Displaying publications 81 - 100 of 126 in total

Abstract:
Sort:
  1. Srisuka W, Takaoka H, Otsuka Y, Fukuda M, Thongsahuan S, Taai K, et al.
    Parasit Vectors, 2017 Nov 21;10(1):574.
    PMID: 29157269 DOI: 10.1186/s13071-017-2492-y
    BACKGROUND: Blackflies are an important medical and veterinary group of small blood-sucking insects. Ninety-three blackfly species have been reported in Thailand. However, information on their biodiversity and population dynamics in each region is lacking. The main aim of this study was to assess the regional biodiversity, seasonal abundance and distribution of blackflies in six eco-geographically different regions in the country.

    METHODS: Blackfly larvae and pupae were sampled monthly from 58 sites between May 2011 and April 2013. Diversity parameters, seasonal abundance, regional distribution and frequency of species occurrence in stream sites were analyzed.

    RESULTS: A total of 19,456 mature larvae representing 57 species, and belonging to six subgenera in the genus Simulium Latreille (s.l.), were found. The five predominant taxa were S. fenestratum (8.6%), the S. asakoae complex (8.3%), S. nakhonense (7.5%), the S. siamense complex (7.4%) and the S. doipuiense complex (6.7%). The most frequent taxa at all sites were the S. asakoae complex (84.5%), followed by S. fenestratum (82.8%), the S. siamense complex (75.9%), S. decuplum (60.3%), S. nakhonense (58.6%) and the S. tani complex (48.3%). The richness of regional species was highest (40 species) in the north and predominated in the cold season. However, blackflies in the south predominated during the hot season. The highest numbers of blackflies collected from central, northeastern, eastern and western regions of the country were observed in the rainy season. Overall, the mean number of blackflies collected across the six regions during the rainy and cold season had no statistically significant difference, but it differed significantly in the hot season.

    CONCLUSIONS: Blackflies in Thailand were surveyed in all three seasons across six geographical regions. These findings demonstrated that blackfly communities at each stream site varied with seasonality, and the regional relative abundance of blackflies differed markedly in the hot season. It was also found that the occurrence and distribution of blackflies in each region were associated strongly with elevation.

    Matched MeSH terms: Pupa/physiology
  2. Silahuddin SA, Latif B, Kurahashi H, Walter DE, Heo CC
    J Med Entomol, 2015 Jan;52(1):9-23.
    PMID: 26336275 DOI: 10.1093/jme/tju001
    The stages of decomposition and the faunal succession on rabbit carcasses in three different habitats, namely jungle, rural, and highland areas, were studied. Three New Zealand White rabbit (Oryctolagus cuniculus) carcasses weighing ∼2 kg were sampled daily until the decomposition process was completed. Representative specimens of adult flies, larvae, pupa, and mites were collected from the carcasses and processed in the laboratory. There were differences in decomposition rate and faunal succession between the carcasses. The fastest rate of decomposition was recorded in rural area, and the slowest rate of decomposition was recorded in highland area. The carcasses exhibited the same pattern of colonization by adult flies, but the dominant species of larvae and adult flies on each carcass in specific habitats were different. The primary species of flies recorded in jungle were Chrysomya megacephala F., Chrysomya rufifacies (Macquart), Chrysomya chani Kurahashi, Chrysomya villenuevi Patton, Chrysomya nigripes Aubertin, Chrysomya pinguis (Walker), Hemipyrellia ligurriens (Wiedemann), Hemipyrellia tagaliana (Bigot), Hypopyiopsis fumipennis (Walker), Hypopygiopsis violacea (Macquart), and Hydrotaea spinigera Stein represented by both adults and larvae. Musca domestica L., Atherigona sp., Lioproctia pattoni (Senior-White), Lioproctia saprianovae Pape & Bänziger, and Seniorwhitea princeps (Wiedemann) were represented by adults only. The biodiversity of flies in the rural area were C. megacephala, C. rufifacies, H. ligurriens, Fannia canicularis L., Hydrotaea chalcogaster (Wiedemann), and Hyd. spinigera represented by both adults and larvae, meanwhile M. domestica, Atherigona sp., Boettcherisca peregrina (Robineau-Desvoidy), Parasarcophaga taenionota Wiedemann, Parasarcophaga scopariiformis Senior-White, and S. princeps were represented by adults only. The species of flies collected in the highland area were Lucilia porphyrina (Walker), C. megacephala, C. rufifacies, C. villenuevi, C. pinguis, H. ligurriens, Hyd. spinigera, Hyd. chalcogaster, F. canicularis, and Boettcherisca highlandica Kurahashi & Tan represented by both adults and larvae, whereas C. nigripes, Chrysomya thanomthini Kurahashi & Tumrasvin, M. domestica, Atherigona sp., Parasarcophaga albiceps Meigen, P. taenionota, Sepsidae, Phoridae, and Millichidae were represented by adults only. Faunal succession followed the sequence of dominant flies, i.e., Calliphoridae, Sarcophagidae, Muscidae, Sepsidae, and lastly Stratiomyidae for jungle, or Sepsidae for rural and highland studies. Mites, from suborders Mesostigmata, Prostigmata, Astigmatina, and Oribatida, were also recovered throughout decomposition, which could be used for future implementation in forensic investigations. The data obtained from this study could provide more accurate indicators for local forensic scientists in solving criminal cases especially on the determination of time and primary location of death.
    Matched MeSH terms: Pupa/growth & development; Pupa/physiology
  3. Setha T, Chantha N, Benjamin S, Socheat D
    PLoS Negl Trop Dis, 2016 09;10(9):e0004973.
    PMID: 27627758 DOI: 10.1371/journal.pntd.0004973
    A multi-phased study was conducted in Cambodia from 2005-2011 to measure the impact of larviciding with the bacterial larvicide, Bacillus thuringiensis israelensis (Bti), a water dispersible granule (WG) formulation on the vector, Aedes aegypti (L.) and the epidemiology. In our studies, all in-use containers were treated at 8 g/1000 L, including smaller containers and animal feeders which were found to contribute 23% of Ae aegypti pupae. The treated waters were subjected to routine water exchange activities. Pupal production was suppressed by an average 91% for 8 weeks. Pupal numbers continued to remain significantly lower than the untreated commune (UTC) for 13 weeks post treatment in the peak dengue vector season (p<0.05). Suppression of pupal production was supported by very low adult numbers in the treated commune. An average 70% of the household harbored 0-5 Ae aegypti mosquitoes per home for 8 weeks post treatment, but in the same period of time >50% of the household in the UTC harbored ≥11 mosquitoes per home. The adult population continued to remain at significantly much lower numbers in the Bti treated commune than in the UTC for 10-12 weeks post treatment (p<0.05). In 2011, a pilot operational program was evaluated in Kandal Province, a temephos resistant site. It was concluded that 2 cycles of Bti treatment in the 6 months monsoon season with complete coverage of the target districts achieved an overall dengue case reduction of 48% in the 6 treated districts compared to the previous year, 2010. Five untreated districts in the same province had an overwhelming increase of 352% of dengue cases during the same period of time. The larvicide efficacy, treatment of all in-use containers at the start of the monsoon season, together with treatment coverage of entire districts interrupted disease transmission in the temephos resistant province.
    Matched MeSH terms: Pupa/growth & development
  4. Salman A Al-Shami, Che Salmah Md Rawi, Abu Hassan Ahmad, Siti Azizah Mohd Nor
    Trop Life Sci Res, 2012;23(1):77-86.
    MyJurnal
    Chironomus javanus (Kieffer) and Chironomus kiiensis Tokunaga were redescribed from materials collected from a rice field in Pulau Pinang, Malaysia. The larvae can only be distinguished after careful preparation and examination using a compound microscope, but the pupae were not useful to differentiate C. javanus from C. kiiensis. The adult specimens showed clear body and wing characteristics for rapid and accurate identification.
    Matched MeSH terms: Pupa
  5. Saifur RG, Hassan AA, Dieng H, Salmah MR, Saad AR, Satho T
    J Am Mosq Control Assoc, 2013 Mar;29(1):33-43.
    PMID: 23687853
    We studied the diversity of Aedes breeding sites in various urban, suburban, and rural areas over time between February 2009 and February 2010 in the dengue endemic areas of Penang Island, Malaysia. We categorized the breeding sites and efficiency, and identified the key breeding containers. Among the 3 areas, the rural areas produced the highest container index (55), followed by suburban (42) and urban (32) areas. The numbers of key premises and containers were significantly higher (P < 0.000) in rural areas. The class 1 containers were identified as the key containers with higher productivity and efficiency, although class 2 and class 4 are the highest in numbers. Aedes aegypti immatures were found mostly in drums, water reservoirs, and polyethylene sheets, while mixed breeding was more common in buckets and empty paint cans in urban and suburban areas. Aedes albopictus was found mainly in miscellaneous containers such as drums, empty paint cans, and covers in all areas. The main potential containers indoors were drums, water reservoirs, and empty paint cans, and containers outdoors included empty paint cans, drums, and polyethylene sheets.
    Matched MeSH terms: Pupa
  6. Nur Aliah NA, Heo CC, Noor Shafini M, Mohd Hafizi M
    Trop Biomed, 2019 Sep 01;36(3):640-653.
    PMID: 33597486
    Accurate estimation of the minimum post-mortem interval (minPMI) is important in the investigation of forensic cases. Various thanatological methods are being used to estimate this interval. However, entomology approach is the most reliable method for this minPMI estimation especially when death has occurred over 72 hours and involved insects or other arthropods evidence at the death scene. The current methods of age estimation are daunting and destructive especially when dealing with pupal stage. The aims of this study were to characterize the morphological changes during intra-puparial period of Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) and their relation with minPMI estimation by using a high resolution micro-Computed Tomography (micro-CT). Gravid C. megacephala were collected from a rural area in Sungai Buloh, Selangor and cultured in the laboratory at 23.83±0.25°C with light: dark hour of 12:12 to initiate oviposition. The resulting larvae were reared until pupal stage. A pupa was collected at first (24 hours), second (48 hours), third (72 hours), and fourth quarter (96 hours) of the intra-puparial period. The pupal samples were placed directly into 70% ethanol for preservation. Micro-CT scanning was employed to acquire microstructural information following pupal sample staining for contrast enhancement. Eight age-informative internal morphological landmarks were mapped from the micro-CT scanning. The present study enhanced the potential value of micro-CT for the estimation of minPMI based on the internal morphological changes of C. megacephala pupae. This novel method is a promising tool for improving medico-legal investigations in forensic entomology.
    Matched MeSH terms: Pupa/physiology*
  7. Murugan K, Dinesh D, Kavithaa K, Paulpandi M, Ponraj T, Alsalhi MS, et al.
    Parasitol Res, 2016 Mar;115(3):1085-96.
    PMID: 26621285 DOI: 10.1007/s00436-015-4838-8
    Mosquito vectors (Diptera: Culicidae) are responsible for transmission of serious diseases worldwide. Mosquito control is being enhanced in many areas, but there are significant challenges, including increasing resistance to insecticides and lack of alternative, cost-effective, and eco-friendly products. To deal with these crucial issues, recent emphasis has been placed on plant materials with mosquitocidal properties. Furthermore, cancers figure among the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths in 2012. It is expected that annual cancer cases will rise from 14 million in 2012 to 22 million within the next two decades. Nanotechnology is a promising field of research and is expected to give major innovation impulses in a variety of industrial sectors. In this study, we synthesized titanium dioxide (TiO2) nanoparticles using the hydrothermal method. Nanoparticles were subjected to different analysis including UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), zeta potential, and energy-dispersive spectrometric (EDX). The synthesized TiO2 nanoparticles exhibited dose-dependent cytotoxicity against human breast cancer cells (MCF-7) and normal breast epithelial cells (HBL-100). After 24-h incubation, the inhibitory concentrations (IC50) were found to be 60 and 80 μg/mL on MCF-7 and normal HBL-100 cells, respectively. Induction of apoptosis was evidenced by Acridine Orange (AO)/ethidium bromide (EtBr) and 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) staining. In larvicidal and pupicidal experiments conducted against the primary dengue mosquito Aedes aegypti, LC50 values of nanoparticles were 4.02 ppm (larva I), 4.962 ppm (larva II), 5.671 ppm (larva III), 6.485 ppm (larva IV), and 7.527 ppm (pupa). Overall, our results suggested that TiO2 nanoparticles may be considered as a safe tool to build newer and safer mosquitocides and chemotherapeutic agents with little systemic toxicity.
    Matched MeSH terms: Pupa/drug effects
  8. Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, et al.
    Nat Prod Res, 2016 Apr;30(7):826-33.
    PMID: 26284510 DOI: 10.1080/14786419.2015.1074230
    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs.
    Matched MeSH terms: Pupa
  9. Murugan K, Samidoss CM, Panneerselvam C, Higuchi A, Roni M, Suresh U, et al.
    Parasitol Res, 2015 Nov;114(11):4087-97.
    PMID: 26227141 DOI: 10.1007/s00436-015-4638-1
    Malaria, the most widespread mosquito-borne disease, affects 350-500 million people each year. Eco-friendly control tools against malaria vectors are urgently needed. This research proposed a novel method of plant-mediated synthesis of silver nanoparticles (AgNP) using a cheap seaweed extract of Ulva lactuca, acting as a reducing and capping agent. AgNP were characterized by UV-vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The U. lactuca extract and the green-synthesized AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi. In mosquitocidal assays, LC50 values of U. lactuca extract against A. stephensi larvae and pupae were 18.365 ppm (I instar), 23.948 ppm (II), 29.701 ppm (III), 37.517 ppm (IV), and 43.012 ppm (pupae). LC50 values of AgNP against A. stephensi were 2.111 ppm (I), 3.090 ppm (II), 4.629 ppm (III), 5.261 ppm (IV), and 6.860 ppm (pupae). Smoke toxicity experiments conducted against mosquito adults showed that U. lactuca coils evoked mortality rates comparable to the permethrin-based positive control (66, 51, and 41%, respectively). Furthermore, the antiplasmodial activity of U. lactuca extract and U. lactuca-synthesized AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. Fifty percent inhibitory concentration (IC50) values of U. lactuca were 57.26 μg/ml (CQ-s) and 66.36 μg/ml (CQ-r); U. lactuca-synthesized AgNP IC50 values were 76.33 μg/ml (CQ-s) and 79.13 μg/ml (CQ-r). Overall, our results highlighted out that U. lactuca-synthesized AgNP may be employed to develop newer and safer agents for malaria control.
    Matched MeSH terms: Pupa/drug effects
  10. Murugan K, Anitha J, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, et al.
    Ecotoxicol Environ Saf, 2016 Oct;132:318-28.
    PMID: 27344400 DOI: 10.1016/j.ecoenv.2016.06.021
    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments.
    Matched MeSH terms: Pupa
  11. Murugan K, Suresh U, Panneerselvam C, Rajaganesh R, Roni M, Aziz AT, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10456-10470.
    PMID: 28913784 DOI: 10.1007/s11356-017-0074-3
    The development of novel mosquito control tools is a key prerequisite to build effective and reliable Integrated Vector Management strategies. Here, we proposed a novel method using cigarette butts for the synthesis of Ag nanostructures toxic to young instars of the malaria vector Anopheles stephensi, chloroquine (CQ)-resistant malaria parasites Plasmodium falciparum and microbial pathogens. The non-target impact of these nanomaterials in the aquatic environment was evaluated testing them at sub-lethal doses on the predatory copepod Mesocyclops aspericornis. Cigarette butt-synthesized Ag nanostructures were characterized by UV-vis and FTIR spectroscopy, as well as by EDX, SEM and XRD analyses. Low doses of cigarette butt extracts (with and without tobacco) showed larvicidal and pupicidal toxicity on An. stephensi. The LC50 of cigarette butt-synthesized Ag nanostructures ranged from 4.505 ppm (I instar larvae) to 8.070 ppm (pupae) using smoked cigarette butts with tobacco, and from 3.571 (I instar larvae) to 6.143 ppm (pupae) using unsmoked cigarette butts without tobacco. Smoke toxicity experiments conducted against adults showed that unsmoked cigarette butts-based coils led to mortality comparable to permethrin-based positive control (84.2 and 91.2%, respectively). A single treatment with cigarette butts extracts and Ag nanostructures significantly reduced egg hatchability of An. stephensi. Furthermore, the antiplasmodial activity of cigarette butt extracts (with and without tobacco) and synthesized Ag nanostructures was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of P. falciparum. The lowest IC50 values were achieved by cigarette butt extracts without tobacco, they were 54.63 μg/ml (CQ-s) and 63.26 μg/ml (CQ-r); while Ag nanostructure IC50 values were 72.13 μg/ml (CQ-s) and 77.33 μg/ml (CQ-r). In MIC assays, low doses of the Ag nanostructures inhibited the growth of Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi. Finally, the predation efficiency of copepod M. aspericornis towards larvae of An. stephensi did not decrease in a nanoparticle-contaminated environment, if compared to control predation assays. Overall, the present research would suggest that an abundant hazardous waste, such as cigarette butts, can be turned to an important resource for nanosynthesis of highly effective antiplasmodials and insecticides.
    Matched MeSH terms: Pupa
  12. Murugan K, Dinesh D, Nataraj D, Subramaniam J, Amuthavalli P, Madhavan J, et al.
    Environ Sci Pollut Res Int, 2018 Apr;25(11):10504-10514.
    PMID: 28988379 DOI: 10.1007/s11356-017-0313-7
    The control of filariasis vectors has been enhanced in several areas, but there are main challenges, including increasing resistance to insecticides and lack of cheap and eco-friendly products. The toxicity of iron (Fe0) and iron oxide (Fe2O3) nanoparticles has been scarcely investigated yet. We studied the larvicidal and pupicidal activity of Fe0 and Fe2O3 nanoparticles against Culex quinquefasciatus. Fe0 and Fe2O3 nanoparticles produced by green (using a Ficus natalensis aqueous extract) and chemical nanosynthesis, respectively, were analyzed by UV-Vis spectrophotometry, FT-IR spectroscopy, XRD analysis, SEM, and EDX assays. In larvicidal and pupicidal experiments on Cx. quinquefasciatus, LC50 of Fe0 nanoparticles ranged from 20.9 (I instar larvae) to 43.7 ppm (pupae) and from 4.5 (I) to 22.1 ppm (pupae) for Fe2O3 nanoparticles synthesized chemically. Furthermore, the predation efficiency of the guppy fish, Poecilia reticulata, after a single treatment with sub-lethal doses of Fe0 and Fe2O3 nanoparticles was magnified. Overall, this work provides new insights about the toxicity of Fe0 and Fe2O3 nanoparticles against mosquito vectors; we suggested that green and chemical fabricated nano-iron may be considered to develop novel and effective pesticides.
    Matched MeSH terms: Pupa
  13. Mahat NA, Yin CL, Jayaprakash PT
    J Forensic Sci, 2014 Mar;59(2):529-32.
    PMID: 24745083
    This study investigated the influence of paraquat, a prevalent poison used by suicides, on initial oviposition and development of Chrysomya megacephala (Fabricius) using minced-beef substrates. Paraquat in lethal dose for human (40 mg/kg), two times the lethal dose (80 mg/kg) and five times the lethal dose (200 mg/kg) were mixed thoroughly with respective minced-beef substrates (1 kg each) that were decomposed in a shaded habitat fully protected from rain. Results of four replications of the above experiment revealed that the presence of paraquat neither delayed initial oviposition nor prolonged the developmental stages of C. megacephala. Therefore, estimation of postmortem interval (PMI) based on empirical baseline data obtained using animal models devoid of any poisons would still be appropriate for estimating PMI in paraquat-related deaths.
    Matched MeSH terms: Pupa/drug effects; Pupa/growth & development
  14. Low VL, Takaoka H, Pramual P, Adler PH, Ya'cob Z, Chen CD, et al.
    J Med Entomol, 2016 07;53(4):972-976.
    PMID: 27208009
    We access the molecular diversity of the black fly Simulium nobile De Mejiere, using the universal cytochrome c oxidase subunit I (COI) barcoding gene, across its distributional range in Southeast Asia. Our phylogenetic analyses recovered three well-supported mitochondrial lineages of S. nobile, suggesting the presence of cryptic species. Lineage A is composed of a population from Sabah, East Malaysia (Borneo); lineage B represents the type population from Java, Indonesia; and lineage C includes populations from the mainland of Southeast Asia (Peninsular Malaysia and Thailand). The genetic variation of lineage C on the mainland is greater than that of lineages A and B on the islands of Borneo and Java. Our study highlights the value of a molecular approach in assessing species status of simuliids in geographically distinct regions.
    Matched MeSH terms: Pupa/classification; Pupa/genetics; Pupa/growth & development
  15. Leow SS, Luu A, Shrestha S, Hayes KC, Sambanthamurthi R
    Exp Gerontol, 2018 Mar 15;106:198-221.
    PMID: 29550564 DOI: 10.1016/j.exger.2018.03.013
    Palm fruit juice (PFJ) containing oil palm phenolics is obtained as a by-product from oil palm (Elaeis guineensis) fruit milling. It contains shikimic acid, soluble fibre and various phenolic acids including p-hydroxybenzoic acid and three caffeoylshikimic acid isomers. PFJ has also demonstrated beneficial health properties in various biological models. Increasing concentrations of PFJ and different PFJ fractions were used to assess growth dynamics and possible anti-ageing properties in fruit flies (Drosophila melanogaster) genotype w1118. Microarray gene expression analysis was performed on whole fruit fly larvae and their fat bodies, after the larvae were fed a control Standard Brandeis Diet (SBD) with or without PFJ. Transcripts from Affymetrix GeneChips were utilised to identify the possible mechanisms involved, with genes having fold changes > |1.30| and p pupae. Eclosed male fruit flies fed PFJ or its fractions during the larval stage tended to have 20-40% improved survival ratings over controls when allowed to age on the control diet (SBD). Microarray analysis of whole fruit fly larvae revealed that 127 genes were up-regulated, while 67 were down-regulated by PFJ. Functional analysis revealed transport and metabolic processes were up-regulated, while development and morphogenesis processes, including the nutrient-sensing Tor gene, were down-regulated by PFJ, whereas microarray analysis of larval fat bodies found 161 genes were up-regulated, while 84 genes were down-regulated. Genes involved in defence response and determination of adult lifespan, including those encoding various heat shock proteins and the antioxidant enzyme Sod2, were up-regulated, while cell cycle and growth genes were down-regulated. Thus, PFJ supplementation lengthened the growth stages in fruit fly larvae that was reflected in extended ageing of adult flies, suggesting that larval expression of hormetic stress response genes was linked to subsequent ageing and longevity.
    Matched MeSH terms: Pupa
  16. Kumara TK, Hassan AA, Salmah MR, Bhupinder S
    PMID: 23691627
    The larval growth of Liosarcophaga dux Thompson (Diptera: Sarcophagidae) was studied under varying indoor room temperatures in Malaysia. Five replicates were established. The immature growth of this species from first instar until adult emergence was 307.0+/-3.0 hours. The mean larval length measured for second instar, third instar, post-feeding stage and puparia were 6.5+/-0.5 mm (n=10), 11.8+/-3.7 mm (n=31), 12.7+/-0.8 mm (n=16), and 9.5+/-0.5 mm (n=15), respectively.
    Matched MeSH terms: Pupa/growth & development
  17. Kumara TK, Abu Hassan A, Che Salmah MR, Bhupinder S
    Trop Biomed, 2010 Apr;27(1):131-3.
    PMID: 20562823
    The pupae of Desmometopa sp. (Diptera: Milichiidae) were collected from a human corpse found indoor in active decay stage together with the larvae of Sarcophagidae, Synthesiomyia nudiseta (Wulp), Chrysomya megacephala (Fabricius) and Chrysomya rufifacies (Macquart). This research note is the first report of the Desmometopa sp. recovered from a human corpse in Malaysia.
    Matched MeSH terms: Pupa/physiology
  18. Kolesnichenko KA, Kotlobay AA
    Zootaxa, 2023 Nov 09;5369(2):223-238.
    PMID: 38220718 DOI: 10.11646/zootaxa.5369.2.3
    This article presents characteristics of the habitats of Melitaea gina Higgins, 1941 and describes the behavior of adults under natural conditions, their host plant, egg chorion, caterpillars, and pupa morphology. The morphology of the early stages and the taxonomy of M. gina are discussed.
    Matched MeSH terms: Pupa/anatomy & histology
  19. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, et al.
    Parasitol Int, 2016 Jun;65(3):276-84.
    PMID: 26873539 DOI: 10.1016/j.parint.2016.02.003
    The development of parasites and pathogens resistant to synthetic drugs highlighted the needing of novel, eco-friendly and effective control approaches. Recently, metal nanoparticles have been proposed as highly effective tools towards cancer cells and Plasmodium parasites. In this study, we synthesized silver nanoparticles (EW-AgNP) using Eudrilus eugeniae earthworms as reducing and stabilizing agents. EW-AgNP showed plasmon resonance reduction in UV-vis spectrophotometry, the functional groups involved in the reduction were studied by FTIR spectroscopy, while particle size and shape was analyzed by FESEM. The effect of EW-AgNP on in vitro HepG2 cell proliferation was measured using MTT assays. Apoptosis assessed by flow cytometry showed diminished endurance of HepG2 cells and cytotoxicity in a dose-dependent manner. EW-AgNP were toxic to Anopheles stephensi larvae and pupae, LC(50) were 4.8 ppm (I), 5.8 ppm (II), 6.9 ppm (III), 8.5 ppm (IV), and 15.5 ppm (pupae). The antiplasmodial activity of EW-AgNP was evaluated against CQ-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. EW-AgNP IC(50) were 49.3 μg/ml (CQ-s) and 55.5 μg/ml (CQ-r), while chloroquine IC(50) were 81.5 μg/ml (CQ-s) and 86.5 μg/ml (CQ-r). EW-AgNP showed a valuable antibiotic potential against important pathogenic bacteria and fungi. Concerning non-target effects of EW-AgNP against mosquito natural enemies, the predation efficiency of the mosquitofish Gambusia affinis towards the II and II instar larvae of A. stephensi was 68.50% (II) and 47.00% (III), respectively. In EW-AgNP-contaminated environments, predation was boosted to 89.25% (II) and 70.75% (III), respectively. Overall, this research highlighted the EW-AgNP potential against hepatocellular carcinoma, Plasmodium parasites and mosquito vectors, with little detrimental effects on mosquito natural enemies.
    Matched MeSH terms: Pupa
  20. Jackson RR, Li D, Woon JR, Hashim R, Cross FR
    R Soc Open Sci, 2014 Oct;1(2):140131.
    PMID: 26064534 DOI: 10.1098/rsos.140131
    Paracyrba wanlessi is a southeast Asian jumping spider (Salticidae) that lives in the hollow internodes of fallen bamboo and preys on the larvae, pupae and adults of mosquitoes. In contrast to Evarcha culicivora, an East African salticid that is also known for actively targeting mosquitoes as preferred prey, there was no evidence of P. wanlessi choosing mosquitoes on the basis of species, sex or diet. However, our findings show that P. wanlessi chooses mosquitoes significantly more often than a variety of other prey types, regardless of whether the prey are in or away from water, and regardless of whether the mosquitoes are adults or juveniles. Moreover, a preference for mosquito larvae, pupae and adults is expressed regardless of whether test spiders are maintained on a diet of terrestrial or aquatic prey and regardless of whether the diet includes or excludes mosquitoes. Congruence of an environmental factor (in water versus away from water) with prey type (aquatic versus terrestrial mosquitoes) appeared to be important and yet, even when the prey were in the incongruent environment, P. wanlessi continued to choose mosquitoes more often than other prey.
    Matched MeSH terms: Pupa
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links