilized for the emulsification of palm oil esters and water in the presence of mixed surfactants, Tween 80 and Span 80 emulsions with a mean droplet size of 62.99 nm and zeta potential value at -37.8 mV. Results were comparable with emulsions prepared with rotor-stator homogenizer operated at 6000 rpm for 5 min. The stability of the emulsions was evaluated through rheology measurement properties. This included non-Newtonian viscosity, elastic modulus G', and loss modulus G″. A highly stable emulsion was prepared using ultrasonic cavitation comprising a very small particle size with higher zeta potential value and G' > G″ demonstrating gel-like behavior.
    Matched MeSH terms: Oils/chemistry
  11. Sirat HM, Jani NA
    Nat Prod Res, 2013;27(16):1468-70.
    PMID: 22946537 DOI: 10.1080/14786419.2012.718772
    Hydrodistillation of the fresh leaves of Alpinia mutica afforded 0.005% colourless essential oil. GC and GC-MS analysis revealed the presence of 33 components accounting for 92.9% of the total oil, dominated by 20 sesquiterpenes (76.7%) and 10 monoterpenes (8.3%). The major constituent was found to be β-sesquiphellandrene which was 29.2% of the total oil. Soxhlet extraction, followed by repeated column chromatography of the dried leaves yielded two phenolic compounds, identified as 5,6-dehydrokawain and aniba dimer A, together with one amide assigned as auranamide. The structures of these compounds were determined by using spectroscopic analysis. Antibacterial screening of the essential oil, the crude and isolated compounds showed weak to moderate inhibitory activity.
    Matched MeSH terms: Plant Oils/chemistry
  12. Sim SF, Ting W
    Talanta, 2012 Jan 15;88:537-43.
    PMID: 22265538 DOI: 10.1016/j.talanta.2011.11.030
    This paper reports a computational approach for analysis of FTIR spectra where peaks are detected, assigned and matched across samples to produce a peak table with rows corresponding to samples and columns to variables. The algorithm is applied on a dataset of 103 spectra of a broad range of edible oils for exploratory analysis and variable selection using Self Organising Maps (SOMs) and t-statistics, respectively. Analysis on the resultant peak table allows the underlying patterns and the discriminatory variables to be revealed. The algorithm is user-friendly; it involves a minimal number of tunable parameters and would be useful for analysis of a large and complicated FTIR dataset.
    Matched MeSH terms: Plant Oils/analysis*
  13. Sadrolhosseini AR, Moksin MM, Nang HL, Norozi M, Yunus WM, Zakaria A
    Int J Mol Sci, 2011;12(4):2100-11.
    PMID: 21731429 DOI: 10.3390/ijms12042100
    In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C(16:0) content in normal grade than in winter grade palm oil biodiesel.
    Matched MeSH terms: Plant Oils/chemistry
  14. Sirat HM, Basar N, Jani NA
    Nat Prod Res, 2011 Jun;25(10):982-6.
    PMID: 21644178 DOI: 10.1080/14786419.2010.529079
    The essential oils obtained by hydrodistillation of the rhizomes of Alpinia aquatica Rosc. syn. Alpinia melanocarpa and Alpinia malaccensis Roscoe were analysed by capillary gas chromatography and gas chromatography-mass spectrometry. Eighteen compounds, representing 98.4% of the essential oil were identified in A. aquatica rhizome oil, with β-sesquiphellandrene in 36.5% being the major constituent, while 20 compounds representing 99.7% of the rhizome oil of A. malaccensis were identified, among which methyl (E)-cinnamate (78.2%) was the major constituent.
    Matched MeSH terms: Plant Oils/chemistry*
  15. Rohman A, Man YB, Riyanto S
    Phytochem Anal, 2011 Sep-Oct;22(5):462-7.
    PMID: 22033916 DOI: 10.1002/pca.1304
    Red fruit (Pandanus conoideus Lam) is endemic plant of Papua, Indonesia and Papua New Guinea. The price of its oil (red fruit oil, RFO) is 10-15 times higher than that of common vegetable oils; consequently, RFO is subjected to adulteration with lower price oils. Among common vegetable oils, canola oil (CaO) and rice bran oil (RBO) have similar fatty acid profiles to RFO as indicated by the score plot of principal component analysis; therefore, CaO and RBO are potential adulterants in RFO.
    Matched MeSH terms: Plant Oils/chemistry*
  16. Tajuddin SN, Yusoff MM
    Nat Prod Commun, 2010 Dec;5(12):1965-8.
    PMID: 21299133
    Volatile oils of Aquilaria malaccensis Benth. (Thymelaeaceae) from Malaysia were obtained by hydrodistillation and subjected to detailed GC-FID and GC/MS analyses to determine possible similarities and differences in their chemical composition in comparison with the commercial oil. A total of thirty-one compounds were identified compared with twenty-nine identified in the commercial oil. The major compounds identified were 4-phenyl-2-butanone (32.1%), jinkoh-eremol (6.5%) and alpha-guaiene (5.8%), while the major compounds in the commercial oil were alpha-guaiene (10.3%), caryophellene oxide (8.6%), and eudesmol (3.2%). The results of the present study showed that more than nine sesquiterpene hydrocarbons were present, which is more than previously reported. Analysis also showed that the number of oxygenated sesquiterpenes in this study were much less than previously reported. Among the compounds detected were alpha-guaiene, beta-agarofuran, alpha-bulnesene, jinkoh-eremol, kusunol, selina-3,11-dien-9-one, oxo-agarospirol and guaia-1 (10), 11-dien-15,2-olide.
    Matched MeSH terms: Oils, Volatile/analysis*
  17. Mazaheri H, Lee KT, Bhatia S, Mohamed AR
    Bioresour Technol, 2010 Jan;101(2):745-51.
    PMID: 19740652 DOI: 10.1016/j.biortech.2009.08.042
    Decomposition of oil palm fruit press fiber (FPF) to various liquid products in subcritical water was investigated using a high-pressure autoclave reactor with and without the presence of catalyst. When the reaction was carried in the absence of catalyst, the conversion of solid to liquid products increased from 54.9% at 483 K to 75.8% at 603 K. Simultaneously, the liquid yield increased from 28.8% to 39.1%. The liquid products were sub-categorized to bio-oil (benzene soluble, diethylether soluble, acetone soluble) and water soluble. When 10% ZnCl(2) was added, the conversion increased slightly but gaseous products increased significantly. However, when 10% Na(2)CO(3) and 10% NaOH were added independently, the solid conversion increased to almost 90%. In the presence of catalyst, the liquid products were mainly bio-oil compounds. Although solid conversion increased at higher reaction temperature, but the liquid yield did not increase at higher temperature.
    Matched MeSH terms: Plant Oils/chemistry*
  18. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2010;59(2):59-64.
    PMID: 20103977
    Fatty amides have been successfully synthesized from palm olein and urea by a one-step lipase catalyzed reaction. The use of immobilized lipase as the catalyst for the preparation reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture. The fatty amides were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance ((1)H NMR) technique and elemental analysis. The highest conversion percentage (96%) was obtained when the process was carried out for 36 hours using urea to palm oil ratio of 5.2: 1.0 at 40 degrees C. The method employed offers several advantages such as renewable and abundant of the raw material, simple reaction procedure, environmentally friendly process and high yield of the product.
    Matched MeSH terms: Plant Oils/chemistry*
  19. Lee WH, Loo CY, Nomura CT, Sudesh K
    Bioresour Technol, 2008 Oct;99(15):6844-51.
    PMID: 18325764 DOI: 10.1016/j.biortech.2008.01.051
    The combination of plant oils and 3-hydroxyvalerate (3HV) precursors were evaluated for the biosynthesis of polyhydroxyalkanoate (PHA) copolymers containing 3HV monomers by Cupriavidus necator H16. Among various mixtures of plant oils and 3HV-precursors, the mixture of palm kernel oil and sodium propionate was suitable for the biosynthesis of high concentration of PHA (6.8gL(-1)) containing 7mol% of 3HV. The 3HV monomer composition can be regulated in the range of 0-23mol% by changing culture parameters such as the initial pH, and the nitrogen source and its concentration. PHA copolymers with high weight-average molecular weights (Mw) ranging from 1,400,000 to 3,100,000Da were successfully produced from mixtures of plant oils and 3HV-precursors. The mixture of plant oils and sodium propionate resulted in PHA copolymers with higher M(w) compared to the mixture of plant oils and sodium valerate. DSC analysis on the PHA containing 3HV monomers showed the presence of two distinct melting temperature (Tm), which indicated that the PHA synthesized might be a blend of P(3HB) and P(3HB-co-3HV). Sodium propionate appears to be the better precursor of 3HV than sodium valerate.
    Matched MeSH terms: Plant Oils/metabolism*
  20. Chew TL, Bhatia S
    Bioresour Technol, 2008 Nov;99(17):7911-22.
    PMID: 18434141 DOI: 10.1016/j.biortech.2008.03.009
    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery.
    Matched MeSH terms: Plant Oils/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links