Displaying publications 81 - 100 of 363 in total

Abstract:
Sort:
  1. Haron MJ, Yunus WM
    PMID: 11460327
    A cerium-loaded poly(hydroxamic acid) chelating ion exchanger was used for fluoride ion removal from aqueous solution. The resin was effective in decreasing the fluoride concentration from 5 mM down to 0.001 mM in acidic pH between 3 and 6. The sorption followed a Langmuir model with a maximum capacity of 0.5 mmol/g. The removal is accomplished by an anion exchange mechanism. The rate constant for the sorption was found to be 9.6 x 10(-2) min-1. A column test shows that the fluoride ion was retained on the column until breakthrough point and the fluoride sorbed in the column can be eluted with 0.1 M NaOH. The column can be reused after being condition with hydrochloric acid at pH 4. The resin was tested and found to be effective for removal of fluoride from actual industrial wastewater.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  2. Razak AR, Ujang Z, Ozaki H
    Water Sci Technol, 2007;56(8):161-8.
    PMID: 17978444
    Endocrine disrupting chemicals (EDCs) are the focus of current environmental issues, as they can cause adverse health effects to animals and human, subsequent to endocrine function. The objective of this study was to remove a specific compound of EDCs (i.e. pentachlorophenol, C(6)OCL(5)Na, molecular weight of 288 g/mol) using low pressure reverse osmosis membrane (LPROM). A cross flow module of LPROM was used to observe the effects of operating parameters, i.e. pH, operating pressure and temperature. The design of the experiment was based on MINITAB(TM) software, and the analysis of results was conducted by factorial analysis. It was found that the rejection of pentachlorophenol was higher than 80% at a recovery rate of 60 to 70%. The rejection was subjected to increase with the increase of pH. The flux was observed to be increased with the increase of operating pressure and temperature. This study also investigated the interaction effects between operating parameters involved.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  3. Aziz HA, Othman N, Yusuff MS, Basri DR, Ashaari FA, Adlan MN, et al.
    Environ Int, 2001 May;26(5-6):395-9.
    PMID: 11392757
    This paper discusses heavy metal removal from wastewater by batch study and filtration technique through low-cost coarse media. Batch study has indicated that more than 90% copper (Cu) with concentration up to 50 mg/l could be removed from the solution with limestone quantity above 20 ml (equivalent to 56 g), which indicates the importance of limestone media in the removal process. This indicates that the removal of Cu is influenced by the media and not solely by the pH. Batch experiments using limestone and activated carbon indicate that both limestone and activated carbon had similar metal-removal efficiency (about 95%). Results of the laboratory-scale filtration technique using limestone particles indicated that above 90% removal of Cu was achieved at retention time of 2.31 h, surface-loading rate of 4.07 m3/m2 per day and Cu loading of 0.02 kg/m3 per day. Analyses of the limestone media after filtration indicated that adsorption and absorption processes were among the mechanisms involved in the removal processes. This study indicated that limestone can be used as an alternative to replace activated carbon.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  4. Chong MF, Lee KP, Chieng HJ, Syazwani Binti Ramli II
    Water Res, 2009 Jul;43(13):3326-34.
    PMID: 19487007 DOI: 10.1016/j.watres.2009.04.044
    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant.
    Matched MeSH terms: Waste Disposal, Fluid
  5. Wong KK, Lee CK, Low KS, Haron MJ
    Chemosphere, 2003 Jan;50(1):23-8.
    PMID: 12656225
    A study on the modification of rice husk by various carboxylic acids showed that tartaric acid modified rice husk (TARH) had the highest binding capacities for Cu and Pb. The carboxyl groups on the surface of the modified rice husk were primarily responsible for the sorption of metal ions. A series of batch experiments using TARH as the sorbent for the removal of Cu and Pb showed that the sorption process was pH dependent, rapid and exothermic. The sorption process conformed to the Langmuir isotherm with maximum sorption capacities of 29 and 108 mg/g at 27 +/- 2 degrees C for Cu and Pb, respectively. The uptake increased with agitation rate. Decrease in sorbent particle size led to an increase in the sorption of metal ions and this could be explained by an increase in surface area and hence binding sites. Metal uptake was reduced in the presence of competitive cations and chelators. The affinity of TARH for Pb is greater than Cu.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  6. Lim PE, Mak KY, Mohamed N, Noor AM
    Water Sci Technol, 2003;48(5):307-13.
    PMID: 14621178
    This study was conducted to: (1) evaluate the performance of constructed wetlands in removing Zn, Pb and Cd, respectively, and Zn, Pb, Cd and Cu in combination and (2) investigate the speciation patterns of the dissolved metals differentiated according to their detectability by anodic stripping voltammetry (ASV) and their lability towards Chelex resin along the treatment path of metal-containing wastewater in horizontal subsurface-flow constructed wetlands. Four laboratory scale wetland units planted with cattails (Typha latifolia) were operated outdoors for six months. Three of the units were, respectively, fed with primary-treated domestic wastewater spiked with Zn(II), Pb(II) and Cd(II) whilst the fourth was spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II). The results demonstrate that a metal removal efficiency of over 99% was achievable for wetland units treating the metals singly or in combination provided the sorption capacity of the media was not exceeded. When treating the metals in combination, an antagonistic effect, more significantly for Pb and Cd, on the sorptive metal uptake by media was observed. Based on the metal speciation patterns, the wetland system seemed to be capable of maintaining the ASV-labile metal species at relatively low level (< 10%) before media exhaustion.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  7. Semilin V, Janaun J, Chung CH, Touhami D, Haywood SK, Chong KP, et al.
    J Hazard Mater, 2021 02 15;404(Pt B):124144.
    PMID: 33212411 DOI: 10.1016/j.jhazmat.2020.124144
    Residual palm oil that goes into the river untreated can become detrimental to the environment. Residual oil discharge during milling process into palm oil mill effluent (POME) is unavoidable. About 1 wt% of residual oil in POME causes major problems to the mills, in terms of environment, wastewater treatment and economy losses. This paper reports the recovery of residual oil from POME by adsorption on polypropylene micro/nanofiber (PP-MNF) and desorption of oil by hands pressing, and oil extraction from the PP-MNF using solvent and supercritical-CO2 extraction techniques. The characterization of the PP-MNF and the quality of oil extracted were analyzed using analytical instruments. The reusability of the PP-MNF was also investigated. The experimental results showed the adsorption capacity of the PP-MNF was 28.65 g of oil/g of PP-MNF on average using refined palm oil, whilst recovery of oil from POME was 10.93 g of oil/g of PP-MNF. The extraction yield of oil from PP-MNF using hand pressing was 89.62%. The extraction of residual oil from the pressed PP-MNF showed comparable yield between solvent and supercritical CO2 techniques. The quality of recovered oil was similar with the quality of the crude oil, and no trace of polypropylene contamination was detected in the oil recovered. The PP-MNF showed no significant physical change after the extraction process. In conclusion, the PP-MNF has great potential to be used commercially in residual oil recovery from POME.
    Matched MeSH terms: Waste Disposal, Fluid
  8. Lee KM, Lai CW, Ngai KS, Juan JC
    Water Res, 2016 Jan 01;88:428-448.
    PMID: 26519627 DOI: 10.1016/j.watres.2015.09.045
    Today, a major issue about water pollution is the residual dyes from different sources (e.g., textile industries, paper and pulp industries, dye and dye intermediates industries, pharmaceutical industries, tannery and craft bleaching industries, etc.), and a wide variety of persistent organic pollutants have been introduced into our natural water resources or wastewater treatment systems. In fact, it is highly toxic and hazardous to the living organism; thus, the removal of these organic contaminants prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade those organic contaminants and advanced heterogeneous photocatalysis involving zinc oxide (ZnO) photocatalyst appears to be one of the most promising technology. In recent years, ZnO photocatalyst have attracted much attention due to their extraordinary characteristics. The high efficiency of ZnO photocatalyst in heterogeneous photocatalysis reaction requires a suitable architecture that minimizes electron loss during excitation state and maximizes photon absorption. In order to further improve the immigration of photo-induced charge carriers during excitation state, considerable effort has to be exerted to further improve the heterogeneous photocatalysis under UV/visible/solar illumination. Lately, interesting and unique features of metal doping or binary oxide photocatalyst system have gained much attention and became favourite research matter among various groups of scientists. It was noted that the properties of this metal doping or binary oxide photocatalyst system primarily depend on the nature of the preparation method and the role of optimum dopants content incorporated into the ZnO photocatalyst. Therefore, this paper presents a critical review of recent achievements in the modification of ZnO photocatalyst for organic contaminants degradation.
    Matched MeSH terms: Waste Disposal, Fluid*
  9. Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, et al.
    J Hazard Mater, 2021 08 15;416:125912.
    PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912
    Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
    Matched MeSH terms: Waste Disposal, Fluid
  10. Naje AS, Ajeel MA, Ali IM, Al-Zubaidi HAM, Alaba PA
    Water Sci Technol, 2019 Aug;80(3):458-465.
    PMID: 31596257 DOI: 10.2166/wst.2019.289
    In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  11. Bahari I, Mohsen N, Abdullah P
    J Environ Radioact, 2007;95(2-3):161-70.
    PMID: 17428589
    The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.
    Matched MeSH terms: Waste Disposal, Fluid
  12. Chow MF, Yusop Z, Mohamed M
    Water Sci Technol, 2011;63(6):1211-6.
    PMID: 21436558 DOI: 10.2166/wst.2011.360
    This paper examines the storm runoff quality from a commercial area in south Johor, Malaysia. Six storm events with a total of 68 storm runoff samples were analyzed. Event Mean Concentration (EMC) for all constituents analysed showed large inter-event variation. Site mean concentrations (SMC) for total suspended solids (TSS), oil and grease (O&G), biochemical oxygen demand (BOD), chemical oxygen demand (COD), nitrate-nitrogen (NO(3)-N), nitrite-nitrogen (NO(2)-N), ammonia-nitrogen (NH(3)-N), total phosphorus (Total P) and Soluble P are 261, 4.31, 74, 192, 1.5, 0.006, 1.9, 1.12 and 0.38 mg/L, respectively. The SMCs at the studied site are higher than those reported in many urban catchments. The mean baseflow concentrations were higher than the EMCs for COD, Soluble P, NH(3)-N, NO(3)-N, Total P and NO(2)-N. However, the reverse was observed for TSS and O&G. All pollutants showed the occurrence of first flush phenomenon with the highest strength was observed for TSS, COD and NH(3)-N.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  13. Ahmad T, Danish M
    J Environ Manage, 2018 Jan 15;206:330-348.
    PMID: 29100146 DOI: 10.1016/j.jenvman.2017.10.061
    This review article explores utilization of banana waste (fruit peels, pseudo-stem, trunks, and leaves) as precursor materials to produce an adsorbent, and its application against environmental pollutants such as heavy metals, dyes, organic pollutants, pesticides, and various other gaseous pollutants. In recent past, quite a good number of research articles have been published on the utilization of low-cost adsorbents derived from biomass wastes. The literature survey on banana waste derived adsorbents shown that due to the abundance of banana waste worldwide, it also considered as low-cost adsorbents with promising future application against various environmental pollutants. Furthermore, raw banana biomass can be chemically modified to prepare efficient adsorbent as per requirement; chemical surface functional group modification may enhance the multiple uses of the adsorbent with industrial standard. It was evident from a literature survey that banana waste derived adsorbents have significant removal efficiency against various pollutants. Most of the published articles on banana waste derived adsorbents have been discussed critically, and the conclusion is drawn based on the results reported. Some results with poorly performed experiments were also discussed and pointed out their lacking in reporting. Based on literature survey, the future research prospect on banana wastes has a significant impact on upcoming research strategy.
    Matched MeSH terms: Waste Disposal, Fluid*
  14. Hamzah MH, Ahmad Asri MF, Che Man H, Mohammed A
    PMID: 31533308 DOI: 10.3390/ijerph16183453
    Common conventional biological treatment methods fail to decolorize palm oil mill effluent (POME). The present study focused on using the abundant palm oil mill boiler (POMB) ashes for POME decolorization. The POMB ashes were subjected to microwave irradiation and chemical treatment using H2SO4. The resultant adsorbents were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET) analyses. The adsorption efficiency was evaluated at various pH levels (2-8.5), adsorption dosages (3-15 g) in 200 mL, and contact times (1-5 h). The microwave-irradiated POMB-retained ash recorded the highest color removal of 92.31%, for which the best conditions were pH 2, 15 g adsorbent dosage in 200 mL, and 5 h of contact time. At these best treatment conditions, the color concentration of the treated effluent was analyzed using the method proposed by the American Dye Manufacturers Institute (ADMI). The color concentration was 19.20 ADMI, which complies with the Malaysia discharge standard class A. The Freundlich isotherm model better fit the experimental data and had a high R2 of 0.9740. Based on these results, it can be deduced that microwave-irradiated POMB-retained ash has potential applications for POME decolorization via a biosorption process.
    Matched MeSH terms: Waste Disposal, Fluid/methods
  15. Alam MZ, Kabbashi NA, Hussin SN
    J Ind Microbiol Biotechnol, 2009 Jun;36(6):801-8.
    PMID: 19294441 DOI: 10.1007/s10295-009-0554-7
    The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  16. Martla M, Umsakul K, Sudesh K
    J Basic Microbiol, 2018 Nov;58(11):977-986.
    PMID: 30095175 DOI: 10.1002/jobm.201800279
    Polyhydroxyalkanoates (PHAs) has been paid great attention because of its useful thermoplastic properties and complete degradation in various natural environments. But, at industrial level, the successful commercialization of PHAs is limited by the high production cost due to the expensive carbon source and recovery processes. Pseudomonas mendocina PSU cultured for 72 h in mineral salts medium (MSM) containing 2% (v/v) biodiesel liquid waste (BLW) produced 79.7 wt% poly(3-hydroxybutyrate) (PHB) at 72 h. In addition, this strain produced 43.6 wt% poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with 8.6 HV mol% at 60 h when added with 0.3% sodium propionate. The synthesized intracellular PHA granules were recovered and purified by the recently reported biological method using mealworms. The weight average molecular weight (Mw ) and number average molecular weight (Mn ) of the biologically extracted PHA were higher than that from the chloroform extraction with comparable melting temperature (Tm ) and high purity. This study has successfully established a low-cost process to synthesize PHAs from BLW and subsequently confirmed the ability of mealworms to extract PHAs from various kinds of bacterial cells.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
  17. Husain IA, Alkhatib MF, Jammi MS, Mirghani ME, Bin Zainudin Z, Hoda A
    J Oleo Sci, 2014;63(8):747-52.
    PMID: 25007744
    Presence of fat, oil, and grease (FOG) in wastewater is an ever-growing concern to municipalities and solid-waste facility operators. FOG enters the sewer system from restaurants, residences, and industrial food facilities. Its release into the sewer system results in a continuous build-up that causes eventual blockage of sewer pipes. Several researchers have investigated FOG deposition based on the local conditions of sewers and lifestyle. This paper attempts to review the physical and chemical characteristics of FOG, sources of FOG, and potential chemical and biological reactions of FOG. The effect of the aforementioned factors on the FOG-deposition mechanism is also discussed. Moreover, insight into the current control and treatment methods and potential reuse of FOG is highlighted. It is expected that this review would provide scientists and the concerned authorities a holistic view of the recent researches on FOG control, treatment, and reuse.
    Matched MeSH terms: Waste Disposal, Fluid*
  18. García JR, Sedran U, Zaini MAA, Zakaria ZA
    Environ Sci Pollut Res Int, 2018 Feb;25(6):5076-5085.
    PMID: 28391459 DOI: 10.1007/s11356-017-8975-8
    Palm oil mill wastes (palm kernel shell (PKS)) were used to prepare activated carbons, which were tested in the removal of colorants from water. The adsorbents were prepared by 1-h impregnation of PKS with ZnCl2 as the activating agent (PKS:ZnCl2 mass ratios of 1:1 and 2:1), followed by carbonization in autogenous atmosphere at 500 and 550 °C during 1 h. The characterization of the activated carbons included textural properties (porosity), surface chemistry (functional groups), and surface morphology. The dye removal performance of the different activated carbons was investigated by means of the uptake of methylene blue (MB) in solutions with various initial concentrations (25-400 mg/L of MB) at 30 °C, using a 0.05-g carbon/50-mL solution relationship. The sample prepared with 1:1 PKS:ZnCl2 and carbonized at 550 °C showed the highest MB adsorption capacity (maximum uptake at the equilibrium, q max = 225.3 mg MB / g adsorbent), resulting from its elevated specific surface area (BET, 1058 m2/g) and microporosity (micropore surface area, 721 m2/g). The kinetic experiments showed that removals over 90% of the equilibrium adsorptions were achieved after 4-h contact time in all the cases. The study showed that palm oil mill waste biomass could be used in the preparation of adsorbents efficient in the removal of colorants in wastewaters.
    Matched MeSH terms: Waste Disposal, Fluid/instrumentation; Waste Disposal, Fluid/methods*
  19. Saepurahman, Abdullah MA, Chong FK
    J Hazard Mater, 2010 Apr 15;176(1-3):451-8.
    PMID: 19969415 DOI: 10.1016/j.jhazmat.2009.11.050
    Tungsten-loaded TiO(2) photocatalyst has been successfully prepared and characterized. TEM analysis showed that the photocatalysts were nanosize with the tungsten species forming layers of coverage on the surface of TiO(2), but not in clustered form. This was confirmed by XRD and FT-Raman analyses where tungsten species were well dispersed at lower loading (<6.5 mol%), but were in crystalline WO(3) at higher loadings (>12 mol%). In addition, loading with tungsten could stabilize the anatase phase from transforming into inactive rutile phase and did not shift the optical absorption to the visible region as shown by DRUV-vis analysis. PZC value of TiO(2) was found at 6.4, but the presence of tungsten at 6.5 mol% WO(3), decreased the PZC value to 3. Tungsten-loaded TiO(2) was superior to unmodified TiO(2) with 2-fold increase in degradation rate of methylene blue, and equally effective for the degradation of different class of dyes such as methyl violet and methyl orange at 1 mol% WO(3) loading.
    Matched MeSH terms: Waste Disposal, Fluid
  20. Chun TS, Malek MA, Ismail AR
    Environ Sci Process Impacts, 2014 Sep 20;16(9):2208-14.
    PMID: 25005632 DOI: 10.1039/c4em00282b
    Effluent discharge from septic tanks is affecting the environment in developing countries. The most challenging issue facing these countries is the cost of inadequate sanitation, which includes significant economic, social, and environmental burdens. Although most sanitation facilities are evaluated based on their immediate costs and benefits, their long-term performance should also be investigated. In this study, effluent quality-namely, the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solid (TSS)-was assessed using a biomimetics engineering approach. A novel immune network algorithm (INA) approach was applied to a septic sludge treatment plant (SSTP) for effluent-removal predictive modelling. The Matang SSTP in the city of Kuching, Sarawak, on the island of Borneo, was selected as a case study. Monthly effluent discharges from 2007 to 2011 were used for training, validating, and testing purposes using MATLAB 7.10. The results showed that the BOD effluent-discharge prediction was less than 50% of the specified standard after the 97(th) month of operation. The COD and TSS effluent removals were simulated at the 85(th) and the 121(st) months, respectively. The study proved that the proposed INA-based SSTP model could be used to achieve an effective SSTP assessment and management technique.
    Matched MeSH terms: Waste Disposal, Fluid/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links