Displaying publications 81 - 100 of 132 in total

Abstract:
Sort:
  1. Gokada MR, Pasupuleti VR, Bollikolla HB
    Mini Rev Med Chem, 2021;21(10):1173-1181.
    PMID: 33397236 DOI: 10.2174/1389557521666210104165733
    The novel Coronavirus disease (COVID-19) is an epidemic disease that appeared at the end of the year 2019 with a sudden increase in number and came to be considered as a pandemic disease caused by a viral infection which has threatened most countries for an emergency search for new anti-SARS-COV drugs /vaccines. At present, the number of clinical trials is ongoing worldwide on different drugs i.e. Hydroxychloroquine, Remedisvir, Favipiravir that utilize various mechanisms of action. A few countries are currently processing clinical trials, which may result in a positive outcome. Favipiravir (FPV) represents one of the feasible treatment options for COVID-19, if the result of the trials turns out positive. Favipiravir will be one of the developed possibly authoritative drugs to warrant benefits to mankind with large-scale production to meet the demands of the current pandemic Covid-19 outbreak and future epidemic outbreaks. In this review, the authors tried to explore key molecules, which will be supportive for devising COVID-19 research.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  2. Shirbhate E, Patel P, Patel VK, Veerasamy R, Sharma PC, Sinha BN, et al.
    Mini Rev Med Chem, 2021;21(8):1004-1016.
    PMID: 33280595 DOI: 10.2174/1389557520666201204162103
    The novel coronavirus disease-19 (COVID-19) is a global pandemic that emerged from Wuhan, China, and has spread all around the world, affecting 216 countries or territories with 21,732,472 people infected and 770,866 deaths globally (as per WHO COVID-19 updates of August 18, 2020). Continuous efforts are being made to repurpose the existing drugs and develop vaccines for combating this infection. Despite, to date, no certified antiviral treatment or vaccine exists. Although, few candidates have displayed their efficacy in in vitro studies and are being repurposed for COVID- 19 treatment. This article summarizes synthetic and semi-synthetic compounds displaying potent activity in clinical uses or studies on COVID-19 and also focuses on the mode of action of drugs being repositioned against COVID-19.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  3. Shafi G, Desai S, Srinivasan K, Ramesh A, Chaturvedi R, Uttarwar M
    Mol Genet Genomics, 2021 May;296(3):501-511.
    PMID: 33743061 DOI: 10.1007/s00438-021-01774-1
    Coronavirus disease 2019 (COVID-19), a recent viral pandemic that first began in December 2019, in Hunan wildlife market, Wuhan, China. The infection is caused by a coronavirus, SARS-CoV-2 and clinically characterized by common symptoms including fever, dry cough, loss of taste/smell, myalgia and pneumonia in severe cases. With overwhelming spikes in infection and death, its pathogenesis yet remains elusive. Since the infection spread rapidly, its healthcare demands are overwhelming with uncontrollable emergencies. Although laboratory testing and analysis are developing at an enormous pace, the high momentum of severe cases demand more rapid strategies for initial screening and patient stratification. Several molecular biomarkers like C-reactive protein, interleukin-6 (IL6), eosinophils and cytokines, and artificial intelligence (AI) based screening approaches have been developed by various studies to assist this vast medical demand. This review is an attempt to collate the outcomes of such studies, thus highlighting the utility of AI in rapid screening of molecular markers along with chest X-rays and other COVID-19 symptoms to enable faster diagnosis and patient stratification. By doing so, we also found that molecular markers such as C-reactive protein, IL-6 eosinophils, etc. showed significant differences between severe and non-severe cases of COVID-19 patients. CT findings in the lungs also showed different patterns like lung consolidation significantly higher in patients with poor recovery and lung lesions and fibrosis being higher in patients with good recovery. Thus, from these evidences we perceive that an initial rapid screening using integrated AI approach could be a way forward in efficient patient stratification.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  4. Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, et al.
    Mol Pharm, 2023 Aug 07;20(8):3698-3740.
    PMID: 37486263 DOI: 10.1021/acs.molpharmaceut.2c01080
    Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  5. Al-Hatamleh MAI, Hatmal MM, Sattar K, Ahmad S, Mustafa MZ, Bittencourt MC, et al.
    Molecules, 2020 Oct 29;25(21).
    PMID: 33138197 DOI: 10.3390/molecules25215017
    The new coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has recently put the world under stress, resulting in a global pandemic. Currently, there are no approved treatments or vaccines, and this severe respiratory illness has cost many lives. Despite the established antimicrobial and immune-boosting potency described for honey, to date there is still a lack of evidence about its potential role amid COVID-19 outbreak. Based on the previously explored antiviral effects and phytochemical components of honey, we review here evidence for its role as a potentially effective natural product against COVID-19. Although some bioactive compounds in honey have shown potential antiviral effects (i.e., methylglyoxal, chrysin, caffeic acid, galangin and hesperidinin) or enhancing antiviral immune responses (i.e., levan and ascorbic acid), the mechanisms of action for these compounds are still ambiguous. To the best of our knowledge, this is the first work exclusively summarizing all these bioactive compounds with their probable mechanisms of action as antiviral agents, specifically against SARS-CoV-2.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  6. Rawangkan A, Kengkla K, Kanchanasurakit S, Duangjai A, Saokaew S
    Molecules, 2021 Jun 30;26(13).
    PMID: 34209247 DOI: 10.3390/molecules26134014
    Influenza is one of the most serious respiratory viral infections worldwide. Although several studies have reported that green tea catechins (GTCs) might prevent influenza virus infection, this remains controversial. We performed a systematic review and meta-analysis of eight studies with 5,048 participants that examined the effect of GTC administration on influenza prevention. In a random-effects meta-analysis of five RCTs, 884 participants treated with GTCs showed statistically significant effects on the prevention of influenza infection compared to the control group (risk ratio (RR) 0.67, 95%CIs 0.51-0.89, P = 0.005) without evidence of heterogeneity (I2= 0%, P = 0.629). Similarly, in three cohort studies with 2,223 participants treated with GTCs, there were also statistically significant effects (RR 0.52, 95%CIs 0.35-0.77, P = 0.001) with very low evidence of heterogeneity (I2 = 3%, P = 0.358). Additionally, the overall effect in the subgroup analysis of gargling and orally ingested items (taking capsules and drinking) showed a pooled RR of 0.62 (95% CIs 0.49-0.77, P = 0.003) without heterogeneity (I2= 0%, P = 0.554). There were no obvious publication biases (Egger's test (P = 0.138) and Begg's test (P = 0.103)). Our analysis suggests that green tea consumption is effective in the prophylaxis of influenza infections. To confirm the findings before implementation, longitudinal clinical trials with specific doses of green tea consumption are warranted.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  7. Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, et al.
    Molecules, 2021 Jun 24;26(13).
    PMID: 34202844 DOI: 10.3390/molecules26133868
    The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  8. Yew KC, Tan QR, Lim PC, Low WY, Lee CY
    Naunyn Schmiedebergs Arch Pharmacol, 2024 Mar;397(3):1421-1431.
    PMID: 37728622 DOI: 10.1007/s00210-023-02716-x
    Direct-acting antivirals (DAA) have become the treatment of choice for hepatitis C. Nevertheless, efficacy of DAA in preventing hepatitis C complications remains uncertain. We evaluated the impact of DAA on hepatocellular carcinoma (HCC) occurrence and recurrence, all-cause mortality, liver decompensation and liver transplantation as compared to non-DAA treated hepatitis C and the association to baseline liver status. A systematic search for articles from March 1993 to March 2022 was conducted using three electronic databases. Randomized, case-control and cohort studies with comparison to non-DAA treatment and reporting at least one outcome were included. Meta-analysis and sub-group meta-analysis based on baseline liver status were performed. Of 1497 articles retrieved, 19 studies were included, comprising of 266,310 patients (56.07% male). DAA reduced HCC occurrence significantly in non-cirrhosis (RR 0.80, 95% CI 0.69-0.92) and cirrhosis (RR 0.39, 95% CI 0.24-0.64) but not in decompensated cirrhosis. DAA treatment lowered HCC recurrence (RR 0.71, 95% CI 0.55-0.92) especially in patients with baseline HCC and waiting for liver transplant. DAA also reduced all-cause mortality (RR 0.43, 95% CI 0.23-0.78) and liver decompensation (RR 0.52, 95% CI 0.33-0.83) significantly. However, DAA did not prevent liver transplantation. The study highlighted the importance of early DAA initiation in hepatitis C treatment for benefits beyond sustained virological response. DAA therapy prevented HCC particularly in non-cirrhosis and compensated cirrhosis groups indicating benefits in preventing further worsening of liver status. Starting DAA early also reduced HCC recurrence, liver decompensation, and all-cause mortality.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  9. Yoneda M
    Nippon Rinsho, 2016 12;74(12):1973-1978.
    PMID: 30550652
    Nipah and Hendra virus were first identified in mid 1990s in Australia and Malaysia, caus- ing epidemics with high mortality rate in affected animals and humans. Since their first emer- gence, they continued to re-emerge in Australia and South East Asia almost every year. Nipah and Hendra virus were classified in the new genus Henipavirus because of their un- common features amongst Paramyxoviridae. Henipaviruses are zoonotic paramyxoviruses with a broad tropism, and cause severe acute respiratory disease and encephalitis. Their high virulence and wide host range make them to be given Biosecurity Level 4 status. This review summarizes details of Henipavirus emergence, reservoir hosts and pathology, and introduce recent progress in vaccines and antivirals.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  10. Lim JJ, Ong YM, Wan Zalina MZ, Choo MM
    Ocul Immunol Inflamm, 2018;26(2):187-193.
    PMID: 28622058 DOI: 10.1080/09273948.2017.1327604
    Matched MeSH terms: Antiviral Agents/therapeutic use
  11. Tomashek KM, Wills B, See Lum LC, Thomas L, Durbin A, Leo YS, et al.
    PLoS Negl Trop Dis, 2018 10;12(10):e0006497.
    PMID: 30286085 DOI: 10.1371/journal.pntd.0006497
    Dengue is a major public health problem worldwide. Although several drug candidates have been evaluated in randomized controlled trials, none has been effective and at present, early recognition of severe dengue and timely supportive care are used to reduce mortality. While the first dengue vaccine was recently licensed, and several other candidates are in late stage clinical trials, future decisions regarding widespread deployment of vaccines and/or therapeutics will require evidence of product safety, efficacy and effectiveness. Standard, quantifiable clinical endpoints are needed to ensure reproducibility and comparability of research findings. To address this need, we established a working group of dengue researchers and public health specialists to develop standardized endpoints and work towards consensus opinion on those endpoints. After discussion at two working group meetings and presentations at international conferences, a Delphi methodology-based query was used to finalize and operationalize the clinical endpoints. Participants were asked to select the best endpoints from proposed definitions or offer revised/new definitions, and to indicate whether contributing items should be designated as optional or required. After the third round of inquiry, 70% or greater agreement was reached on moderate and severe plasma leakage, moderate and severe bleeding, acute hepatitis and acute liver failure, and moderate and severe neurologic disease. There was less agreement regarding moderate and severe thrombocytopenia and moderate and severe myocarditis. Notably, 68% of participants agreed that a 50,000 to 20,000 mm3 platelet range be used to define moderate thrombocytopenia; however, they remained divided on whether a rapid decreasing trend or one platelet count should be case defining. While at least 70% agreement was reached on most endpoints, the process identified areas for further evaluation and standardization within the context of ongoing clinical studies. These endpoints can be used to harmonize data collection and improve comparability between dengue clinical trials.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  12. Ishaqui AA, Khan AH, Syed Sulaiman SA, Alsultan MT, Khan I, Al Nami H
    Pak J Pharm Sci, 2019 May;32(3 (Supplementary)):1225-1233.
    PMID: 31303595
    The aim of the study is to assess and compare the impact of antiviral drug alone and in combination with antibiotic for prevention of Influenza-A H1N1 induced acute kidney injury (AKI) in hospitalized patients. Hospitalized admitted patients with confirmed diagnosis of Influenza-A H1N1 infection were divided into two groups: group 1, which received antiviral (oseltamivir) drug alone and group 2, which received antiviral (oseltamivir) in combination with empirically prescribed antibiotic. Patients of both groups were assessed for incidences of AKI by two criteria i.e Acute Kidney Injury Network (AKIN) and RIFLE. A total of 329 patients (176 for group 1 and 153 for group 2) were enrolled. According to RIFLE criteria, 23(13%) of group 1 and 9(6%) patients of groups 2 were suffered from AKI with statistically significant difference (P<0.05). Also as per AKIN criteria, the incidence of AKI is statistically significantly difference (P<0.05) between both groups with 18(10%) patients and 6(4%) patients of group 1 and 2 respectively. Length of hospitalization was statistically less (P<0.05) in group 2 patients. The incidences of AKI in Influenza-A H1N1 treated with antiviral and antibiotic combination was statistically less as compared to patients who were given antiviral alone for treatment of influenza infection.
    Matched MeSH terms: Antiviral Agents/therapeutic use*
  13. Aljabali AAA, Bakshi HA, Satija S, Metha M, Prasher P, Ennab RM, et al.
    Pharm Nanotechnol, 2020;8(4):323-353.
    PMID: 32811406 DOI: 10.2174/2211738508999200817163335
    BACKGROUND: The newly emerged coronavirus SARS-CoV-2, first reported in December 2019, has infected about five and a half million people globally and resulted in nearly 9063264 deaths until the 24th of June 2020. Nevertheless, the highly contagious virus has instigated an unimaginably rapid response from scientific and medical communities.

    OBJECTIVES: Pioneering research on molecular mechanisms underlying the viral transmission, molecular pathogenicity, and potential treatments will be highlighted in this review. The development of antiviral drugs specific to SARS-CoV-2 is a complicated and tedious process. To accelerate scientific discoveries and advancement, researchers are consolidating available data from associated coronaviruses into a single pipeline, which can be readily made available to vaccine developers.

    METHODS: In order to find studies evaluating the COVID-19 virus epidemiology, repurposed drugs and potential vaccines, web searches and bibliographical bases have been used with keywords that matches the content of this review.

    RESULTS: The published results of SARS-CoV-2 structures and interactomics have been used to identify potential therapeutic candidates. We illustrate recent publications on SARS-CoV-2, concerning its molecular, epidemiological, and clinical characteristics, and focus on innovative diagnostics technologies in the production pipeline. This objective of this review is to enhance the comprehension of the unique characteristics of SARS-CoV-2 and strengthen future control measures.

    Lay Summary: An innovative analysis is evaluating the nature of the COVID-19 pandemic. The aim is to increase knowledge of possible viral detection methods, which highlights several new technology limitations and advantages. We have assessed some drugs currently for patients (Lopinavir, Ritonavir, Anakinra and Interferon beta 1a), as the feasibility of COVID-19 specific antivirals is not presently known. The study explores the race toward vaccine development and highlights some significant trials and candidates in various clinical phases. This research addresses critical knowledge gaps by identifying repurposed drugs currently under clinical trials. Findings will be fed back rapidly to the researchers interested in COVID 19 and support the evidence and potential of possible therapeutics and small molecules with their mode of action.

    Matched MeSH terms: Antiviral Agents/therapeutic use*
  14. Loo CY, Lee WH, Zhou QT
    Pharm Res, 2023 May;40(5):1015-1036.
    PMID: 37186073 DOI: 10.1007/s11095-023-03520-1
    With the rapid outbreak of respiratory viral infections, various biological (e.g. vaccines, peptides, recombinant proteins, antibodies and genes) and antiviral agents (e.g. ribavirin, palivizumab and valaciclovir) have been successfully developed for the treatment of respiratory virus infections such as influenza, respiratory syncytial virus and SARS-CoV-2 infections. These therapeutics are conventionally delivered via oral, intramuscular or injection route and are associated with several adverse events due to systemic toxicity. The inherent in vivo instability of biological therapeutics may hinder them from being administered without proper formulations. Therefore, we have witnessed a boom in nanotechnology coupled with a needle-free administration approach such as the inhalation route for the delivery of complex therapeutics to treat respiratory infections. This review discussed the recent advances in the inhalation strategies of nanoformulations that target virus respiratory infections.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  15. Essa RZ, Wu YS, Batumalaie K, Sekar M, Poh CL
    Pharmacol Rep, 2022 Dec;74(6):1166-1181.
    PMID: 36401119 DOI: 10.1007/s43440-022-00432-6
    The global pandemic of COVID-19 is a serious public health concern. Over 625 million confirmed cases and more than 6 million deaths have been recorded worldwide. Although several vaccines and antiviral medications have been developed, their efficacy is limited by the emerging new SARS-CoV-2 strains. Peptide-based therapeutics is a fast-growing class of new drugs and have unique advantages over large proteins and small molecules. Antiviral peptides (AVPs) are short polycationic antivirals with broad-spectrum effects, which have been shown to exert both prophylactic and therapeutic actions against reported coronaviruses. The potential therapeutic targets of AVPs are located either on the virus (e.g., E-protein and S-protein) to prohibit viral binding or host cells, particularly, those present on the cell surface (e.g., ACE2 and TMPRSS2). Despite AVPs having promising antiviral effects, their efficacy is limited by low bioavailability. Thus, nanoformulation is a prerequisite for prolonged bioavailability and efficient delivery. This review aimed to present an insight into the therapeutic AVP targets on both virus and host cells by discussing their antiviral activities and associated molecular mechanisms. Besides, it described the technique for discovering and developing possible AVPs based on their targets, as well as the significance of using nanotechnology for their efficient delivery against SARS-CoV-2.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  16. Kua KP, Lee SWH
    Pharmacotherapy, 2017 Jun;37(6):755-769.
    PMID: 28423192 DOI: 10.1002/phar.1936
    BACKGROUND: Respiratory syncytial virus (RSV) is a common pathogen in infants with cystic fibrosis (CF). The use of palivizumab prophylaxis for RSV infection as the standard of care for infants with CF remains controversial.

    OBJECTIVE: To evaluate the efficacy of palivizumab in reducing the incidence of RSV hospitalization in children with CF who are younger than 2 years.

    METHODS: Four electronic databases (PubMed, Embase, CINAHL, and CENTRAL) were searched from inception until January 31, 2017, for clinical studies investigating the use of palivizumab in infants with CF aged less than 2 years. The primary outcome was hospitalization rate due to RSV infection. Secondary outcomes included hospitalization for respiratory illness, length of hospital stay, safety (adverse effects), and cost-effectiveness of palivizumab prophylaxis.

    RESULTS: The review included a total of 10 studies (six cohort studies, two before-and-after studies, one cross-sectional study, and one randomized controlled trial) involving 3891 patients with CF. Seven studies reported that palivizumab prophylaxis had a positive impact on the rate of RSV hospitalization. Five studies (n=3404) reported that palivizumab prophylaxis significantly reduced the rate of hospitalization due to RSV infection compared to no prophylaxis. One study (n=5) demonstrated patients with CF who received palivizumab had no RSV hospitalization. Another study showed infants with CF receiving palivizumab (n=117) had a lower risk of hospitalization for RSV infection compared with premature infants (gestational age < 35 completed weeks) who received palivizumab (n=4880).

    CONCLUSIONS: Evidence from the literature suggests that palivizumab may have a potential role in reducing RSV hospitalization in children aged less than 2 years with CF. Given the lack of overall data, additional research is warranted to better understand the efficacy and safety of prophylactic palivizumab in infants with CF.

    Matched MeSH terms: Antiviral Agents/therapeutic use*
  17. Rothan HA, Bahrani H, Mohamed Z, Teoh TC, Shankar EM, Rahman NA, et al.
    PLoS One, 2015;10(5):e0126360.
    PMID: 25970853 DOI: 10.1371/journal.pone.0126360
    Lack of vaccine and effective antiviral drugs against chikungunya virus (CHIKV) outbreaks have led to significant impact on health care in the developing world. Here, we evaluated the antiviral effects of tetracycline (TETRA) derivatives and other common antiviral agents against CHIKV. Our results showed that within the TETRA derivatives group, Doxycycline (DOXY) exhibited the highest inhibitory effect against CHIKV replication in Vero cells. On the other hand, in the antiviral group Ribavirin (RIBA) showed higher inhibitory effects against CHIKV replication compared to Aciclovir (ACIC). Interestingly, RIBA inhibitory effects were also higher than all but DOXY within the TETRA derivatives group. Docking studies of DOXY to viral cysteine protease and E2 envelope protein showed non-competitive interaction with docking energy of -6.6±0.1 and -6.4±0.1 kcal/mol respectively. The 50% effective concentration (EC50) of DOXY and RIBA was determined to be 10.95±2.12 μM and 15.51±1.62 μM respectively, while DOXY+RIBA (1:1 combination) showed an EC50 of 4.52±1.42 μM. When compared, DOXY showed higher inhibition of viral infectivity and entry than RIBA. In contrast however, RIBA showed higher inhibition against viral replication in target cells compared to DOXY. Assays using mice as animal models revealed that DOXY+RIBA effectively inhibited CHIKV replication and attenuated its infectivity in vivo. Further experimental and clinical studies are warranted to investigate their potential application for clinical intervention of CHIKV disease.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  18. Zainal N, Chang CP, Cheng YL, Wu YW, Anderson R, Wan SW, et al.
    Sci Rep, 2017 02 20;7:42998.
    PMID: 28216632 DOI: 10.1038/srep42998
    Dengue is one of the most significant mosquito-borne virus diseases worldwide, particularly in tropical and subtropical regions. This study sought to examine the antiviral activity of resveratrol (RESV), a phytoalexin secreted naturally by plants, against dengue virus (DENV) infection. Our data showed that RESV inhibits the translocation of high mobility group box 1 (HMGB1), a DNA binding protein that normally resides in the nucleus, into the cytoplasm and extracellular milieu. HMGB1 migrates out of the nucleus during DENV infection. This migration is inhibited by RESV treatment and is mediated by induction of Sirt1 which leads to the retention of HMGB1 in the nucleus and consequently helps in the increased production of interferon-stimulated genes (ISGs). Nuclear HMGB1 was found to bind to the promoter region of the ISG and positively regulated the expression of ISG. The enhanced transcription of ISGs by nuclear HMGB1 thus contributes to the antiviral activity of RESV against DENV. To the best of our knowledge, this is the first report to demonstrate that RESV antagonizes DENV replication and that nuclear HMGB1 plays a role in regulating ISG production.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  19. Chan LC, Mat Yassim AS, Ahmad Fuaad AAH, Leow TC, Sabri S, Radin Yahaya RS, et al.
    Sci Rep, 2023 Nov 17;13(1):20178.
    PMID: 37978223 DOI: 10.1038/s41598-023-47511-z
    COVID-19 results from SARS-CoV-2, which mutates frequently, challenging current treatments. Therefore, it is critical to develop new therapeutic drugs against this disease. This study explores the interaction between SARS-CoV-2 3CLpro and RetroMAD1, a well-characterized coronavirus protein and potential drug target, using in-silico methods. The analysis through the HDOCK server showed stable complex formation with a binding energy of -12.3, the lowest among reference drugs. The RetroMAD1-3CLpro complex underwent a 100 ns molecular dynamics simulation (MDS) in an explicit solvation system, generating various trajectories, including RMSD, RMSF, hydrogen bonding, radius of gyration, and ligand binding energy. MDS results confirmed intact interactions within the RetroMAD1-3CLpro complex during simulations. In vitro experiments validated RetroMAD1's ability to inhibit 3CLpro enzyme activity and prevent SARS-CoV-2 infection in human bronchial cells. RetroMAD1 exhibited antiviral efficacy comparable to Remdesivir without cytotoxicity at effective concentrations. These results suggest RetroMAD1 as a potential drug candidate against SARS-CoV-2, warranting further in vivo and clinical studies to assess its efficiency.
    Matched MeSH terms: Antiviral Agents/therapeutic use
  20. Yap FBB, Kiung ST
    South. Med. J., 2009 Jun;102(6):653-5.
    PMID: 19434036 DOI: 10.1097/SMJ.0b013e3181a49a71
    A 43-year-old lady with type 2 diabetes mellitus and bronchial asthma presented with varicella zoster infection, dyspnea, and neck fullness. An urgent computed tomography scan revealed a mediastinal abscess with superior vena cava thrombus. Blood, mediastinal pus, and swab from a vesiculopustule on the neck cultured group A beta hemolytic Streptococcus. She recovered with a combination of broad spectrum antimicrobials, antivirals, and surgical drainage. This case illustrates the rare occurrence of mediastinal abscess and acute superior vena cava obstruction caused by group A beta hemolytic Streptococcus complicating adult varicella zoster.
    Matched MeSH terms: Antiviral Agents/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links