Displaying publications 81 - 100 of 423 in total

Abstract:
Sort:
  1. Nadia Ahmad NF, Nik Ghazali NN, Wong YH
    Biosens Bioelectron, 2021 May 30;189:113384.
    PMID: 34090154 DOI: 10.1016/j.bios.2021.113384
    The advanced stimuli-responsive approaches for on-demand drug delivery systems have received tremendous attention as they have great potential to be integrated with sensing and multi-functional electronics on a flexible and stretchable single platform (all-in-one concept) in order to develop skin-integration with close-loop sensation for personalized diagnostic and therapeutic application. The wearable patch pumps have evolved from reservoir-based to matrix patch and drug-in-adhesive (single-layer or multi-layer) type. In this review, we presented the basic requirements of an artificial pancreas, surveyed the design and technologies used in commercial patch pumps available on the market and provided general information about the latest wearable patch pump. We summarized the various advanced delivery strategies with their mechanisms that have been developed to date and representative examples. Mechanical, electrical, light, thermal, acoustic and glucose-responsive approaches on patch form have been successfully utilized in the controllable transdermal drug delivery manner. We highlighted key challenges associated with wearable transdermal delivery systems, their research direction and future development trends.
    Matched MeSH terms: Pharmaceutical Preparations
  2. Noman E, Al-Shaibani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, et al.
    J Fungi (Basel), 2021 May 30;7(6).
    PMID: 34070936 DOI: 10.3390/jof7060436
    The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillusniger, A.fumigatusA.oryzae, A.flavus, A. versicolor, A.terreus,Penicilliumcitrinum, P.chrysogenum, and P.polonicum and have been used for investigating the anticancer activity against the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.
    Matched MeSH terms: Pharmaceutical Preparations
  3. Hakima F, Salfi R, Bhikshapathi D, Khan A
    PMID: 34030622 DOI: 10.2174/1871520621666210524164351
    BACKGROUND: According to the global cancer report of 2019, the burden of cancer will exceed more than 18 million becoming one of the major causes of global mortality rate. There is a pressing need to establish novel drug candidates for cancer treatment, though many anticancer agents are available in the market owing to their adverse effects. In recent years, quinazoline and its derivatives have been considered as a novel class of cancer chemotherapeutic agents that show promising activity against different tumors.

    OBJECTIVE: The objective of this study is to evaluate the anti-cancer potential of the novel class of quinazoline tethered acetamide derivatives against six different cancer cell lines.

    METHOD: A novel series of various substituted quinazolinone acetamides were synthesized through a feasible scheme. The synthetic scheme involves the conversion of benzoxazinone (from anthranilic acid and benzoyl chloride) intermediate to 3-amino quinazoline-4-one which is further converted to the final amide by tethering with the propionyl chloride employing Schotten-Baumann Reaction conditions. All the synthesized derivatives characterized by IR, 1HNMR and MASS spectral methods and anti-cancer activity evaluated by employing MTT assay for six cancer cell lines and one normal human cell line.

    RESULTS: All the synthesized compounds were screened for anti-cancer activity against six cancer cell lines, including A 549 (lung), DU 145 (prostate), HT 29 (colon), MCF-7 (breast), SiHA (cervical), B16F10 (mouse skin melanoma) and one normal human fibroblast cell lines. All the compounds displayed a decent cytotoxicity profile when compared with the standard drug, doxorubicin. Among the synthesized compounds (5a to 5n) tested, two compounds, 5f and 5g have demonstrated excellent cytotoxicity against SiHA and MCF-7 cancer cell lines.

    CONCLUSION: Comparatively, most of the compounds displayed decent cytotoxicity potential relative to the standard drug, doxorubicin. Further investigations are needed to establish the detailed mechanism of action of the developed novel quinazolinone acetamides.

    Matched MeSH terms: Pharmaceutical Preparations
  4. Xue J, Chen K, Hu H, Gopinath SCB
    PMID: 33988271 DOI: 10.1002/bab.2193
    Prostate cancer is one of the predominant cancers affecting men and has been widely reported. In the past, various therapies and drugs have been proposed to treat prostate cancer. Among these treatments, gene therapy has been considered to be an optimal and widely applicable treatment. Furthermore, due to the increased specificity of gene sequence complementation, the targeted delivery of complementary gene sequences may represent a useful treatment in certain instances. Various gene therapies, including tumor-suppressor gene therapy, suicide gene therapy, immunomodulation gene therapy and anti-oncogene therapies, have been established to treat a wide range of diseases, such as cardiac disease, cystic fibrosis, HIV/AIDS, diabetes, hemophilia, and cancers. To this end, several gene therapy clinical trials at various phases are underway. This overview describes the developments and progress in gene therapy, with a special focus being placed on prostate cancer.
    Matched MeSH terms: Pharmaceutical Preparations
  5. Gulati N, Kumar Chellappan D, M Tambuwala M, A A Aljabali A, Prasher P, Kumar Singh S, et al.
    Assay Drug Dev Technol, 2021 05 14;19(4):246-261.
    PMID: 33989048 DOI: 10.1089/adt.2021.012
    Nanoemulsions (NMs) are one of the most important colloidal dispersion systems that are primarily used to improve the solubility of poorly water soluble drugs. The main objectives of this study were, first, to prepare an NM loaded with fenofibrate using a high shear homogenization technique and, second, to study the effect of variable using a central composite design. Twenty batches of fenofibrate-loaded NM formulations were prepared. The formed NMs were subjected to droplet size analysis, zeta potential, entrapment efficiency, pH, dilution, polydispersity index, transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry, differential scanning calorimetry (DSC), and in vitro drug release study. Analysis of variance was used for entrapment efficiency data to study the fitness and significance of the design. The NM-7 batch formulation demonstrated maximum entrapment efficiency (81.82%) with lowest droplet size (72.28 nm), and was thus chosen as the optimized batch. TEM analysis revealed that the NM was well dispersed with droplet sizes <100 nm. Incorporation of the drug into the NM was confirmed with DSC studies. In addition, the batch NM-7 also showed the maximum in vitro drug release (87.6%) in a 0.05 M sodium lauryl sulfate solution. The release data revealed that the NM followed first-order kinetics. The outcomes of the study revealed the development of a stable oral NM containing fenofibrate using the high shear homogenization technique. This approach may aid in further enhancing the oral bioavailability of fenofibrate, which requires further in vivo studies.
    Matched MeSH terms: Pharmaceutical Preparations
  6. Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Kim KS, Habib F, et al.
    ACS Omega, 2021 May 11;6(18):12261-12273.
    PMID: 34056379 DOI: 10.1021/acsomega.1c01137
    Among several animals, Rattus rattus (rat) lives in polluted environments and feeds on organic waste/small invertebrates, suggesting the presence of inherent mechanisms to thwart infections. In this study, we isolated gut bacteria of rats for their antibacterial activities. Using antibacterial assays, the findings showed that the conditioned media from selected bacteria exhibited bactericidal activities against Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, and Salmonella enterica) and Gram-positive (Bacillus cereus, methicillin-resistant Staphylococcus aureus, and Streptococcus pyogenes) pathogenic bacteria. The conditioned media retained their antibacterial properties upon heat treatment at boiling temperature for 10 min. Using MTT assays, the conditioned media showed minimal cytotoxic effects against human keratinocyte cells. Active conditioned media were subjected to tandem mass spectrometry, and the results showed that conditioned media from Bacillus subtilis produced a large repertoire of surfactin and iturin A (lipopeptides) molecules. To our knowledge, this is the first report of isolation of lipopeptides from bacteria isolated from the rat gut. In short, these findings are important and provide a platform to develop effective antibacterial drugs.
    Matched MeSH terms: Pharmaceutical Preparations
  7. Malviya R, Tyagi A, Fuloria S, Subramaniyan V, Sathasivam K, Sundram S, et al.
    Polymers (Basel), 2021 May 10;13(9).
    PMID: 34068768 DOI: 10.3390/polym13091531
    Transdermal drug delivery is used to deliver a drug by eliminating the first-pass metabolism, which increases the bioavailability of the drug. The present study aims to formulate the chitosan-tamarind seed polysaccharide composite films and evaluate for the delivery of protein/peptide molecules. Nine formulations were prepared and evaluated by using different parameters, such as physical appearance, folding endurance, thickness of film, surface pH, weight variation, drug content, surface morphology, percentage moisture intake and uptake, drug release kinetics, and drug permeability. The film weight variance was observed between 0.34 ± 0.002 to 0.47 ± 0.003 g. The drug level of the prepared films was found to be between 96 ± 1.21 and 98 ± 1.33μg. Their intake of moisture ranged between 2.83 ± 0.002 and 3.76 ± 0.001 (%). The moisture absorption of the films ranged from 5.33 ± 0.22 to 10.02 ± 0.61 (%). SEM images revealed a smooth film surface, while minor cracks were found in the film after permeation tests. During the first 4 days, drug release was between 13.75 ± 1.64% and 22.54 ± 1.34% and from day 5 to day 6, it was between 72.67 ± 2.13% and 78.33 ± 3.13%. Drug permeation during the first 4 days was 15.78 ± 1.23 %. Drug permeation (%) during the first 4 days was between 15.78 ± 1.23 and 22.49 ± 1.29 and from day 5 to day 6, it was between 71.49 ± 3.21 and 77.93 ± 3.20.
    Matched MeSH terms: Pharmaceutical Preparations
  8. Ismail NZ, Adebayo IA, Mohamad Zain NN, Arsad H
    Nat Prod Res, 2021 May 05.
    PMID: 33949277 DOI: 10.1080/14786419.2021.1919104
    Clinacanthus nutans has been reported to have many medicinal properties and it is traditionally used in treating viral lesions. This study aims to determine the molecular docking of C. nutans compounds detected by Gas Chromatography-Mass Spectrometry (GC-MS) with the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 main protease) protein and its host receptor angiotensin-converting enzyme 2 (ACE2) protein using the AutoDock 4.2 tool. The drug-likeness and molecular docking analyses showed that fourteen compounds of C. nutans satisfied the Lipinski's rule of five and they exhibited good inhibitory effects against the SARS-Cov-2 main protease and ACE2 proteins. In addition, the glyceryl 2-linolenate compound was found to have the most potent binding affinities with both proteins. The results provide useful insights into the molecular inhibitory interactions of C. nutans compounds detected by GC-MS analysis with the targeted SARS-CoV-2 main protease and ACE2 protein.
    Matched MeSH terms: Pharmaceutical Preparations
  9. Rathi BS, Kumar PS, Show PL
    J Hazard Mater, 2021 05 05;409:124413.
    PMID: 33183841 DOI: 10.1016/j.jhazmat.2020.124413
    Wastewater is water that has already been contaminated by domestic, industrial and commercial activity that needs to be treated before it could be discharged into some other water bodies to avoid even more groundwater contamination supplies. It consists of various contaminants like heavy metals, organic pollutants, inorganic pollutants and Emerging contaminants. Research has been doing on all types of contaminates more than a decade, but this emerging contaminants is the contaminants which arises mostly from pharmaceuticals, personal care products, hormones and fertilizer industries. The majority of emerging contaminants did not have standardized guidelines, but may have adverse effects on human and marine organisms, even at smaller concentrations. Typically, extremely low doses of emerging contaminants are found in the marine environment and cause a potential risk to the aquatic animals living there. When contaminants emerge in the marine world, they are potentially toxic and pose many risks to the health of both man and livestock. The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.
    Matched MeSH terms: Pharmaceutical Preparations
  10. Balam SK, Soora Harinath J, Krishnammagari SK, Gajjala RR, Polireddy K, Baki VB, et al.
    ACS Omega, 2021 May 04;6(17):11375-11388.
    PMID: 34056293 DOI: 10.1021/acsomega.1c00360
    A series of 3-amino-2-hydroxybenzofused 2-phosphalactones (4a-l) has been synthesized from the Kabachnik-Fields reaction via a facile route from a one-pot three-component reaction of diphenylphosphite with various 2-hydroxybenzaldehyes and heterocyclic amines in a new way of expansion. The in vitro anti-cell proliferation studies by MTT assay have revealed them as potential Panc-1, Miapaca-2, and BxPC-3 pancreatic cell growth inhibitors, and the same is supported by molecular docking, QSAR, and ADMET studies. The MTT assay of their SAHA derivatives against the same cell lines evidenced them as potential HDAC inhibitors and identified 4a, 4b, and 4k substituted with 1,3-thiazol, 1,3,4-thiadiazol, and 5-sulfanyl-1,3,4-thiadiazol moieties on phenyl and diethylamino phenyl rings as potential ones. Additionally, the flow cytometric analyses of 4a, 4b, and 4k against BxPC-3 cells revealed compound 4k as a lead compound that arrests the S phase cell cycle growth at low micromolar concentrations. The ADMET properties have ascertained their inherent pharmacokinetic potentiality, and the wholesome results prompted us to report it as the first study on anti-pancreatic cancer activity of cyclic α-aminophosphonates. Ultimately, this study serves as a good contribution to update the existing knowledge on the anticancer organophosphorus heterocyclic compounds and elevates the scope for generation of new anticancer drugs. Further, the studies like QSAR, drug properties, toxicity risks, and bioactivity scores predicted for them have ascertained the synthesized compounds as newer and potential drug candidates. Hence, this study had augmented the array of α-aminophosphonates by adding a new collection of 3-amino-2-hydroxybenzofused 2-phosphalactones, a class of cyclic α-aminophosphonates, to it, which proved them as potential anti-pancreatic cancer agents.
    Matched MeSH terms: Pharmaceutical Preparations
  11. Samuggam S, Chinni SV, Mutusamy P, Gopinath SCB, Anbu P, Venugopal V, et al.
    Molecules, 2021 May 03;26(9).
    PMID: 34063685 DOI: 10.3390/molecules26092681
    Multidrug resistant bacteria create a challenging situation for society to treat infections. Multidrug resistance (MDR) is the reason for biofilm bacteria to cause chronic infection. Plant-based nanoparticles could be an alternative solution as potential drug candidates against these MDR bacteria, as many plants are well known for their antimicrobial activity against pathogenic microorganisms. Spondias mombin is a traditional plant which has already been used for medicinal purposes as every part of this plant has been proven to have its own medicinal values. In this research, the S. mombin extract was used to synthesise AgNPs. The synthesized AgNPs were characterized and further tested for their antibacterial, reactive oxygen species and cytotoxicity properties. The characterization results showed the synthesized AgNPs to be between 8 to 50 nm with -11.52 of zeta potential value. The existence of the silver element in the AgNPs was confirmed with the peaks obtained in the EDX spectrometry. Significant antibacterial activity was observed against selected biofilm-forming pathogenic bacteria. The cytotoxicity study with A. salina revealed the LC50 of synthesized AgNPs was at 0.81 mg/mL. Based on the ROS quantification, it was suggested that the ROS production, due to the interaction of AgNP with different bacterial cells, causes structural changes of the cell. This proves that the synthesized AgNPs could be an effective drug against multidrug resistant bacteria.
    Matched MeSH terms: Pharmaceutical Preparations
  12. Sim S, Wong NK
    Biomed Rep, 2021 May;14(5):42.
    PMID: 33728048 DOI: 10.3892/br.2021.1418
    Nanotechnology is the exploitation of the unique properties of materials at the nanoscale. Nanotechnology has gained popularity in several industries, as it offers better built and smarter products. The application of nanotechnology in medicine and healthcare is referred to as nanomedicine, and it has been used to combat some of the most common diseases, including cardiovascular diseases and cancer. The present review provides an overview of the recent advances of nanotechnology in the aspects of imaging and drug delivery.
    Matched MeSH terms: Pharmaceutical Preparations
  13. Salman M, Khan AH, Syed Sulaiman SA, Hughes JD, Khan JH, Shehzadi N, et al.
    J Pak Med Assoc, 2021 May;71(5):1384-1387.
    PMID: 34091619 DOI: 10.47391/JPMA.1162
    Objective: To investigate the prevalence and severity of lower urinary tract symptoms among calcium channel blocker users, and the impact on patients' quality of life.

    METHODS: The cross-sectional study was conducted at one hospital and 2 community pharmacies in Lahore, Pakistan, from November 2017 to July 2018, and comprised patients using calcium channel blockers. Data was collected using standardised scales to assess lower urinary tract symptoms and quality of life. Data was analysed using SPSS 22.

    RESULTS: Of the 410 subjects, 315 (76.8%) were males. The overall median age was 50.84 years, IQR 19 with 126 (30.7%) aged 41-50 years. Of the total, 108 (26.3%) patients were on calcium channel blockers alone, while the rest were taking it in combination with other drugs. Prevalence of lower urinary tract symptoms was 307 (74.9%); mild 103 (25.1%), moderate 201 (49.1%) and severe 106 (25.9%). The symptoms were significantly associated with reduced quality of life (p<0.05).

    Conclusion: Majority calcium channel blockers users had clinically significant lower urinary tract symptoms which significantly reduced patients' quality of life.

    Matched MeSH terms: Pharmaceutical Preparations*
  14. Lee SC, Wo WK, Yeoh HS, Mohamed Ali N, Hariraj V
    Ther Innov Regul Sci, 2021 05;55(3):514-522.
    PMID: 33393015 DOI: 10.1007/s43441-020-00245-w
    INTRODUCTION: Allopurinol-induced severe cutaneous adverse drug reactions (SCARs) are potentially debilitating and life-threatening reactions, which can cause a financial burden to the healthcare system.

    OBJECTIVES: We aimed to identify risk factors for allopurinol-induced SCARs and to assess their impact on fatality.

    METHODS: Adverse drug reaction (ADR) reports with allopurinol as suspected drug were extracted from the Malaysian pharmacovigilance database from year 2000 to 2018. Multiple logistic regression analysis was used to identify significant predictors of allopurinol-induced SCARs. We further analysed the association between covariates and SCARs-related fatality in a separate model. Level of significance was set at p value 

    Matched MeSH terms: Pharmaceutical Preparations*
  15. Kato J, Baba M, Kuroha M, Kakehi Y, Murayama E, Wasaki Y, et al.
    Clin Ther, 2021 05;43(5):822-835.e16.
    PMID: 34059327 DOI: 10.1016/j.clinthera.2021.03.015
    PURPOSE: Mirogabalin besylate has been approved in several countries to treat peripheral neuropathic pain. This pooled analysis, using data from the two pivotal Phase III studies in Asian patients with diabetic peripheral neuropathic pain and post-herpetic neuralgia, aimed to provide clinicians with more detailed and precise information relating to mirogabalin's safety and efficacy.

    METHODS: Data were pooled from 2 multicenter, double-blind, placebo-controlled, parallel-group, 14-week treatment studies of mirogabalin conducted at ∼350 study sites (Japan, South Korea, Taiwan, Singapore, Malaysia, and Thailand). Eligible patients in both studies were randomized in a 2:1:1:1 ratio, stratified according to a baseline average daily pain score (ADPS) of <6 or ≥6, to placebo, mirogabalin 15-mg once daily (QD), mirogabalin 10-mg twice daily (BID), or mirogabalin 15-mg BID treatment groups. Safety was assessed based on treatment-emergent adverse events identified from the adverse events collected throughout both studies. The primary efficacy end point of both studies was the change from baseline in ADPS at week 14.

    FINDINGS: In total, 1587 patients (824 with diabetic peripheral neuropathic pain; 763 with post-herpetic neuralgia) who received at least 1 dose of study drug were analyzed (633 received placebo, 954 treated with mirogabalin). Treatment-emergent adverse events included somnolence (3.8%, 10.8%, 14.5%, and 19.1%) and dizziness (2.7%, 5.7%, 9.1%, and 13.1%) in patients receiving placebo, mirogabalin 15 mg QD, mirogabalin 10 mg BID, and mirogabalin 15 mg BID, respectively. In patients treated with mirogabalin 15 mg QD, 2 (0.6%) of 316 patients discontinued due to somnolence. In the mirogabalin 10-mg BID group, somnolence, edema, and peripheral edema each resulted in 3 (0.9%) of 318 patient discontinuations. In the mirogabalin 15-mg BID group, 6 (1.9%) of 320 patients discontinued due to dizziness and 3 (0.9%) due to somnolence. At week 14, mirogabalin 10 mg BID and 15 mg BID statistically significantly improved ADPS versus placebo, with least squares mean changes (95% CI) of -0.31 (-0.55, -0.08) and -0.63 (-0.86, -0.40). Post hoc analysis showed a statistically significant difference 2 days after administration in the mirogabalin 10-mg and 15-mg BID groups compared with placebo. Female sex, age ≥65 years, and baseline weight <60 kg may influence the safety of mirogabalin, particularly regarding the incidence of somnolence and dizziness, but had no notable impact on efficacy. ClinicalTrials.gov identifiers: NCT02318706 and NCT02318719.

    IMPLICATIONS: This pooled analysis showed that mirogabalin was efficacious and well-tolerated by Asian patients with peripheral neuropathic pain.

    Matched MeSH terms: Pharmaceutical Preparations*
  16. Yeoh SC, Goh CF
    Drug Deliv Transl Res, 2021 Apr 28.
    PMID: 33907986 DOI: 10.1007/s13346-021-00988-5
    Salicylates have a long history of use for pain relief. Salicylic acid and methyl salicylate are among the widely used topical salicylates namely for keratolytic and anti-inflammatory actions, respectively. The current review summarises both passive and active strategies, including emerging technologies employed to enhance skin permeation of these two salicylate compounds. The formulation design of topical salicylic acid targets the drug retention in and on the skin based on the different indications including keratolytic, antibacterial and photoprotective actions, while the investigations of topical delivery strategies for methyl salicylate are limited. The pharmacokinetics and metabolisms of both salicylate compounds are discussed. The current overview and future perspectives of the topical delivery strategies are also highlighted for translational considerations of formulation designs.
    Matched MeSH terms: Pharmaceutical Preparations
  17. Al-Shaibani MM, Radin Mohamed RMS, Zin NM, Al-Gheethi A, Al-Sahari M, El Enshasy HA
    Molecules, 2021 Apr 25;26(9).
    PMID: 33923072 DOI: 10.3390/molecules26092510
    The present research aimed to enhance the pharmaceutically active compounds' (PhACs') productivity from Streptomyces SUK 25 in submerged fermentation using response surface methodology (RSM) as a tool for optimization. Besides, the characteristics and mechanism of PhACs against methicillin-resistant Staphylococcus aureus were determined. Further, the techno-economic analysis of PhACs production was estimated. The independent factors include the following: incubation time, pH, temperature, shaker rotation speed, the concentration of glucose, mannitol, and asparagine, although the responses were the dry weight of crude extracts, minimum inhibitory concentration, and inhibition zone and were determined by RSM. The PhACs were characterized using GC-MS and FTIR, while the mechanism of action was determined using gene ontology extracted from DNA microarray data. The results revealed that the best operating parameters for the dry mass crude extracts production were 8.20 mg/L, the minimum inhibitory concentrations (MIC) value was 8.00 µg/mL, and an inhibition zone of 17.60 mm was determined after 12 days, pH 7, temperature 28 °C, shaker rotation speed 120 rpm, 1 g glucose /L, 3 g mannitol/L, and 0.5 g asparagine/L with R2 coefficient value of 0.70. The GC-MS and FTIR spectra confirmed the presence of 21 PhACs, and several functional groups were detected. The gene ontology revealed that 485 genes were upregulated and nine genes were downregulated. The specific and annual operation cost of the production of PhACs was U.S. Dollar (U.S.D) 48.61 per 100 mg compared to U.S.D 164.3/100 mg of the market price, indicating that it is economically cheaper than that at the market price.
    Matched MeSH terms: Pharmaceutical Preparations/isolation & purification*; Pharmaceutical Preparations/chemistry
  18. Akyuz E, Kullu I, Arulsamy A, Shaikh MF
    ACS Chem Neurosci, 2021 04 21;12(8):1281-1292.
    PMID: 33813829 DOI: 10.1021/acschemneuro.1c00083
    Epilepsy is a result of unprovoked, uncontrollable, and repetitive outburst of abnormal and excessive electrical discharges, known as seizures, in the neurons. Epilepsy is a devastating neurological condition that affects 70 million people globally. Unfortunately, only two-thirds of epilepsy patients respond to antiepileptic drugs while others become drug resistant and may be more prone to epilepsy comorbidities such as SUDEP. Oxidative stress, mitochondrial dysfunction, imbalance in the excitatory and inhibitory neurotransmitters, and neuroinflammation are some of the common pathologies of neurological disorders and epilepsy. Studies suggests that melatonin, a pineal hormone that governs sleep-wake cycles, may be neuroprotective against neurological disorders and thus may be translated as an antiepileptic as well. Melatonin has been shown to be an antioxidant, antiexcitotoxic, and anti-inflammatory hormone/molecule in neurodegenerative diseases, which may contribute to its antiepileptic and neuroprotective properties in epilepsy as well. In addition, melatonin has evidently been shown to play a regulatory role in the cardiorespiratory system and sleep-wake cycles, which may have positive implications toward epilepsy associated comorbidities, such as SUDEP. However, studies investigating the changes in melatonin release due to epilepsy and melatonin's antiepileptic role have been inconclusive and scarce, respectively. Thus, this comprehensive review aims to summarize and elucidate the potential role of melatonin in the pathogenesis of epilepsy and its comorbidities, in hopes to develop new diagnostic and therapeutic approaches that will improve the lives of epileptic patients, particularly those who are drug resistant.
    Matched MeSH terms: Pharmaceutical Preparations
  19. Veerasamy R, Rajak H
    Turk J Pharm Sci, 2021 04 20;18(2):151-156.
    PMID: 33900700 DOI: 10.4274/tjps.galenos.2020.45556
    Objectives: The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for neuraminidase inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anti-influenza activity.

    Materials and Methods: We have developed and validated 2D and 3D QSAR models by using multiple linear regression, partial least square regression, and k-nearest neighbor-molecular field analysis methods.

    Results: 2D QSAR models had q2: 0.950 and pred_r2: 0.877 and 3D QSAR models had q2: 0.899 and pred_r2: 0.957. These results showed that the models werere predictive.

    Conclusion: Parameters such as hydrogen count and hydrophilicity were involved in 2D QSAR models. The 3D QSAR study revealed that steric and hydrophobic descriptors were negatively contributed to neuraminidase inhibitory activity. The results of this study could be used as platform for design of better anti-influenza drugs.

    Matched MeSH terms: Pharmaceutical Preparations
  20. Kuang TK, Kang YB, Segarra I, Kanwal U, Ahsan M, Bukhari NI
    Turk J Pharm Sci, 2021 04 20;18(2):167-175.
    PMID: 33902255 DOI: 10.4274/tjps.galenos.2020.48902
    Objectives: This study was conducted to assess the effect of microwave heating on the preparation of paracetamol cross-linked gelatin matrices by using the design of experiment (DoE) approach and explore the influence of the duration of microwave irradiation, the concentrations of crosslinker, and the amount of sodium bicarbonate (salt) on paracetamol release. These parameters were also compared with those of the matrices prepared via conventional heating.

    Materials and Methods: Twenty gel matrices were prepared with different durations of microwave irradiation, amounts of maize, and concentrations of sodium bicarbonate as suggested by Design Expert (DX®). The percentage drug release, the coefficient of variance (CV) in release, and the mean dissolution time (MDT) were the properties explored in the designed experimentation.

    Results: Target responses were dependent on microwave irradiation time, cross-linker amount, and salt concentration. Classical and microwave heating did not demonstrate statistically significant difference in modifying the percentage of drug released from the matrices. However, the CVs of microwave-assisted formulations were lower than those of the gel matrices prepared via classical heating. Thus, microwave heating produced lesser variations in drug release. The optimized gel matrices demonstrated that the observed percentage of drug release, CV, and MDT were within the prediction interval generated by DX®. The release mechanism of the matrix formulations followed the Peppas-Korsmeyer anomalous transport model.

    Conclusion: The DoE-supported microwave-assisted approach could be applied to optimize the critical factors of drug release with less variation.

    Matched MeSH terms: Pharmaceutical Preparations
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links