Displaying publications 81 - 100 of 600 in total

Abstract:
Sort:
  1. Johan UUM, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Arch Biochem Biophys, 2024 Jun;756:109996.
    PMID: 38621445 DOI: 10.1016/j.abb.2024.109996
    Hyperthermostable enzymes are highly desirable biocatalysts due to their exceptional stability at extreme temperatures. Recently, a hyperthermostable carboxylesterase EstD9 from Anoxybacillus geothermalis D9 was biochemically characterized. The enzyme exhibited remarkable stability at high temperature. In this study, we attempted to probe the conformational adaptability of EstD9 under extreme conditions via in silico approaches. Circular dichroism revealed that EstD9 generated new β-sheets at 80 °C, making the core of the hydrolase fold more stable. Interestingly, the profiles of molecular dynamics simulation showed the lowest scores of radius of gyration and solvent accessible surface area (SASA) at 80 °C. Three loops were responsible for protecting the catalytic site, which resided at the interface between the large and cap domains. To further investigate the structural adaptation in extreme conditions, the intramolecular interactions of the native structure were investigated. EstD9 revealed 18 hydrogen bond networks, 7 salt bridges, and 9 hydrophobic clusters, which is higher than the previously reported thermostable Est30. Collectively, the analysis indicates that intramolecular interactions and structural dynamics play distinct roles in preserving the overall EstD9 structure at elevated temperatures. This work is relevant to both fundamental and applied research involving protein engineering of industrial thermostable enzymes.
    Matched MeSH terms: Bacterial Proteins/chemistry
  2. Cao MY, Zainudin S, Daud KM
    BMC Genomics, 2024 May 13;25(1):466.
    PMID: 38741045 DOI: 10.1186/s12864-024-10361-8
    BACKGROUND: Protein-protein interactions (PPIs) hold significant importance in biology, with precise PPI prediction as a pivotal factor in comprehending cellular processes and facilitating drug design. However, experimental determination of PPIs is laborious, time-consuming, and often constrained by technical limitations.

    METHODS: We introduce a new node representation method based on initial information fusion, called FFANE, which amalgamates PPI networks and protein sequence data to enhance the precision of PPIs' prediction. A Gaussian kernel similarity matrix is initially established by leveraging protein structural resemblances. Concurrently, protein sequence similarities are gauged using the Levenshtein distance, enabling the capture of diverse protein attributes. Subsequently, to construct an initial information matrix, these two feature matrices are merged by employing weighted fusion to achieve an organic amalgamation of structural and sequence details. To gain a more profound understanding of the amalgamated features, a Stacked Autoencoder (SAE) is employed for encoding learning, thereby yielding more representative feature representations. Ultimately, classification models are trained to predict PPIs by using the well-learned fusion feature.

    RESULTS: When employing 5-fold cross-validation experiments on SVM, our proposed method achieved average accuracies of 94.28%, 97.69%, and 84.05% in terms of Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori datasets, respectively.

    CONCLUSION: Experimental findings across various authentic datasets validate the efficacy and superiority of this fusion feature representation approach, underscoring its potential value in bioinformatics.

    Matched MeSH terms: Proteins/chemistry
  3. Ng CL, Lim TS, Choong YS
    Mol Biotechnol, 2024 Apr;66(4):568-581.
    PMID: 37742298 DOI: 10.1007/s12033-023-00885-x
    Since the advent of hybridoma technology in the year 1975, it took a decade to witness the first approved monoclonal antibody Orthoclone OKT39 (muromonab-CD3) in the year 1986. Since then, continuous strides have been made to engineer antibodies for specific desired effects. The engineering efforts were not confined to only the variable domains of the antibody but also included the fragment crystallizable (Fc) region that influences the immune response and serum half-life. Engineering of the Fc fragment would have a profound effect on the therapeutic dose, antibody-dependent cell-mediated cytotoxicity as well as antibody-dependent cellular phagocytosis. The integration of computational techniques into antibody engineering designs has allowed for the generation of testable hypotheses and guided the rational antibody design framework prior to further experimental evaluations. In this article, we discuss the recent works in the Fc-fused molecule design that involves computational techniques. We also summarize the usefulness of in silico techniques to aid Fc-fused molecule design and analysis for the therapeutics application.
    Matched MeSH terms: Recombinant Fusion Proteins/chemistry
  4. Ng WK, Lim TS, Lai NS
    Protein Expr Purif, 2016 11;127:73-80.
    PMID: 27412717 DOI: 10.1016/j.pep.2016.07.004
    Neonatal Fc-receptor (FcRn) with its affinity to immunoglobulin G (IgG) has been the subject of many pharmacokinetic studies in the past century. This protein is well known for its unique feature in maintaining the circulating IgG from degradation in blood plasma. FcRn is formed by non-covalent association between the α-chain with the β-2-microglobulin (β2m). Many studies have been conducted to produce FcRn in the laboratory, mainly using mammalian tissue culture as host for recombinant protein expression. In this study, we demonstrate a novel strategy to express the α-chain of FcRn using Escherichia coli as the expression host. The expression vector that carries the cDNA of the α-chain was transformed into expression host, Rosetta-gami 2 strain for inducible expression. The bacterial culture was grown in a modified growth medium which constitutes of terrific broth, sodium chloride (NaCl), glucose and betaine. A brief heat shock at 45 °C was carried out after induction, before the temperature for expression was reduced to 22 °C and grown for 16 h. The soluble form of the α-chain of FcRn expressed was tested in the ELISA and dot blot immunoassay to confirm its native functionality. The results implied that the α-chain of FcRn expressed using this method is functional and retains its pH-dependent affinity to IgG. Our study significantly suggests that the activity of human FcRn remain active and functional in the absence of β2m.
    Matched MeSH terms: Recombinant Proteins/chemistry
  5. Wahab AFFA, Abdul Karim NA, Ling JG, Hasan NS, Yong HY, Bharudin I, et al.
    Protein Expr Purif, 2019 02;154:52-61.
    PMID: 30261309 DOI: 10.1016/j.pep.2018.09.014
    Cellobiohydrolases catalyze the processive hydrolysis of cellulose into cellobiose. Here, a Trichoderma virens cDNA predicted to encode for cellobiohydrolase (cbhI) was cloned and expressed heterologously in Aspergillus niger. The cbhI gene has an open reading frame of 1518 bp, encoding for a putative protein of 505 amino acid residues with a calculated molecular mass of approximately 54 kDa. The predicted CbhI amino acid sequence has a fungal type carbohydrate binding module separated from a catalytic domain by a threonine rich linker region and showed high sequence homology with glycoside hydrolase family 7 proteins. The partially purified enzyme has an optimum pH of 4.0 with stability ranging from pH 3.0 to 6.0 and an optimum temperature of 60 °C. The partially purified CbhI has a specific activity of 4.195 Umg-1 and a low Km value of 1.88 mM when p-nitrophenyl-β-D-cellobioside (pNPC) is used as the substrate. The catalytic efficiency (kcat/Km) was 5.68 × 10-4 mM-1s-1, which is comparable to the CbhI enzymes from Trichoderma viridae and Phanaerochaete chrysosporium. CbhI also showed activity towards complex substrates such as Avicel (0.011 Umg-1), which could be useful in complex biomass degradation. Interestingly, CbhI also exhibited a relatively high inhibition constant (Ki) for cellobiose with a value of 8.65 mM, making this enzyme more resistant to end-product inhibition compared to other fungal cellobiohydrolases.
    Matched MeSH terms: Recombinant Proteins/chemistry
  6. Khusaini MS, Rahman RN, Mohamad Ali MS, Leow TC, Basri M, Salleh AB
    PMID: 21393852 DOI: 10.1107/S1744309111002028
    An organic solvent-tolerant lipase from Bacillus sp. strain 42 was crystallized using the capillary-tube method. The purpose of studying this enzyme was in order to better understand its folding and to characterize its properties in organic solvents. By initially solving its structure in the native state, further studies on protein-solvent interactions could be performed. X-ray data were collected at 2.0 Å resolution using an in-house diffractometer. The estimated crystal dimensions were 0.09×0.19×0.08 mm. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a=117.41, b=80.85, c=99.44 Å, β=96.40°.
    Matched MeSH terms: Bacterial Proteins/chemistry*
  7. Karim Z, Adnan R, Ansari MS
    PLoS One, 2012;7(7):e41422.
    PMID: 22848490 DOI: 10.1371/journal.pone.0041422
    Chemical synthesis of Ag-NPs was carried out using reduction method. The reduction mechanistic approach of silver ions was found to be a basic clue for the formation of the Ag-NPs. The nanoparticles were characterized by UV-vis, FT-IR and TEM analysis. We had designed some experiments in support of our hypothesis, "low concentrations of novel nanoparticles (silver and gold) increases the activity of plant peroxidases and alter their structure also", we had used Ag-NPs and HRP as models. The immobilization/interaction experiment had demonstrated the specific concentration range of the Ag-NPs and within this range, an increase in HRP activity was reported. At 0.08 mM concentration of Ag-NPs, 50% increase in the activity yield was found. The U.V-vis spectra had demonstrated the increase in the absorbance of HRP within the reported concentration range (0.06-0.12 mM). Above and below this concentration range there was a decrease in the activity of HRP. The results that we had found from the fluorescence spectra were also in favor of our hypothesis. There was a maximum increase in ellipticity and α-helix contents in the presence of 0.08 mM concentration of Ag-NPs, demonstrated by circular dichroism (CD) spectra. Finally, incubation of a plant peroxidase, HRP with Ag-NPs, within the reported concentration range not only enhances the activity but also alter the structure.
    Matched MeSH terms: Plant Proteins/chemistry*
  8. Vallejo-Domínguez D, Rubio-Rosas E, Aguila-Almanza E, Hernández-Cocoletzi H, Ramos-Cassellis ME, Luna-Guevara ML, et al.
    Ultrason Sonochem, 2021 Apr;72:105417.
    PMID: 33352467 DOI: 10.1016/j.ultsonch.2020.105417
    Recently, chitin and chitosan are widely investigated for food preservation and active packaging applications. Chemical, as well as biological methods, are usually adopted for the production of these biopolymers. In this study, modification to a chemical method of chitin synthesis from shrimp shells has been proposed through the application of high-frequency ultrasound. The impact of sonication time on the deproteinization step of chitin and chitosan preparation was examined. The chemical identities of chitin and chitosan were verified using infrared spectroscopy. The influence of ultrasound on the deacetylation degree, molecular weight and particle size of the biopolymer products was analysed. The microscopic characteristics, crystallinity and the colour characteristics of the as-obtained biopolymers were investigated. Application of ultrasound for the production of biopolymers reduced the protein content as well as the particle size of chitin. Chitosan of high deacetylation degree and medium molecular weight was produced through ultrasound assistance. Finally, the as-derived chitosan was applied for beef preservation. High values of luminosity, chromatid and chrome were noted for the beef samples preserved using chitosan films, which were obtained by employing biopolymer subjected to sonication for 15, 25 and 40 min. Notably; these characteristics were maintained even after ten days of packaging. The molecular weight of these samples are 73.61 KDa, 86.82 KDa and 55.66 KDa, while the deacetylation degree are 80.60%, 92.86% and 94.03%, respectively; in the same order, the particle size of chitosan are 35.70 μm, 25.51 μm and 20.10 μm.
    Matched MeSH terms: Proteins/chemistry
  9. Khor BY, Tye GJ, Lim TS, Choong YS
    PMID: 26338054 DOI: 10.1186/s12976-015-0014-1
    Protein structure prediction from amino acid sequence has been one of the most challenging aspects in computational structural biology despite significant progress in recent years showed by critical assessment of protein structure prediction (CASP) experiments. When experimentally determined structures are unavailable, the predictive structures may serve as starting points to study a protein. If the target protein consists of homologous region, high-resolution (typically <1.5 Å) model can be built via comparative modelling. However, when confronted with low sequence similarity of the target protein (also known as twilight-zone protein, sequence identity with available templates is less than 30%), the protein structure prediction has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted via threading or ab initio method. Based on the current trend, combination of different methods brings an improved success in the prediction of twilight-zone proteins. In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed.
    Matched MeSH terms: Proteins/chemistry*
  10. de Almeida Santos G, Englund ANB, Dalleywater EL, Røhr ÅK
    FEBS Open Bio, 2024 Dec;14(12):2038-2058.
    PMID: 39382070 DOI: 10.1002/2211-5463.13906
    Tyrosinases (TYRs) are type-3 copper proteins that are widely distributed in nature. They can hydroxylate and oxidize phenolic molecules and are mostly known for producing melanins that confer protection against photo induced damage. TYRs are also thought to play an important role in the 'latch mechanism', where high concentrations of phenolic compounds inhibit oxidative decomposition of organic biomass and subsequent CO2 release, especially relevant in wetland environments. In the present study, we describe two TYRs, HcTyr1 and HcTyr2, from halophilic bacterium Hahella sp. CCB MM4 previously isolated at Matang mangrove forest in Perak, Malaysia. The structure of HcTyr1 was determined by X-ray crystallography at a resolution of 1.9 Å and represents an uncharacterized group of prokaryotic TYRs as demonstrated by a sequence similarity network analysis. The genes encoding the enzymes were cloned, expressed, purified and thoroughly characterized by biochemical methods. HcTyr1 was able to self-cleave its lid-domain (LID) in a protease independent manner, whereas the LID of HcTyr2 was essential for activity and stability. Both enzymes showed variable activity in the presence of different metals, surfactants and NaCl, and were able to oxidize lignin constituents. The high salinity tolerance of HcTyr1 indicates that the enzyme can be an efficient catalyst in the habitat of the host.
    Matched MeSH terms: Bacterial Proteins/chemistry
  11. Hau EH, Chew LY, Yeo SK, Owatworakit A, Teh SS, Mah SH
    Int J Biol Macromol, 2025 Feb;291:138897.
    PMID: 39701231 DOI: 10.1016/j.ijbiomac.2024.138897
    Diabetes, particularly type II, is a global health concern, with current treatments like α-glucosidase inhibitors often causing gastrointestinal side effects. This study explored the antihyperglycemic potential of crude protein hydrolysate from oil palm leaves (OPL) as a plant-based α-glucosidase inhibitor. OPL protein hydrolysate was extracted under acidic, neutral, and alkaline conditions, and their α-glucosidase inhibitory activity was assessed. OPL hydrolysate obtained under neutral conditions for 2 h showed the highest inhibitory activity, comparable to the standard drug, acarbose. Bioassay-guided fractionation of the most potent extract revealed that peptides from sub-fractions C1 and C9 exhibited stronger inhibition, with IC50 values of 66.3 and 62.0 μg/mL, respectively. Seven novel peptides were identified from these fractions, and molecular docking confirmed stable interactions between these peptides and the α-glucosidase enzyme via hydrogen bonds and salt bridges. These findings suggest that OPL protein hydrolysate is a plant-based promising natural α-glucosidase inhibitor with potential as an antidiabetic agent. Future studies should focus on in vivo validation of its efficacy and safety for therapeutic use.
    Matched MeSH terms: Plant Proteins/chemistry
  12. Guo X, Liu H, Hou R, Chen G, Xiao H, Liu L, et al.
    Int J Biol Macromol, 2024 Dec;283(Pt 4):137463.
    PMID: 39547604 DOI: 10.1016/j.ijbiomac.2024.137463
    Polyphenols are plant secondary metabolites that have attracted much attention due to their anti-inflammatory, antioxidant, and gut homeostasis promoting effects. However, food matrix interaction, poor solubility, and strong digestion and metabolism of polyphenols cause barriers to their absorption in the gastrointestinal tract, which further reduces bioavailability and limits polyphenols' application in the food industry. Nano-delivery systems composed of biocompatible macromolecules (polysaccharides, proteins and lipids) are an effective way to improve the bioavailability of polyphenols. Therefore, this review introduces the construction of biopolymer-based nano-delivery systems and their application in polyphenols, with emphasis on improving the solubility, stability, sustained release and intestinal targeting of polyphenols. In addition, there are possible positive effects of polyphenol-loaded nano-delivery systems on modulating gut microbiota and gut homeostasis, with particular emphasis on modulating intestinal inflammation, metabolic syndrome, and gut-brain axis. It is worth noting that the safety of bio-based nano-delivery systems still need to be further studied. In summary, the application of the bio-based nano-delivery system to deliver polyphenols provides insights for improving the bioavailability of polyphenols and for the treatment of potential diseases in the future.
    Matched MeSH terms: Proteins/chemistry
  13. Lou K, Zheng Y, Wang L, Zhou C, Wang J, Pan D, et al.
    Food Res Int, 2024 Dec;198:115318.
    PMID: 39643361 DOI: 10.1016/j.foodres.2024.115318
    Under specific pretreatment or processing conditions, spheroprotein can be transformed into a molten globule state, a typical protein conformation with enhanced functionality. Analyzing the correlation between the formation of molten-globule structures and their quality and functional characteristics is critical for developing tailored processing features, especially for minimally processed future foods. This review outlines the mechanisms driving the formation of molten globule proteins through various processes including ultra-high pressure pretreatments, heating, ultrasonication, pH-shifting, macromolecular crowding and exposure to small-molecule denaturants. These treatments yield proteins that retain structural compactness and primary and secondary structures of their native forms, but with modified conformations and increased hydrophobicity. Common methods for characterizing molten globule proteins include fluorescence spectroscopy, circular dichroism spectroscopy, and nuclear magnetic resonance. The review also explores the application of molten globule proteins in food processing, highlighting their potential significance in advancing the field. The detailed elucidation and exploration of the microstructural transition and conformational features of molten globule proteins, together with their quantitative relationship with processibility of proteins from various sources, holds significant implications for optimizing protein-based food processing techniques and achieving targeted improvements in food quality.
    Matched MeSH terms: Proteins/chemistry
  14. Zou S, Zhang Z, Lee YY, Ai H, Zhang Y, Wang Y
    Food Chem, 2025 May 15;474:143151.
    PMID: 39891972 DOI: 10.1016/j.foodchem.2025.143151
    Acylglycerols are widely used in the food industry due to their antimicrobial, emulsifying and nutritional properties. This study investigated the key reaction parameters, mass transfer mechanisms, and kinetic features of lipase-catalyzed esterification in a solvent-free system. Taguchi method was further employed to explore the relationship between "reaction parameter - yield composition". The results revealed that the maximum selectivity were achieved fror MAG (57.72 %), DAG (82.67 %) and TAG (79.29 %) under different enzymatic conditions. Fatty acid-to-glycerol molar ratio had the greatest impact on DAG selectivity, contributing 38.08 % of total impact level. Mass transfer analysis showed that external mass transfer limitation could be effectively overcome at stirring speeds above 600 rpm. Kinetic analysis confirmed that the reaction followed the Ping-Pong BiBi mechanism with alcohol and acid inhibition (SSE = 0.000643). This work provided a theoretical basis for developing more efficient and selective catalytic processes, aiding in quality control, reactor design, and industrial scale-up.
    Matched MeSH terms: Fungal Proteins/chemistry
  15. Li Q, Feng J, Jia R, Wei H, Huang T, Zhang J, et al.
    Food Res Int, 2025 Mar;205:116009.
    PMID: 40032485 DOI: 10.1016/j.foodres.2025.116009
    To enhance the gel properties of Alaskan pollock surimi, the Acetes chinensis powder (ACP) with different contents (0.5-3 % w/w) was added to the surimi and its mechanisms were investigated. Results showed that adding 1.5 % ACP increased gel strength to 4198.47 g·cm, improved textural properties and storage modulus (G'), as well as reduced free water and drip loss by 49.7 % and 36.7 %, respectively. Moreover, secondary structure analysis showed a 33.5 % increase in β-sheet and a 34.7 % decrease in random coil, reflecting a more organized protein structure. This is associated with a 195.6 % increase in endogenous glutaminase activity and a 14.7 % increase in facilitated cross-linking of MHC heavy chains. ACP also promoted the unfolding of protein and the exposing of more sulfhydryl groups that converted into disulfide bonds (increased by 4.8 %). These resulted in a more compact protein structure, denser microstructure, and homogeneous gel network. In conclusion, 1.5 % ACP effectively improves surimi gel properties, offering valuable insights for optimizing thermal gelation.
    Matched MeSH terms: Fish Proteins/chemistry
  16. Yokoyama Y, Ohtaki A, Jantan I, Yohda M, Nakamoto H
    J. Biochem., 2015 Mar;157(3):161-8.
    PMID: 25294885 DOI: 10.1093/jb/mvu061
    Hsp90 is an ATP-dependent molecular chaperone that is involved in important cellular pathways such as signal transduction pathways. It is a potential cancer drug target because it plays a critical role for stabilization and activation of oncoproteins. Thus, small molecule compounds that control the Hsp90 function are useful to elucidate potential lead compounds against cancer. We studied effect of a naturally occurring styryl-lactone goniothalamin on the activity of Hsp90. Although many drugs targeting Hsp90 inhibit the ATPase activity of Hsp90, goniothalamin enhanced rather than inhibited the ATPase activity of a cyanobacterial Hsp90 (HtpG) and a yeast Hsp90. It increased both K(m) and k(cat) of the Hsp90s. Domain competition assays and tryptophan fluorescence measurements with various truncated derivatives of HtpG indicated that goniothalamin binds to the N-terminal domain of HtpG. Goniothalamin did not influence on the interaction of HtpG with a non-native protein or the anti-aggregation activity of HtpG significantly. However, it inhibited the activity of HtpG that assists refolding of a non-native protein in cooperation with the Hsp70 chaperone system. This is the first report to show that a small molecule that binds to the N-terminal domain of Hsp90 activates its ATPase activity, while inhibiting the chaperone function of Hsp90.
    Matched MeSH terms: Bacterial Proteins/chemistry*; HSP90 Heat-Shock Proteins/chemistry*
  17. Jalil MA, Kamoldilok S, Saktioto T, Ong CT, Yupapin PP
    PMID: 22384850 DOI: 10.3109/10731199.2012.657203
    In this investigation, a new design based on a PANDA ring resonator as an optical trapping tool for tangle protein, molecular motor storage, and delivery is proposed. The optical vortices are generated and the trapping mechanism is controlled in the same way as the conventional optical tweezers. The trapping force is produced by a combination of the gradient field and scattering photons. The required molecular volume is trapped and moved dynamically within the molecular network. The tangle protein and molecular motor can be transported and delivered to the required destinations for Alzheimer's diagnosis by molecular buffer and bus network.
    Matched MeSH terms: tau Proteins/chemistry; Molecular Motor Proteins/chemistry
  18. Ruslan R, Abd Rahman RN, Leow TC, Ali MS, Basri M, Salleh AB
    Int J Mol Sci, 2012;13(1):943-60.
    PMID: 22312296 DOI: 10.3390/ijms13010943
    Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The T(m) for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher T(m) as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.
    Matched MeSH terms: Bacterial Proteins/chemistry; Recombinant Proteins/chemistry
  19. Iskandar ZA, Al-Joudi FS
    Malays J Pathol, 2006 Dec;28(2):101-5.
    PMID: 18376799 MyJurnal
    Survivin is an inhibitor of apoptosis protein and regulates the cell cycle in the G2/M phase. Survivin is expressed during embryonic and fetal development, selectively over-expressed in common human cancers and completely down-regulated in normal adult tissue. This work was aimed at studying the expression of the survivin homologues and their subcellular distribution in fetal and normal adult tissues of rat. Survivin expression was evaluated by immunohistochemistry in formalin-fixed, paraffin-embedded tissue sections of fetal and normal adult tissues of rat using the polyclonal serum SUR12A-CFI. This serum demonstrated intense positive survivin staining in adult kidney, ovary and oviduct, and a variable expression in different fetal organs, with particularly intense expression detected in the adrenal gland, liver, stomach, small intestine, colon, kidney and skin. In both fetal and adult tissues, the expression was predominantly cytoplasmic. It was concluded that survivin was abundantly and prominently expressed during fetal development in rat and that the polyclonal anti-human survivin antibody SUR12A-CFI is reactive with rat survivin.
    Matched MeSH terms: Microtubule-Associated Proteins/chemistry; Neoplasm Proteins/chemistry
  20. Shah SH, Kar RK, Asmawi AA, Rahman MB, Murad AM, Mahadi NM, et al.
    PLoS One, 2012;7(11):e49788.
    PMID: 23209600 DOI: 10.1371/journal.pone.0049788
    Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.
    Matched MeSH terms: Fungal Proteins/chemistry*; Antifreeze Proteins/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links