Displaying publications 81 - 100 of 170 in total

Abstract:
Sort:
  1. Soga T, Kitahashi T, Clarke IJ, Parhar IS
    Endocrinology, 2014 May;155(5):1944-55.
    PMID: 24605826 DOI: 10.1210/en.2013-1786
    Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17β and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17β treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.
    Matched MeSH terms: Promoter Regions, Genetic*
  2. Yap LF, Lai SL, Patmanathan SN, Gokulan R, Robinson CM, White JB, et al.
    Sci Rep, 2016 Dec 09;6:38758.
    PMID: 27934959 DOI: 10.1038/srep38758
    Head and neck squamous cell carcinoma (HNSCC) is generalized term that encompasses a diverse group of cancers that includes tumours of the oral cavity (OSCC), oropharynx (OPSCC) and nasopharynx (NPC). Genetic alterations that are common to all HNSCC types are likely to be important for squamous carcinogenesis. In this study, we have investigated the role of the homeodomain-only homeobox gene, HOPX, in the pathogenesis of HNSCC. We show that HOPX mRNA levels are reduced in OSCC and NPC cell lines and tissues and there is a general reduction of HOPX protein expression in these tumours and OPSCCs. HOPX promoter methylation was observed in a subset of HNSCCs and was associated with a worse overall survival in HPV negative tumours. RNAseq analysis of OSCC cells transfected with HOPX revealed a widespread deregulation of the transcription of genes related to epithelial homeostasis and ectopic over-expression of HOPX in OSCC and NPC cells inhibited cell proliferation, plating efficiency and migration, and enhanced sensitivity to UVA-induced apoptosis. Our results demonstrate that HOPX functions as a tumour suppressor in HNSCC and suggest a central role for HOPX in suppressing epithelial carcinogenesis.
    Matched MeSH terms: Promoter Regions, Genetic
  3. Elias MH, Baba AA, Husin A, Sulong S, Hassan R, Sim GA, et al.
    Biomed Res Int, 2013;2013:129715.
    PMID: 23484077 DOI: 10.1155/2013/129715
    Development of resistance to imatinib mesylate (IM) in chronic myeloid leukemia (CML) patients has emerged as a significant clinical problem. The observation that increased epigenetic silencing of potential tumor suppressor genes correlates with disease progression in some CML patients treated with IM suggests a relationship between epigenetic silencing and resistance development. We hypothesize that promoter hypermethylation of HOXA4 could be an epigenetic mechanism mediating IM resistance in CML patients. Thus a study was undertaken to investigate the promoter hypermethylation status of HOXA4 in CML patients on IM treatment and to determine its role in mediating resistance to IM. Genomic DNA was extracted from peripheral blood samples of 95 CML patients (38 good responders and 57 resistant) and 12 normal controls. All samples were bisulfite treated and analysed by methylation-specific high-resolution melt analysis. Compared to the good responders, the HOXA4 hypermethylation level was significantly higher (P = 0.002) in IM-resistant CML patients. On comparing the risk, HOXA4 hypermethylation was associated with a higher risk for IM resistance (OR 4.658; 95% CI, 1.673-12.971; P = 0.003). Thus, it is reasonable to suggest that promoter hypermethylation of HOXA4 gene could be an epigenetic mechanism mediating IM resistance in CML patients.
    Matched MeSH terms: Promoter Regions, Genetic*
  4. Saif-Ali R, Harun R, Al-Jassabi S, Wan Ngah WZ
    Acta Biochim. Pol., 2011;58(2):179-86.
    PMID: 21633728
    This study aimed to investigate the associations of hepatocyte nuclear factor 4 (HNF4) alpha single nucleotide polymorphisms (SNPs) and haplotype with insulin resistance and metabolic syndrome parameters. Nine SNPs spanning the HNF4 alpha P2 promoter (rs4810424, rs1884613 and rs1884614) and coding region (rs2144908, rs6031551, rs6031552, rs1885088, rs1028583 and rs3818247) were genotyped in 160 subjects without diabetes or metabolic syndrome. The HNF4 alpha P2 promoter SNPs rs4810424, rs1884613 and rs1884614 were associated with insulin resistance (p = 0.017; 0.037; 0.024) and body mass index (BMI) (p = 0.03; 0.035; 0.039). The intron 1D SNP rs2144908 was associated with high-density lipoprotein cholesterol (HDLc) (p = 0.020) and the intron 9 SNP rs3818247 showed association with systolic (p = 0.02) and diastolic (p = 0.034) blood pressure. HNF4 alpha common haplotype CCCGTC associated with higher insulin resistance (p = 0.022), fasting blood glucose (FBG) (p = 0.035) and lower HDLc (p = 0.001). In conclusion, subjects with HNF4 alpha P2 variants and haplotypes have been shown to have a higher insulin resistance and are therefore at a higher risk for developing type 2 diabetes mellitus.
    Matched MeSH terms: Promoter Regions, Genetic*
  5. Wong SC, Stoming TA, Efremov GD, Huisman TH
    Hemoglobin, 1989;13(1):1-5.
    PMID: 2703362
    DNA samples from numerous subjects of different racial and ethnic backgrounds, with or without various hemoglobinopathies (classical beta-thalassemia; silent beta-thalassemia, Hb E, sickle cell anemia), were studied for a rearrangement (+ATA; -T) at nucleotide -530 in the 5' flanking region of the beta-globin gene using amplified DNA and 32P-labeled synthetic oligonucleotide probes. The data show that this unusual sequence is a common feature among East-Asians and Blacks (particularly SS patients), and is not associated with mild thalassemic features typical for the silent form of beta-thalassemia, as has been suggested (5).
    Matched MeSH terms: Promoter Regions, Genetic*
  6. Leow TC, Rahman RN, Basri M, Salleh AB
    Biosci Biotechnol Biochem, 2004 Jan;68(1):96-103.
    PMID: 14745170
    A thermostable extracellular lipase of Geobacillus sp. strain T1 was cloned in a prokaryotic system. Sequence analysis revealed an open reading frame of 1,251 bp in length which codes for a polypeptide of 416 amino acid residues. The polypeptide was composed of a signal peptide (28 amino acids) and a mature protein of 388 amino acids. Instead of Gly, Ala was substituted as the first residue of the conserved pentapeptide Gly-X-Ser-X-Gly. Successful gene expression was obtained with pBAD, pRSET, pET, and pGEX as under the control of araBAD, T7, T7 lac, and tac promoters, respectively. Among them, pGEX had a specific activity of 30.19 Umg(-1) which corresponds to 2927.15 Ug(-1) of wet cells after optimization. The recombinant lipase had an optimum temperature and pH of 65 degrees C and pH 9, respectively. It was stable up to 65 degrees C at pH 7 and active over a wide pH range (pH 6-11). This study presents a rapid cloning and overexpression, aimed at improving the enzyme yield for successful industrial application.
    Matched MeSH terms: Promoter Regions, Genetic
  7. Sam SS, Teoh BT, Chinna K, AbuBakar S
    Int J Med Sci, 2015;12(2):177-86.
    PMID: 25589894 DOI: 10.7150/ijms.8988
    Dengue virus (DENV) infection usually presents with mild self-limiting dengue fever (DF). Few however, would present with the more severe form of the disease, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). In the present study, the association between IL-12B, IL-10 and TNF-α gene polymorphisms and dengue severity was investigated.
    METHODS: A case-control study was performed on a total of 120 unrelated controls, 86 DF patients and 196 DHF/DSS patients. The polymorphisms in IL-12B, IL-10 and TNF-α genes were genotyped using PCR-RFLP and PCR-sequencing methods.
    RESULTS: A protective association of TNF-α -308A allele and -308GA genotype against DHF/DSS was observed, while TNF-α -238A allele and -238GA genotype were associated with DHF/DSS. A combination of TNF-α -308GA+AA genotype and IL-10 non-GCC haplotypes, IL-12B pro homozygotes (pro1/pro1, pro2/pro2) and IL-12B 3'UTR AC were significantly correlated with protective effects against DHF/DSS. An association between the cytokine gene polymorphisms and protection against the clinical features of severe dengue including thrombocytopenia and increased liver enzymes was observed in this study.
    CONCLUSION: The overall findings of the study support the correlation of high-producer TNF-α genotypes combined with low-producer IL-10 haplotypes and IL-12B genotypes in reduced risk of DHF/DSS.
    KEYWORDS: Infectious disease; cytokine; dengue; genetics; polymorphism.; tropical
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  8. Chalertpet K, Pakdeechaidan W, Patel V, Mutirangura A, Yanatatsaneejit P
    Cancer Sci, 2015 Oct;106(10):1333-40.
    PMID: 26250467 DOI: 10.1111/cas.12761
    Human papillomavirus (HPV) oncoproteins drive distinctive promoter methylation patterns in cancer. However, the underlying mechanism remains to be elucidated. Cyclin A1 (CCNA1) promoter methylation is strongly associated with HPV-associated cancer. CCNA1 methylation is found in HPV-associated cervical cancers, as well as in head and neck squamous cell cancer. Numerous pieces of evidence suggest that E7 may drive CCNA1 methylation. First, the CCNA1 promoter is methylated in HPV-positive epithelial lesions after transformation. Second, the CCNA1 promoter is methylated at a high level when HPV is integrated into the human genome. Finally, E7 has been shown to interact with DNA methyltransferase 1 (Dnmt1). Here, we sought to determine the mechanism by which E7 increases methylation in cervical cancer by using CCNA1 as a gene model. We investigated whether E7 induces CCNA1 promoter methylation, resulting in the loss of expression. Using both E7 knockdown and overexpression approaches in SiHa and C33a cells, our data showed that CCNA1 promoter methylation decreases with a corresponding increase in expression in E7 siRNA-transfected cells. By contrast, CCNA1 promoter methylation was augmented with a corresponding reduction in expression in E7-overexpressing cells. To confirm whether the binding of the E7-Dnmt1 complex to the CCNA1 promoter induced methylation and loss of expression, ChIP assays were carried out in E7-, del CR3-E7 and vector control-overexpressing C33a cells. The data showed that E7 induced CCNA1 methylation by forming a complex with Dnmt1 at the CCNA1 promoter, resulting in the subsequent reduction of expression in cancers. It is interesting to further explore the genome-wide mechanism of E7 oncoprotein-mediated DNA methylation.
    Matched MeSH terms: Promoter Regions, Genetic/genetics*
  9. Abdul Mutalib NE, Mat Isa N, Alitheen NB, Song AA, Rahim RA
    Plasmid, 2014 May;73:26-33.
    PMID: 24780699 DOI: 10.1016/j.plasmid.2014.04.003
    Plasmid DNAs isolated from lactic acid bacteria (LAB) such as Lactococcus lactis (L. lactis) has been gaining more interests for its positive prospects in genetic engineering-related applications. In this study, the lactococcal plasmid, pNZ8048 was modified so as to be able to express multiple genes in the eukaryotic system. Therefore, a cassette containing an internal ribosome entry site (IRES) was cloned between VP2 gene of a very virulent infectious bursal disease (vvIBDV) UPM 04190 of Malaysian local isolates and the reporter gene, green fluorescent protein (GFP) into pNZ:CA, a newly constructed derivative of pNZ8048 harboring the cytomegalovirus promoter (Pcmv) and polyadenylation signal. The new bicistronic vector, denoted as pNZ:vig was subjected to in vitro transcription/translation system followed by SDS-PAGE and Western blot analysis to rapidly verify its functionality. Immunoblotting profiles showed the presence of 49 and 29kDa bands that corresponds to the sizes of the VP2 and GFP proteins respectively. This preliminary result shows that the newly constructed lactococcal bicistronic vector can co-express multiple genes in a eukaryotic system via the IRES element thus suggesting its feasibility to be used for transfection of in vitro cell cultures and vaccine delivery.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  10. Chua KH, Lian LH, Kee BP, Thum CM, Lee WS, Hilmi I, et al.
    J Dig Dis, 2011 Dec;12(6):459-66.
    PMID: 22118696 DOI: 10.1111/j.1751-2980.2011.00533.x
    The aim of this study was to investigate the association of DLG5 and SLC22A5 gene polymorphisms with the onset of Crohn's disease (CD) in a Malaysian cohort.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  11. Kok-Sin T, Mokhtar NM, Ali Hassan NZ, Sagap I, Mohamed Rose I, Harun R, et al.
    Oncol Rep, 2015 Jul;34(1):22-32.
    PMID: 25997610 DOI: 10.3892/or.2015.3993
    Apart from genetic mutations, epigenetic alteration is a common phenomenon that contributes to neoplastic transformation in colorectal cancer. Transcriptional silencing of tumor-suppressor genes without changes in the DNA sequence is explained by the existence of promoter hypermethylation. To test this hypothesis, we integrated the epigenome and transcriptome data from a similar set of colorectal tissue samples. Methylation profiling was performed using the Illumina InfiniumHumanMethylation27 BeadChip on 55 paired cancer and adjacent normal epithelial cells. Fifteen of the 55 paired tissues were used for gene expression profiling using the Affymetrix GeneChip Human Gene 1.0 ST array. Validation was carried out on 150 colorectal tissues using the methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) technique. PCA and supervised hierarchical clustering in the two microarray datasets showed good separation between cancer and normal samples. Significant genes from the two analyses were obtained based on a ≥2-fold change and a false discovery rate (FDR) p-value of <0.05. We identified 1,081 differentially hypermethylated CpG sites and 36 hypomethylated CpG sites. We also found 709 upregulated and 699 downregulated genes from the gene expression profiling. A comparison of the two datasets revealed 32 overlapping genes with 27 being hypermethylated with downregulated expression and 4 hypermethylated with upregulated expression. One gene was found to be hypomethylated and downregulated. The most enriched molecular pathway identified was cell adhesion molecules that involved 4 overlapped genes, JAM2, NCAM1, ITGA8 and CNTN1. In the present study, we successfully identified a group of genes that showed methylation and gene expression changes in well-defined colorectal cancer tissues with high purity. The integrated analysis gives additional insight regarding the regulation of colorectal cancer-associated genes and their underlying mechanisms that contribute to colorectal carcinogenesis.
    Matched MeSH terms: Promoter Regions, Genetic
  12. Zeng C, Guo X, Long J, Kuchenbaecker KB, Droit A, Michailidou K, et al.
    Breast Cancer Res, 2016 06 21;18(1):64.
    PMID: 27459855 DOI: 10.1186/s13058-016-0718-0
    BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk.

    METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation.

    RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P 

    Matched MeSH terms: Promoter Regions, Genetic
  13. Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, et al.
    Mol Microbiol, 2005 Jan;55(2):469-81.
    PMID: 15659164
    By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense-box RNAs, where the latter only exhibit partial complementarity to RNA targets. The most prominent group of antisense RNAs is transcribed in the opposite orientation to the transposase genes, encoded by insertion elements (transposons). Thus, these antisense RNAs may regulate transposition of insertion elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted to target the 3'-untranslated regions of certain mRNAs. Furthermore, one of the ncRNAs that does not show antisense elements is transcribed from a repeat unit of a cluster of small regularly spaced repeats in S. solfataricus which is potentially involved in replicon partitioning. In conclusion, this is the first report of stably expressed antisense RNAs in an archaeal species and it raises the prospect that antisense-based mechanisms are also used widely in Archaea to regulate gene expression.
    Matched MeSH terms: Promoter Regions, Genetic
  14. Annuar AA, Ankathil R, Mohd Yunus N, Husin A, Ab Rajab NS, Abdul Aziz AA, et al.
    Asian Pac J Cancer Prev, 2021 Feb 01;22(2):565-571.
    PMID: 33639675 DOI: 10.31557/APJCP.2021.22.2.565
    BACKGROUND: The FAS mediated apoptosis pathway involving the FAS and FASL genes plays a crucial role in the regulation of apoptotic cell death and imatinib mesylate (IM) mechanism of action. Promoter polymorphisms FAS-670 A>G and FAS-844 T>C which alter the transcriptional activity of these genes may grant a risk to develop cancer and revamp the drug activities towards the cancer cell. We investigated the association of these two polymorphisms with the susceptibility risk and IM treatment response in Malaysian chronic myeloid leukaemia (CML) patients.

    METHODS: This is a retrospective study, which included 93 CML patients and 98 controls. The polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method was used to genotype the FAS and FASL polymorphisms. Data nanlysis was done using SPSS Version 22. The associations of the genotypes with susceptibility risk and IM response in CML patients were assessed by means of logistic regression analysis and deriving odds ratio with 95% CI.

    RESULTS: We observed a significant association between FASL-844T>C polymorphism and CML susceptibility risk and IM response. Variant C allele and FASL-844 CC variant genotype carriers had significantly higher risk for CML susceptibility (OR 1.756, CI 1.163-2.652, p=0.007 and OR 2.261, CI 1.013-5.047, p=0.047 respectively). Conversely, the heterozygous genotype FASL-844 TC conferred lower risk for CML susceptibility (OR 0.379, CI 0.176-0.816, p=0.013). The heterozygous and homozygous variant genotypes and variant C alleles were found to confer a lower risk for the development of IM resistance with OR 0.129 (95% CI: 0.034-0.489 p=0.003), OR 0.257 (95% CI: 0.081-0.818, p=0.021), and OR 0.486 (95% CI: 0.262-0.899, p=0.021) respectively. We also found that FAS-670 A>G polymorphism was not associated with CML susceptibility risk or IM response.

    CONCLUSION: The genetic polymorphism FASL-844 T>C may contribute to the CML susceptibility risk and also IM treatment response in CML patients. Accodringly, it may be useful as a biomarker for predicting CML susceptibility risk and IM resistance.

    Matched MeSH terms: Promoter Regions, Genetic/genetics
  15. King BC, Vavitsas K, Ikram NK, Schrøder J, Scharff LB, Bassard JÉ, et al.
    Sci Rep, 2016 04 29;6:25030.
    PMID: 27126800 DOI: 10.1038/srep25030
    Direct assembly of multiple linear DNA fragments via homologous recombination, a phenomenon known as in vivo assembly or transformation associated recombination, is used in biotechnology to assemble DNA constructs ranging in size from a few kilobases to full synthetic microbial genomes. It has also enabled the complete replacement of eukaryotic chromosomes with heterologous DNA. The moss Physcomitrella patens, a non-vascular and spore producing land plant (Bryophyte), has a well-established capacity for homologous recombination. Here, we demonstrate the in vivo assembly of multiple DNA fragments in P. patens with three examples of effective genome editing: we (i) efficiently deleted a genomic locus for diterpenoid metabolism yielding a biosynthetic knockout, (ii) introduced a salt inducible promoter, and (iii) re-routed endogenous metabolism into the formation of amorphadiene, a precursor of high-value therapeutics. These proof-of-principle experiments pave the way for more complex and increasingly flexible approaches for large-scale metabolic engineering in plant biotechnology.
    Matched MeSH terms: Promoter Regions, Genetic
  16. Looi CY, D' Silva EC, Seow HF, Rosli R, Ng KP, Chong PP
    FEMS Microbiol Lett, 2005 Aug 15;249(2):283-9.
    PMID: 16006060
    The aims of our research were to investigate the gene expression of the multidrug efflux transporter, CDR1 and the major drug facilitator superfamily transporter, MDR1 gene in azole drug-resistant Candida albicans and Candida glabrata clinical isolates recovered from vaginitis patients; and to identify hotspot mutations that may be present in the C. albicans CaCDR1 gene that could be associated with drug-resistance. The relative expression of the CDR1 and MDR1 transcripts in ketoconazole and clotrimazole-resistant isolates and drug-susceptible ATCC strains were determined by semi-quantitative reverse transcription-polymerase chain reaction. Expression of CaCDR1 transcript was upregulated to varying extents in all three azole-resistant C. albicans isolates studied (1.6-, 3.7- and 3.9-fold) and all three C. glabrata isolates tested (at 1.9-, 2.3- and 2.7-fold). The overexpression level of CaCDR1 in the isolates correlated with the degree of resistance as reflected by the minimum inhibitory concentration (MIC) of the drugs. The messenger RNA for another efflux pump, MDR1, was also overexpressed in one of the azole-resistant C. albicans isolates that overexpressed CDR1. This finding suggests that drug-resistance may involve synergy between energy-dependent drug efflux pumps CDR1p and MDR1p in some but not all isolates. Interestingly, DNA sequence analysis of the promoter region of the CaCDR1 gene revealed several point mutations in the resistant clinical isolates compared to the susceptible isolates at 39, 49 and 151 nucleotides upstream from the ATG start codon. This finding provides new information on point mutations in the promoter region which may be responsible for the overexpression of CDR1 in drug-resistant isolates.
    Matched MeSH terms: Promoter Regions, Genetic
  17. Lazarev VN, Parfenova TM, Gularyan SK, Misyurina OY, Akopian TA, Govorun VM
    Int J Antimicrob Agents, 2002 Feb;19(2):133-7.
    PMID: 11850166
    As the number of pathogenic microbial strains resistant to different antibiotics increases, amphipathic peptides with antimicrobial activity are promising agents for the therapy of infectious diseases. This work deals with the effect of an amphipathic antimicrobial peptide, melittin, expressed within recombinant plasmid vectors, on infection with urogenital pathogens Chlamydia trachomatis and Mycoplasma hominis in HeLa cell culture. Recombinant plasmid constructs with the melittin gene under the control of the tetracycline-responsive promoter of human cytomegalovirus were obtained. We showed inhibition of C. trachomatis and M. hominis infection after the introduction of recombinant plasmid vectors expressing the melittin gene into the infected cell culture.
    Matched MeSH terms: Promoter Regions, Genetic/genetics
  18. Othman S, Rahman NA, Yusof R
    Virus Res, 2012 Jan;163(1):238-45.
    PMID: 22001567 DOI: 10.1016/j.virusres.2011.09.040
    Despite aggressive efforts in dengue research, the control of dengue diseases and discovery of therapeutics against them await complete elucidation of its complex immune-pathogenesis. Unlike many viruses that escape the host's immune responses by suppressing the major histocompatibility complex (MHC) Class I pathway, many Flaviviruses up-regulate the cell surface expression of MHC Class I complex. We recently reported MHC Class I HLA-A2 promoter activation by all serotypes of dengue virus (DV). The mechanism by which DV regulates this is further explored here in HepG2 human liver cell line. Using real-time PCR, evidence that, similar to infections by other Flaviviruses, DV infection has the ability to up-regulate the MHC Class I transcription and mRNA synthesis, is presented. The region responsive towards DV infection of all serotypes was mapped to the Class I Regulatory Complex (CRC) of the HLA-A2 promoter. Competition electrophoretic mobility shift assay (EMSA) with NFκB probe established the presence of specific DNA-protein complex in DV-infected nuclear extracts. Antibody-supershift assays identified the MHC Class I promoter activation by DV to occur through binding of p65/p50 heterodimers and p65 homodimers to κB1 and κB2 cis-acting elements, respectively, within the CRC, and not with the interferon consensus sequence (ICS). This study presents evidence of MHC Class I gene modulation by DV, hence providing a better understanding of dengue immune-pathogenesis that would consequently facilitate the discovery of antiviral therapeutics against dengue.
    Matched MeSH terms: Promoter Regions, Genetic*
  19. Kumari R, Guo Z, Kumar A, Wiens M, Gangappa S, Katz JM, et al.
    Antiviral Res, 2020 Apr;176:104747.
    PMID: 32092305 DOI: 10.1016/j.antiviral.2020.104747
    Influenza virus non-structural protein 1 (NS1) counteracts host antiviral innate immune responses by inhibiting Retinoic acid inducible gene-I (RIG-I) activation. However, whether NS1 also specifically regulates RIG-I transcription is unknown. Here, we identify a CCAAT/Enhancer Binding Protein beta (C/EBPβ) binding site in the RIG-I promoter as a repressor element, and show that NS1 promotes C/EBPβ phosphorylation and its recruitment to the RIG-I promoter as a C/EBPβ/NS1 complex. C/EBPβ overexpression and siRNA knockdown in human lung epithelial cells resulted in suppression and activation of RIG-I expression respectively, implying a negative regulatory role of C/EBPβ. Further, C/EBPβ phosphorylation, its interaction with NS1 and occupancy at the RIG-I promoter was associated with RIG-I transcriptional inhibition. These findings provide an important insight into the molecular mechanism by which influenza NS1 commandeers RIG-I transcriptional regulation and suppresses host antiviral responses.
    Matched MeSH terms: Promoter Regions, Genetic
  20. Rebbeck TR, Friebel TM, Mitra N, Wan F, Chen S, Andrulis IL, et al.
    Breast Cancer Res, 2016 11 11;18(1):112.
    PMID: 27836010
    BACKGROUND: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood.

    METHODS: From 32,295 female BRCA1/2 mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1 (SH1) or BRCA2 (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2.

    RESULTS: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; p = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (p = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (p = 0.231), but was on average 4.5 years younger in TH than in SH2 (p 

    Matched MeSH terms: Promoter Regions, Genetic
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links