The periostracum is the outermost layer overlying the inner prismatic and nacreous layers of the shells of bivalves. In the present study, the distributions of Cd and Pb in the soft tissues (ST) and periostracum of the green-lipped mussel Perna viridis sampled from 15 sampling sites in the coastal waters of Peninsular Malaysia were determined. The concentrations of Cd (0.21-10.87 mg/g dry weight) and Pb (1.16-40.20 mg/g dry weight) in the periostracum were generally higher than those in the ST (Cd: 0.10-5.55 mg/g dry weight; Pb: 2.53-18.62 mg/g dry weight). Based on correlation analysis from nine geographical populations, the higher correlation coefficients (R values) between the periostracum-geochemical fractions of the sediments than between the ST-geochemical fractions of the sediments indicated that the periostracum could be a potential biomonitoring material for Pb. Hence, the present results supported the use of the periostracum of P. viridis as a potential biomonitoring material for Pb but not for Cd. However, more studies are warranted to verify its usefulness for the biomonitoring of heavy metal pollution in tropical coastal waters.
Surfactant solutions have been frequently studied for soil remediation. However, since they are expensive, massive consumption of surfactant solution can constrain their application. Surfactant microbubbles, or colloidal gas aphrons (CGAs), can serve as cost effective alternatives of surfactant solution because the use of CGAs reduce the amount of surfactant consumption. Moreover, CGAs can also improve the contact with the contaminated environment due to their unique surface properties, e.g. containing 40-70% of gas, small size, large interfacial areas, water-like flow properties and buoyant rise velocities. In this review paper, the properties and flow character of CGAs in soil matrix reviewed due to their relevance to soil remediation process. A comprehensive overview of the application of CGAs in flushing off organic pollutants and heavy metals, and carrying oxygen, bacteria and dissolved materials for soil remediation were provided. This paper also highlighted the limitation of CGAs application and important future research scopes.
Contaminated groundwater is a priority issue on the environmental agendas of developed countries. Therefore, there is an obvious need to develop instruments and decision-making mechanisms that allow the estimation of the risk to human health due to the presence of contaminants in soils and groundwater, in a fast and reliable manner. Thus, this study aims to assess whether the spilling of hydraulic fracturing fluids prior to injection has a potential risk to groundwater quality in the Kern County Sub-basin, California, by identifying the hydrological factors and solute transport characteristics that control these risks while taking into consideration the temperature rises due to climate change. The approach uses the concept of the groundwater pollution risk based on comparing the concentration of pollutants within the water table by using a predetermined permissible level. The current average annual temperature and that by the end of the 21st century was used to estimate the diffusion of benzene through three types of soil by using HYDRUS-1D software. The software was used to predict the contaminant concentration profile of benzene in the water table with special reference to the impact of surface temperatures. The results showed that an expected rise of the surface temperature by 4.3 °C led to an increase in the concentration of benzene by 2.3 μg/l in sandy loam soil, 6.8 μg/l in silt loam soil, and finally, 2.6 μg/l in loam soil. The results show that climate change can substantially affect soil properties and their chemical constituents, which then play a major role in absorbing pollutants.
Presence of particulate matters with aerodynamic diameter of less than 2.5 μm (PM2.5) in the atmosphere is fast increasing in Malaysia due to industrialization and urbanization. Prolonged exposure of PM2.5 can cause serious health effects to human. This research is aimed to identify the most reliable model to predict the PM2.5 pollution using multi-layered feedforward-backpropagation neural network (FBNN). Air quality and meteorological data were collected from Department of Environment (DOE) Malaysia. Six different training algorithms consisting of thirteen various training functions were trained and compared. FBNN model with the highest coefficient correlation (R2) and lowest root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) were selected as the best performing model. Levenberg Marquardt (trainlm) is the best performing algorithms compared to other algorithms with R2 value of 0.9834 and the lowest error values for RMSE (2.3981), MAE (1.7843) and MAPE (0.1063).
The field of arsenic pollution research has grown rapidly in recent years. Arsenic constitutes a broad range of elements from the Earth's crust and is released into the environment from both anthropogenic and natural sources due to its relative mobility under different redox conditions. The toxicity of arsenic is described in its inorganic form, as inorganic arsenic compounds can leach into different environments. Sampling was carried out in the Bestari Jaya catchment while using a land use map to locate the site, and experiments were conducted via sequential extraction and inductively coupled plasma optical emission spectroscopy to quantify proportions of arsenic in the sediment samples. The results show that metals in sediments of nonresidual fractions, which are more likely to be likely released into aquatic environments, are more plentiful than the residual sediment fractions. These findings support the mobility of heavy metals and especially arsenic through sediment layers, which can facilitate remediation in environments heavily polluted with heavy metals.
The rise of urbanisation in Belt and Road Initiative (BRI) countries that contribute to the disruption of the ecosystem, which would affect global sustainability, is a pressing concern. This study provides new evidence of the impact of urbanisation and institutional quality on greenhouse gas (GHG) emissions in the selected 48 BRI countries from the years 1984 to 2017. The models of this study are inferred by using panel regression model and panel quantile regression model to meet the objectives of our study as it contemplates unobserved country heterogeneity. From the panel regression model, the findings indicate that although urbanisation in BRI supports the 'life effect' hypothesis that could dampen the environment quality, this effect could be reduced through better institutional quality. Using the quantile regression method, this study concludes that one-size-fits-all strategies to reduce GHG emissions in countries with different GHG emissions levels are improbable to achieve success for all. Hence, GHG emissions control procedures should be adjusted differently across high-emission, middle-emission and low-emission countries. Based on these results, this study provides novel intuitions for policymakers to wisely plan the urbanisation blueprints to eradicate unplanned urbanisation and improve institutional quality in meeting pollution mitigation goals.
Estimating the asymmetrical influence of foreign direct investment is the primary goal of the current study. In addition, further controlled variables affect environmental degradation in OIC nations. Due to this, current research employs the asymmetric (NPARDL) approach and the data period from 1980 to 2021 to estimate about viability of the EKC (environmental Kuznets curve) theory. The study utilized greenhouse gas (GHG) including emissions of carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), and ecological footprint as substantial parameters of environmental quality. A nonlinear link between foreign direct investments, trade openness, economic growth, urbanization, energy consumption, and environmental pollution with CO2, N2O, CH4, and ecological footprint in the OIC nations is confirmed by the study's outcomes, which however reveals inconsistent results. Furthermore, the results also show that wrong conclusions might result from disregarding intrinsic nonlinearities. The study's conclusions provide the most important recommendations for decision-makers.
Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.
A country's financing system is essential in addressing sustainable development requirements. National sources and international financial flows contribute to economic growth and environmental quality in many ways, and their impact can be critical. This paper applied panel data analysis using a comparative approach of Pooled Mean Group Auto Regressive Distribute Lags (PMG-ARDL) and Cross Sectionally ARDL (CS-ARDL) to estimate the effects of FDI, renewable energy, and remittance on environmental quality in the top remittance-receiving countries, during 2000-2021. The study emphasized the positive relationship between FDI and carbon emissions. Moreover, renewable energy and remittances revealed an inverted U-shaped relationship with carbon emissions. In the case of developing countries from the panel, remittance improves environmental quality after reaching the threshold. Moreover, for some of the developing countries included in the panel, we found that they do not achieve the desired carbon mitigation effect in their early stages of renewable energy implementation. However, renewable energy becomes a key factor for tackling environmental pollution after a certain threshold. The mixed results determined diverse policy recommendations for various stakeholders.
Microplastic pollution is an emerging environmental and public health threat worldwide including Malaysia. Microplastics are widespread in drinking water, but also food products especially seafood, an important dietary source for the Malaysians. Potential health hazards may be a result of chemicals, physical properties and microbial disturbance associated with microplastic exposure. However, most studies were performed in animals rather than in human. Nevertheless, in recognition of rising threat from microplastics, in 2018, the Malaysia's Roadmap to Zero Single-use Plastics 2018-2030 has been released. In this editorial, we firstly discussed the potential impact of microplastics on human health, followed by the strategies or limitations highlighted in the Malaysia's Roadmap.
Bauxite mining is not known to most Malaysian except recently due to environmental pollution issues in Kuantan, Pahang. Potential impacts are expected to go beyond physical environment and physical illness if the situation is not controlled. Loss of economic potentials, and the presence of unpleasant red dust causing mental distress, anger and community outrage. More studies are needed to associate it with chronic physical illness. While evidences are vital for action, merely waiting for a disease to occur is a sign of failure in prevention. All responsible agencies should focus on a wider aspect of health determinants rather than merely on the occurrence of diseases to act and the need to emphasize on sustainable mining to ensure health of people is not compromised.
The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This article summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.
Matched MeSH terms: Environmental Pollution/analysis; Environmental Pollution/prevention & control
To provide a theoretical basis for sustainable land resource utilization and a reference for areas with similar natural conditions, an evaluation index for land-based ecological security was constructed based on the Driving force-Pressure-State-Impact-Response (DPSIR) model and the improved analytic hierarchy process (IAHP) and entropy methods, and the land-based ecological security status of Xingtai city from 2006 to 2017 was evaluated. Then, the obstacles to land-based ecological security were diagnosed. The results show that the values of the comprehensive evaluation index of land-based ecological security were 0.28-0.66 in the period from 2006 to 2017. The value of the index of land-based ecological security was low in the first seven years and gradually improved in the last five years of the study period. However, the overall situation was grave, and the ecological security conditions were poor. The main obstacles to land-based ecological security were the usage of pesticides, investment in environmental pollution treatments, the degree of machine cultivation, the rate of cultivation and the usage of fertilizer in Xingtai city. Based on the results of the land-based ecological security evaluation and the main obstacles identified in Xingtai city, this paper proposes management strategies and suggestions for improving land-based ecological security in Xingtai city. The specific proposals are as follows: vigorously develop green agriculture, increase investment in environmental pollution control, increase input in science and technology, and strengthen supervision and management of land use.
Environmental degradation is at an alarming level in developing economies. The present paper examines the direct and indirect impacts of corruption on environmental deterioration using the panel data of 64 developing countries. Adopting the generalized method of moments (GMM) technique, the paper finds evidence that corruption exhibits a positive impact on pollution. Subsequently, there is also evidence indicating that the level of pollution tends to be higher in countries with a higher level of corruption, eliminating the effectiveness of income effect on environmental preservation. These results also suggest that environmental degradation is monotonically increasing with higher corruption and invalidate the presence of the EKC. Hence, a policy focuses that an anti-corruption particularly in the environmental and natural resources sector needs to be emphasized and enforced in order to reduce or possibly to totally eliminate the rent for corruption.
Matched MeSH terms: Environmental Pollution/economics*; Environmental Pollution/statistics & numerical data
The main purpose of this work is to analyze the impact of environmental degradation proxied by CO2 emissions per capita along with some other explanatory variables namely energy use, trade, and human capital on economic growth in selected higher CO2 emissions economies namely China, the USA, India, and Japan. For empirical analysis, annual data over the period spanning between 1971 and 2013 are used. After using relevant and suitable tests for checking data properties, the panel fully modified ordinary least squares (FMOLS) method is employed as an analytical technique for parameter estimation. The panel group FMOLS results reveal that almost all variables are statistically significant, whereby test rejects the null hypotheses of non cointegration, demonstrating that all variables play an important role in affecting the economic growth role across countries. Where two regressors namely CO2 emissions and energy use show significantly negative impacts on economic growth, for trade and human capital, they tend to show the significantly positive impact on economic growth. However, for the individual analysis across countries, the panel estimate suggests that CO2 emissions have a significant positive relationship with economic growth for China, Japan, and the USA, while it is found significantly negative in case of India. The empirical findings of the study suggest that appropriate and prudent policies are required in order to control pollution emerging from areas other than liquefied fuel consumption. The ultimate impact of shrinking pollution will help in supporting sustainable economic growth and maturation as well as largely improve society welfare.
Current human activities are seriously eroding the ability of natural and social systems to cope. Clearly we cannot continue along our current path without seriously damaging our own ability to survive as a species. This problem is usually framed as one of sustainability. As concerned professionals, citizens, and humans there is a strong collective will to address what we see as a failure to protect the natural and social environments that supports us. While acknowledging that we cannot do this alone, human factors and ergonomics needs to apply its relevant skills and knowledge to assist where it can in addressing the commonly identified problem areas. These problems include pollution, climate change, renewable energy, land transformation, and social unrest amongst numerous other emerging global problems. The issue of sustainability raises two fundamental questions for human factors and ergonomics: which system requires sustaining and what length of time is considered sustainable? In this paper we apply Wilson (2014) parent-sibling-child model to understanding what is required of an HFE sustainability response. This model is used to frame the papers that appear in this Special Issue.
Biochars have been successfully used to reduce bioavailability and leaching of heavy metals in contaminated soils. The efficiency of biochar to immobilize heavy metals can be increased by reducing the particle size, which can increase the surface area and the cation exchange capacity (CEC). In this study, the empty fruit bunch biochar (EFBB) of oil palm was separated into two particle sizes, namely, fine (F-EFBB < 50 µm) and coarse (C-EFBB > 2 mm), to treat the contaminated soil with Cd and Pb. Results revealed that the addition of C-EFBB and F-EFBB increased the pH, electrical conductivity and CEC of the contaminated soil. The amounts of synthetic rainwater extractable and leachable Cd and Pb significantly decreased with the EFBB application. The lowest extractable and leachable Cd and Pb were observed from 1% F-EFBB-treated soil. The amount of extractable and leachable Cd and Pb decreased with increasing incubation times and leaching cycles. The application of F-EFBB to Cd and Pb-contaminated soil can immobilize the heavy metals more than that of C-EFBB. Therefore, the EFBB can be recommended for the remediation of heavy metal-contaminated soils, and a finer particle size can be applied at a lower application rate than the coarser biochar to achieve these goals.
Underwater sensor networks (UWSNs) are ad-hoc networks which are deployed at rivers, seas and oceans to explore and monitor the phenomena such as pollution control, seismic activities and petroleum mining etc. The sensor nodes of UWSNs have limited charging capabilities. UWSNs networks are generally operated under two deployment mechanisms i.e localization and non-localization based. However, in both the mechanisms, balanced energy utilization is a challenging issue. Inefficient usage of energy significantly affects stability period, packet delivery ratio, end-to-end delay, path loss and throughput of a network. To efficiently utilize and harvest energy, this paper present a novel scheme called EH-ARCUN (Energy Harvesting Analytical approach towards Reliability with Cooperation for UWSNs) based on cooperation with energy harvesting. The scheme employs Amplify-and-Forward (AF) technique at relay nodes for data forwarding and Fixed Combining Ratio (FCR) technique at destination node to select accurate signal. The proposed technique selects relay nodes among its neighbor nodes based on harvested energy level. Most cooperation-based UWSN routing techniques do not exhibit energy harvesting mechanism at the relay nodes. EH-ARCUN deploys piezoelectric energy harvesting at relay nodes to improve the working capabilities of sensors in UWSNs. The proposed scheme is an extension of our previously implemented routing scheme called ARCUN for UWSNs. Performance of the proposed scheme is compared with ARCUN and RACE (Reliability and Adaptive Cooperation for efficient Underwater sensor Networks) schemes in term of stability period, packet delivery ratio, network throughput and path loss. Extensive simulation results show that EH-ARCUN performs better than both previous schemes in terms of the considered parameters.
Johor Bahru with its rapid development where pollution is an issue that needs to be considered because it has contributed to the number of asthma cases in this area. Therefore, the goal of this study is to investigate the behaviour of asthma disease in Johor Bahru by count analysis approach namely; Poisson Integer Generalized Autoregressive Conditional Heteroscedasticity (Poisson-INGARCH) and Negative Binomial INGARCH (NB-INGARCH) with identity and log link function. Intervention analysis was conducted since the outbreak in the asthma data for the period of July 2012 to July 2013. This occurs perhaps due to the extremely bad haze in Johor Bahru from Indonesian fires. The estimation of the parameter will be done by quasi-maximum likelihood estimation. Model assessment was evaluated from the Pearson residuals, cumulative periodogram, the probability integral transform (PIT) histogram, log-likelihood value, Akaike’s Information Criterion (AIC) and Bayesian information criterion (BIC). Our result shows that NB-INGARCH with identity and log link function is adequate in representing the asthma data with uncorrelated Pearson residuals, higher in log likelihood, the PIT exhibits normality yet the lowest AIC and BIC. However, in terms of forecasting accuracy, NB-INGARCH with identity link function performed better with the smaller RMSE (8.54) for the sample data. Therefore, NB-INGARCH with identity link function can be applied as the prediction model for asthma disease in Johor Bahru. Ideally, this outcome can assist the Department of Health in executing counteractive action and early planning to curb asthma diseases in Johor Bahru.
Poor management of hazardous waste can lead to environmental pollution, injuries, and adverse health risks. Children's exposure to hazardous waste may cause serious acute and chronic health problems due to their higher vulnerability to the toxic effects of chemicals. This study examines an incident of illegal chemical dumping in Pasir Gudang, Malaysia and its potential health impacts on children. The study introduced a risk assessment of possible health-related effects due to chemical contamination based on a real case scenario where quantification of the contamination was not feasible. A literature review and spatial analysis were used as research methods. On 6th March 2019, tons of hazardous waste were illegally disposed into Kim Kim River, Pasir Gudang, Malaysia. They were identified as benzene, acrolein, acrylonitrile, hydrogen chloride, methane, toluene, xylene, ethylbenzene, and d-limonene. As a result, 975 students in the vicinity developed signs and symptoms of respiratory disease due to the chemical poisoning. The findings of this study indicate that more effective policies and preventive actions are urgently needed to protect human health, especially children from improper hazardous waste management.