Displaying publications 81 - 100 of 117 in total

Abstract:
Sort:
  1. Fatimah Azman, Rose Adzrianee Adnan, Norhafizah Che Abdul Razak, Nazihah Mohd Yunus, Sarina Sulong, Rozita Abdullah, et al.
    MyJurnal
    Muscular dystrophy is a group of diseases that result in progressive muscle weakness and atrophy. Duchenne Muscular Dystrophy (DMD) is classified as dystrophinopathy and is an X-linked recessive disease. It is caused by alterations in the dystrophin gene at Xp21.2 encoding 79 exons [1]. It is characterised by progressive muscle wasting that begins at 3 to 5 years, delay in motor development and eventually wheelchair confinement followed by premature death at about 30 years from cardiac or respiratory complications [2]. Genetic etiology of cases of DMD in Malaysia are still scarcely reported. Here, we report the genetic cause in the case of an 11-year-old Kelantanese Malay boy who has progressive muscle weakness since 5 years old. He has difficulty in getting up from sitting and supine position also in climbing up stairs until 1st floor. He has a strong family history of DMD and musculoskeletal problems. His younger brother was diagnosed with DMD by molecular analysis and his maternal uncle died at the age of 16 with musculoskeletal problems but was never investigated. Physical examination revealed no dysmorphic features, positive Gower sign with absent tounge fasciculation. On neurological examination, tendon reflexes and muscle tone for limbs were normal. Muscle power for bilateral upper limbs were normal, however, bilateral lower limbs showed slight reduction in muscle power with calf hypertrophy.
    Matched MeSH terms: Exons
  2. Al-Shuhaib MBS, Al-Kafajy FR, Badi MA, AbdulAzeez S, Marimuthu K, Al-Juhaishi HAI, et al.
    Comput Biol Med, 2018 09 01;100:17-26.
    PMID: 29960146 DOI: 10.1016/j.compbiomed.2018.06.019
    Because of variable inconvenient living conditions in some places around the world, it is difficult to collect reliable physiological data for ostriches. Therefore, this study aims to provide a comprehensive in silico insight for the nature of polymorphism of important genetic loci that are related to physiological and reproductive traits. Sixty-nine mature ostriches ranging over half of Iraq were screened. Six exonic genetic loci, including cytochrome c oxidase I (COX1), cytochrome b (CYTB), secretogranin V (SCG5), feather keratin 2-like (FK2), prolactin (PRL) and placenta growth factor (PGF) were genotyped by PCR-single stranded conformation polymorphism (SSCP). Thirty-six novel SNPs, including seventeen nonsynonymous (ns) SNPs, were observed. Several computational software programs were utilized to assess the extent of the nsSNPs on their corresponding proteins structure, function and stability. The results showed several deleterious functional and stability changes in almost all the proteins studied. The total severity of each missense mutation was evaluated and compared with other nsSNPs accumulatively. It is evident from the extensive cumulative in silico computation that both p.E34D and p.E60K in PGF have the highest deleterious effect. The cumulative predictions from the present study are an impressive guide for the genotypes of African ostriches, which bypassed the expensive protocols for wet laboratory screening, to identify the effects of variants. To the best of our knowledge, this is the first investigation of its kind on the analyses and prediction outcome of missense mutations in African ostrich populations. The highly deleterious nsSNPs in the placenta growth factor are possible adaptive mutations which might be associated with adaptation in extreme and new environments. The flow and protocol of the computational predictions can be extended for various wild animals to identify the molecular nature of adaptations.
    Matched MeSH terms: Exons
  3. Al-Khateeb, A, Al-Talib, H
    JUMMEC, 2016;19(2):1-11.
    MyJurnal
    Background:
    Familial hypercholesterolaemia (FH) is one of the most frequent inherited metabolic disorders that can lead
    to a risk of premature cardiovascular disease. Publications on FH are mainly from western patients as there is
    little research on Asians, including Malaysians. The aim of this review is to provide an up-to- date information
    on Malaysian studies on FH genotyping and its relation to the phenotype of the affected patients.
    Method:
    A search was conducted for data from online databases on FH in Malaysia.
    Results:
    The mutation spectrum for FH among Malaysian patients was extremely broad. The gene variants were located
    mainly in the low-density lipoprotein receptor (LDLR) and apolipoprotein B-100 (APOB-100) genes rather than
    in the proprotein convertase subtilisin kexin type 9 (PCSK9) gene. The exon 9 and 14 were the hotspots in the
    LDLR gene. The most frequent mutation was p.Cys255Ser, at 12.5%, followed by p.Arg471Gly, at 11%, and the
    most common single nucleotide polymorphism (SNP) was c.1060+7 T>C at 11.7%. The LDLR gene variants were
    more common compared to the APOB-100 gene variants, while variants in the PCSK9 gene were very few.
    Phenotype-genotype associations were identified. Subjects with LDLR and APOB-100 genes mutations had a
    higher frequency of cardiovascular disease, a family history of hyperlipidaemia and tendon xanthoma and a
    higher low-density lipoprotein cholesterol (LDL-C) level than non-carriers.
    Conclusion:
    Research on Malaysian familial hypercholesterolaemic patients by individual groups is encouraging. However,
    more extensive molecular studies on FH on a national scale, with a screening of the disease-causing mutations
    together with a comprehensive genotype-phenotype association study, can lead to a better outcome for
    patients with the disease.
    Matched MeSH terms: Exons
  4. Kuruvilla J, Sasmita AO, Ling APK
    Neurol Sci, 2018 Nov;39(11):1827-1835.
    PMID: 30076486 DOI: 10.1007/s10072-018-3521-0
    BACKGROUND AND PURPOSE: The central nervous system (CNS) faces unique difficulties in attaining permanent therapy for neurodegenerative disorder (ND). Genomic level forms of therapy have garnered interest in the recent decade, with the novel CRISPR/Cas9 gene editing tool continuing to be explored due to its efficiency, safety, and adaptability to varying conditions. With the aid of viral vectors as transport vectors, the gene editing tool has produced promising in vitro and in vivo findings in study models. Thus, this review focuses on the recent advancements and update of CRISPR/Cas9 to combat neurodegenerative diseases.

    METHODS: Articles detailing potential applications of CRISPR/Cas9 in neurodegenerative settings were retrieved from PubMed and Google Scholar with the keywords "CRISPR," "gene editing," and "neurodegenerative diseases." Relevant information was collected and critically reviewed.

    RESULTS: The utility of CRISPR/Cas9 coupled with viral transduction ranges from the disruption of amyloid precursor protein (APP) production at a genomic level in Alzheimer's disease (AD) to the deletion of varying exon portions of the Dmd gene in Duchenne muscular dystrophy (DMD) which would increase dystrophin expression. This usage of CRISPR/Cas9 also extends to experimentally ameliorate the neurodegenerative effects caused by viral infections.

    CONCLUSION: The CRISPR/Cas9 gene editing tool is a powerful arsenal in the field of gene therapy and molecular medicine; hence, more research should be called to focus on the ample potential this tool has to offer in the field of neurodegenerative diseases.

    Matched MeSH terms: Exons
  5. Ahmed MA, Saif A, Quan FS
    PLoS One, 2019;14(11):e0224743.
    PMID: 31751362 DOI: 10.1371/journal.pone.0224743
    Human infections due to the monkey malaria parasite Plasmodium knowlesi are increasingly being reported from Malaysia. The parasite causes high parasitaemia, severe and fatal malaria in humans thus there is a need for urgent measures for its control. The MSP4 is a potential vaccine candidate, which is well studied in Plasmodium falciparum and Plasmodium vivax; however, no study has been conducted in the orthologous gene of P. knowlesi. In this study, we investigated the level of polymorphisms, haplotypes, natural selection and population structure of full-length pkmsp4 in 32 clinical samples from Malaysian Borneo along with 4 lab-adapted strains. We found low levels of polymorphism across the gene with exon I showing higher diversity than the exon II. The C- terminal epidermal growth factor (EGF) domains and GPI-anchored region within exon II were mostly conserved with only 2 non-synonymous substitutions. Although 21 amino acid haplotypes were found, the frequency of mutation at the majority of the polymorphic positions was low. We found evidence of negative selection at the exon II of the gene indicating existence of functional constraints. Phylogenetic haplotype network analysis identified shared haplotypes and indicated geographical clustering of samples originating from Peninsular Malaysia and Malaysian Borneo. High population differentiation values were observed within parasite populations originating from Malaysian Borneo (Kapit, Sarikei and Betong) and laboratory-adapted strains obtained from Peninsular Malaysia and Philippines indicating distinct population structure. This is the first study to genetically characterize the full-length msp4 gene from clinical isolates of P. knowlesi from Malaysia and thus would be very useful for future rational vaccine studies. Further studies with higher number of samples and functional characterization of the protein will be necessary.
    Matched MeSH terms: Exons
  6. Lim CH, Lee MYM, Soga T, Parhar I
    PMID: 31275244 DOI: 10.3389/fendo.2019.00379
    Spexin (SPX) is a novel neuropeptide, which was first identified in the human genome using bioinformatics. Since then, orthologs of human SPX have been identified in mammalian and non-mammalian vertebrates. The mature sequence of SPX, NWTPQAMLYLKGAQ, is evolutionally conserved across vertebrate species, with some variations in teleost species where Ala at position 13 is substituted by Thr. In mammals, the gene structure of SPX comprises six exons and five introns, however, variation exists within non-mammalian species, goldfish and zebrafish having five exons while grouper has six exons. Phylogenetic and synteny analysis, reveal that SPX is grouped together with two neuropeptides, kisspeptin (KISS) and galanin (GAL) as a family of peptides with a common evolutionary ancestor. A paralog of SPX, termed SPX2 has been identified in non-mammalians but not in the mammalian genome. Ligand-receptor interaction study also shows that SPX acts as a ligand for GAL receptor 2 (2a and 2b in non-mammalian vertebrates) and 3. SPX acts as a neuromodulator with multiple central and peripheral physiological roles in the regulation of insulin release, fat metabolism, feeding behavior, and reproduction. Collectively, this review provides a comprehensive overview of the evolutionary diversity as well as molecular and physiological roles of SPX in mammalian and non-mammalian vertebrate species.
    Matched MeSH terms: Exons
  7. Dehbozorgi M, Kamalidehghan B, Hosseini I, Dehghanfard Z, Sangtarash MH, Firoozi M, et al.
    Mol Med Rep, 2018 03;17(3):4195-4202.
    PMID: 29328413 DOI: 10.3892/mmr.2018.8377
    Polymorphisms in the cytochrome P (CYP) 450 family may cause adverse drug responses in individuals. Cytochrome P450 2C19 (CYP2C19) is a member of the CYP family, where the presence of the 681 G>A, 636 G>A and 806 C>T polymorphisms result in the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. In the current study, the frequency of the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles in an Iranian population cohort of different ethnicities were examined and then compared with previously published frequencies within other populations. Allelic and genotypic frequencies of the CYP2C19 alleles (*2, *3 and *17) were detected using polymerase chain reaction (PCR)‑restriction fragment length polymorphism analysis, PCR‑single‑strand conformation polymorphism analysis and DNA sequencing from blood samples of 1,229 unrelated healthy individuals from different ethnicities within the Iranian population. The CYP2C19 allele frequencies among the Iranian population were 21.4, 1.7, and 27.1% for the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. The frequency of the homozygous A/A variant of the CYP2C19*2 allele was significantly high and low in the Lur (P<0.001) and Caspian (P<0.001) ethnicities, respectively. However, the frequency of the homozygous A/A variant of the CYP2C19*3 allele was not detected in the Iranian cohort in the current study. The frequency of the heterozygous G/A variant of the CYP2C19*3 allele had the significantly highest and lowest frequency in the Fars (P<0.001) and Lur (P<0.001) groups, respectively. The allele frequency of the homozygous T/T variant of the CYP2C19*17 allele was significantly high in the Caspian (P<0.001) and low in the Kurd (P<0.05) groups. The frequency of the CYP2C19 alleles involved in drug metabolism, may improve the clinical understanding of the ethnic differences in drug responses, resulting in the advancement of the personalized medicine among the different ethnicities within the Iranian population.
    Matched MeSH terms: Exons
  8. Chua KH, Puah SM, Chew CH, Tan SY, Lian LH
    Ann Hum Biol, 2010 Apr;37(2):274-80.
    PMID: 19951233 DOI: 10.3109/03014460903325185
    In this study, we investigated the polymorphisms of the exon 1 (+49A/G), promoter sites (-1722T/C, -1661A/G, -318C/T), and 3'-untranslated region (3'-UTR) (+6230 A/G) of the CTLA-4 gene in systemic lupus erythematosus (SLE) affected patients. Polymerase chain reaction-restriction fragment length polymorphism was used to determine genotypes of these five markers in 130 SLE patients and 130 healthy controls. Of the five tested polymorphisms, there was no statistical significant difference between the genotypic and allelic frequencies of patients with SLE and controls. Hence, we propose that the CTLA-4 gene does not play a major role in the genetic susceptibility to the development of SLE in the Malaysian population.
    Matched MeSH terms: Exons
  9. Lim KS, Tan AH, Lim CS, Chua KH, Lee PC, Ramli N, et al.
    PLoS One, 2015;10(8):e0135470.
    PMID: 26270344 DOI: 10.1371/journal.pone.0135470
    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare hereditary stroke caused by mutations in NOTCH3 gene. We report the first case of CADASIL in an indigenous Rungus (Kadazan-Dusun) family in Kudat, Sabah, Malaysia confirmed by a R54C (c.160C>T, p.Arg54Cys) mutation in the NOTCH3. This mutation was previously reported in a Caucasian and two Korean cases of CADASIL. We recruited two generations of the affected Rungus family (n = 9) and found a missense mutation (c.160C>T) in exon 2 of NOTCH3 in three siblings. Two of the three siblings had severe white matter abnormalities in their brain MRI (Scheltens score 33 and 50 respectively), one of whom had a young stroke at the age of 38. The remaining sibling, however, did not show any clinical features of CADASIL and had only minimal changes in her brain MRI (Scheltens score 17). This further emphasized the phenotype variability among family members with the same mutation in CADASIL. This is the first reported family with CADASIL in Rungus subtribe of Kadazan-Dusun ethnicity with a known mutation at exon 2 of NOTCH3. The penetrance of this mutation was not complete during the course of this study.
    Matched MeSH terms: Exons
  10. Ghazali MM, Mohd Zan MS, Yusof AA, Abdullah JM, Jaffar H, Ariff AR, et al.
    Malays J Med Sci, 2005 Jul;12(2):27-33.
    PMID: 22605955 MyJurnal
    Neoplastic transformation appears to be a multi-step process in which the normal controls of cell proliferation and cell-cell interaction are lost, thus transforming normal cells into cancer. The tumorigenic process involves the interplay between oncogenes and tumour suppressor genes. In this study, we have selected the ras family, c-myc and epidermal growth factor receptor (EGFR) genes to detect whether their abnormalities are associated with the expression and progression of glioma cases in Malay patients. We have used the polymerase chain reaction-single stranded conformation polymorphism followed by direct sequencing for the study. For the ras gene family, we screened the point mutations in codons 12 and 61 of the H-, K-, and N-ras gene; for EGFR and c-myc, we analyzed only the exon 1 in glioma samples. In mutational screening analyses of the ras family, c-myc and EGFR gene, there was no mobility shift observed in any tumour analyzed. All patterns of single stranded conformation polymorphism (SSCP) band observed in tumour samples were normal compared to those in normal samples. The DNA sequencing results in all high-grade tumours showed that all base sequences were normal. All 48 patients survived after five years of treatment. In simple logistic regression analysis, variables which were found to be significant were hemiplegia (p=0.047) and response radiotherapy (p=0.003). Hemiplegics were 25 times more likely to have high pathological grade compared to those without. Patients with vascular involvement were 5.5 times more likely to have higher pathological grade. However, these findings were not significant in multivariate analysis. Patients who had radiotherapy were nearly 14 times more likely to have higher pathological grade. Multivariate analysis revealed that patients with hemiplegia were more likely to have higher pathological grade (p= 0.008). Those with higher pathological grading were 80 times more likely to have radiotherapy (p=0.004).
    Matched MeSH terms: Exons
  11. Tan EL, Peh SC, Sam CK
    J Med Virol, 2003 Feb;69(2):251-7.
    PMID: 12683415
    Nasopharyngeal carcinoma, a malignancy associated closely with Epstein-Barr virus (EBV), is prevalent among Chinese of Southern China origin. Epidemiological studies indicate a high prevalence of EBV in Asia with viral isolates having typical characteristics of the putative viral oncogene, latent membrane protein 1 (LMP-1), such as the loss of the Xho1 restriction site in Exon 1 and the 30-bp deletion in Exon 3. The EBV LMP-1 gene from throat washings of 120 nasopharyngeal carcinoma patients and 14 healthy individuals were analyzed. Similar analyses were also carried out on 30 and 12 postnasal space biopsies from nasopharyngeal carcinoma patients and healthy individuals, respectively. The 30-bp deletion was detected in 20% of nasopharyngeal carcinoma throat washes and in 100% of nasopharyngeal carcinoma postnasal space biopsies. Interestingly, 16% of the nasopharyngeal carcinoma biopsies possessed both the deleted and the undeleted variants, suggestive of dual infections. The notion of dual infections in nasopharyngeal carcinoma was further supported by the coexistence of both "F" and "f" (BamH1F region) EBV variants in 11% of the nasopharyngeal carcinoma biopsies. All of the throat washes and biopsies from the healthy controls showed the undeleted variant. The loss of the Xho1 restriction site was found with higher frequency both in throat washes and biopsies from patients with nasopharyngeal carcinoma. The discrepancy in the frequency of the 30-bp deletion between throat washes (20%) and postnasal space biopsies (100%) was an indication that this deletion is specific for viral isolates from primary tumour sites.
    Matched MeSH terms: Exons/genetics
  12. Ling KH, Loo SS, Rosli R, Shamsudin MN, Mohamed R, Wan KL
    In Silico Biol. (Gedrukt), 2007;7(1):115-21.
    PMID: 17688436
    Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) play diverse roles in the cellular biology of many organisms, including signal transduction, secretion and vesicular trafficking, and regulation of cytoskeleton assembly. Discovery of the PIP5K gene in Eimeria tenella may shed light on its role in the biology of this avian protozoan, and afford further understanding of the cell-host interaction, particularly during the invasion process. In this study, we report the identification of the PIP5K coding region in the genome sequence of Eimeria tenella using in silico gene prediction approaches. Prediction of the PIP5K coding sequence was confirmed by mapping the full-length cDNA sequence, generated via the Rapid Amplification of cDNA Ends (RACE) method, to the genomic sequence. The putative PIP5K gene of Eimeria tenella is located on the complementary strand of the E1080B12.b1 contig, and comprises 12 exons. Further analysis showed that the coding region spans from exon 1 to exon 7, with all exons obeying the adopted 'gt...ag' splicing rule of intronic sequences. Consensus of the hexameric 5' donor-splice site was deduced as GTRDBB... and the consensus for the 3' acceptor-splice sites as ...BHDYAG. The gene encodes a 252-amino acid residue protein. Domain search and protein fold recognition analyses provide compelling evidences that the deduced protein is a PIP5K.
    Matched MeSH terms: Exons
  13. Abdullah JM, Ahmad F, Ahmad KA, Ghazali MM, Jaafar H, Ideris A, et al.
    Neurol Res, 2007 Apr;29(3):239-42.
    PMID: 17509221
    Brain tumorigenesis is a complex process involving multiple genetic alterations. Cyclin D1 and BAX genes are two of the most important regulators in controlling the normal proliferation and apoptosis of cells, respectively. In this study, we analysed the possibilities of involvement of cyclin D1 and BAX genes in the gliomagenesis.
    Matched MeSH terms: Exons
  14. Mohamed ZI, Tee SF, Tang PY
    Psychiatr Genet, 2018 12;28(6):110-119.
    PMID: 30252773 DOI: 10.1097/YPG.0000000000000210
    INTRODUCTION: In recent years, various studies have accumulated evidence of the involvement of single nucleotide polymorphisms (SNPs) in introns and exons in schizophrenia. The association of functional SNPs in the 3'-untranslated regions with schizophrenia has been explored in a number of studies, but the results are inconclusive because of limited meta-analyses. To systematically analyze the association between SNPs in 3'-untranslated regions and schizophrenia, we conducted a meta-analysis by combining all available studies on schizophrenia candidate genes.

    MATERIALS AND METHODS: We searched candidate genes from the schizophrenia database and performed a comprehensive meta-analysis using all the available data up to August 2017. The association between susceptible SNPs and schizophrenia was assessed by the pooled odds ratio with 95% confidence interval using fixed-effect and random-effect models.

    RESULTS: A total of 21 studies including 8291 cases and 9638 controls were used for meta-analysis. Three investigated SNPs were rs165599, rs3737597, and rs1047631 of COMT, DISC1, and DTNBP1, respectively. Our results suggested that rs3737597 showed a significant association with schizophrenia in Europeans (odds ratio: 1.584, P: 0.002, 95% confidence interval: 1.176-2.134) under a random-effect framework.

    CONCLUSION: This meta-analysis indicated that rs3737597 of DISC1 was significantly associated with schizophrenia in Europeans, and it can be suggested as an ethnic-specific risk genetic factor.

    Matched MeSH terms: Exons
  15. Muthiah YD, Lee WL, Teh LK, Ong CE, Salleh MZ, Ismail R
    Clin Chim Acta, 2004 Nov;349(1-2):191-8.
    PMID: 15469873 DOI: 10.1016/j.cccn.2004.06.024
    BACKGROUND: Cytochrome P450 (CYP) 2C8 is a principle enzyme responsible for the metabolism of many clinically important drugs as well as endogenous compounds such as arachidonic acid. The enzyme is genetically polymorphic but a simple method is not available to study its genetic polymorphism. We developed and optimized a variant-specific PCR techniques to detect CYP2C8*2, CYP2C8*3 and CYP2C8*4.
    METHOD: Genomic DNA was extracted from blood using standard extraction methods. A two-step PCR method was developed to detect simultaneously three CYP2C8 variants. In the first PCR (PCR1), specific regions from exons 3, 5 and 8 of the CYP2C8 gene were amplified. The products were used as templates in parallel alleles-specific PCR (PCR2). This method was tested against DNA samples obtained from 57 healthy Malaysian volunteers.
    RESULT: The bands of interest were successfully amplified. This method showed specific and reproducible results when tested on healthy volunteers. DNA sequencing further confirmed genotype results obtained from current method.
    CONCLUSION: We have successfully developed and optimized a multiplex PCR method suitable for use in population studies of CYP2C8 polymorphism.
    Matched MeSH terms: Exons
  16. Zulhabri O, Rahman J, Ismail S, Isa MR, Wan Zurinah WN
    Singapore Med J, 2012 Jan;53(1):26-31.
    PMID: 22252179
    K-ras gene mutations in codons 12 and 13 are one of the earliest events in colon carcinogenesis.
    Matched MeSH terms: Exons
  17. Ghani AR, Abdullah JM, Ghazali M, Ahmad F, Ahmad KA, Madhavan M
    Singapore Med J, 2008 Jul;49(7):e192-4.
    PMID: 18695856
    Recurrent supratentorial extraventricular ependymoma in a four-year-old Malay boy treated twice surgically in combination with cranial radiotherapy is reported. He presented with symptoms of raised intracranial pressure and a history of focal seizure. Computed tomography of the brain showed a left supratentorial extraventricular cystic lesion causing a mass effect. The tumour histology was ependymoma (WHO grade II). The clinical course, radiological characteristics and management of this tumour are discussed. Molecular genetic analysis of p53 and p27 genes revealed substitution of nucleotide G to C at location nucleotide 12139, exon 4 of gene p53. No alteration was detected at exon 5-6 and 8 of p53 gene and exon 1 and 2 of p27 gene.
    Matched MeSH terms: Exons
  18. Lum SH, Choong SS, Krishnan S, Mohamed Z, Ariffin H
    Singapore Med J, 2016 Jun;57(6):320-4.
    PMID: 27353457 DOI: 10.11622/smedj.2016106
    INTRODUCTION: Children with Down syndrome (DS) are at increased risk of developing distinctive clonal myeloid disorders, including transient abnormal myelopoiesis (TAM) and myeloid leukaemia of DS (ML-DS). TAM connotes a spontaneously resolving congenital myeloproliferative state observed in 10%-20% of DS newborns. Following varying intervals of apparent remission, a proportion of children with TAM progress to develop ML-DS in early childhood. Therefore, TAM and ML-DS represent a biological continuum. Both disorders are characterised by recurring truncating somatic mutations of the GATA1 gene, which are considered key pathogenetic events.

    METHODS: We herein report, to our knowledge, the first observation on the frequency and nature of GATA1 gene mutations in a cohort of Malaysian children with DS-associated TAM (n = 9) and ML-DS (n = 24) encountered successively over a period of five years at a national referral centre.

    RESULTS: Of the 29 patients who underwent GATA1 analysis, GATA1 mutations were observed in 15 (51.7%) patients, including 6 (75.0%) out of 8 patients with TAM, and 9 (42.9%) of 21 patients with ML-DS. All identified mutations were located in exon 2 and the majority were sequence-terminating insertions or deletions (66.7%), including several hitherto unreported mutations (12 out of 15).

    CONCLUSION: The low frequency of GATA1 mutations in ML-DS patients is unusual and potentially indicates distinctive genomic events in our patient cohort.

    Matched MeSH terms: Exons
  19. Mohd-Zin SW, Abdullah NL, Abdullah A, Greene ND, Cheah PS, Ling KH, et al.
    Genome, 2016 Jul;59(7):439-48.
    PMID: 27373307 DOI: 10.1139/gen-2015-0142
    The EphA4 receptor tyrosine kinase is involved in numerous cell-signalling activities during embryonic development. EphA4 has the ability to bind to both types of ephrin ligands, the ephrinAs and ephrinBs. The C57BL/6J-Epha4rb-2J/GrsrJ strain, denoted Epha4(rb-2J/rb-2J), is a spontaneous mouse mutant that arose at The Jackson Laboratory. These mutants exhibited a synchronous hind limb locomotion defect or "hopping gait" phenotype, which is also characteristic of EphA4 null mice. Genetic complementation experiments suggested that Epha4(rb-2J) corresponds to an allele of EphA4, but details of the genomic defect in this mouse mutant are currently unavailable. We found a single base-pair deletion in exon 9 resulting in a frame shift mutation that subsequently resulted in a premature stop codon. Analysis of the predicted structure of the truncated protein suggests that both the kinase and sterile α motif (SAM) domains are absent. Definitive determination of genotype is needed for experimental studies of mice carrying the Epha4(rb-2J) allele, and we have also developed a method to ease detection of the mutation through RFLP. Eph-ephrin family members are reportedly expressed as numerous isoforms. Hence, delineation of the specific mutation in EphA4 in this strain is important for further functional studies, such as protein-protein interactions, immunostaining and gene compensatory studies, investigating the mechanism underlying the effects of altered function of Eph family of receptor tyrosine kinases on phenotype.
    Matched MeSH terms: Exons
  20. Lee CC, Harun F, Jalaludin MY, Heh CH, Othman R, Junit SM
    BMJ Open, 2015 Jan 05;5(1):e006121.
    PMID: 25564141 DOI: 10.1136/bmjopen-2014-006121
    OBJECTIVES: The c.2268dup mutation in the thyroid peroxidase (TPO) gene is the most common TPO alteration reported in Taiwanese patients with thyroid dyshormonogenesis. The ancestors of these patients are believed to originate from the southern province of China. Our previous study showed that this mutation leads to reduced abundance of the TPO protein and loss of TPO enzyme activity in a Malaysian-Chinese family with goitrous hypothyroidism. The aim of our study was to provide further data on the incidence of the c.2268dup mutation in a cohort of Malaysian-Chinese and its possible phenotypic effects.

    SETTING: Cohort study.

    PARTICIPANTS: Twelve biologically unrelated Malaysian-Chinese patients with congenital hypothyroidism were recruited in this study. All patients showed high thyrotropin and low free thyroxine levels at the time of diagnosis with proven presence of a thyroid gland.

    PRIMARY OUTCOME MEASURE: Screening of the c.2268dup mutation in the TPO gene in all patients was carried out using a PCR-direct DNA sequencing method.

    SECONDARY OUTCOME MEASURE: Further screening for mutations in other exonic regions of the TPO gene was carried out if the patient was a carrier of the c.2268dup mutation.

    RESULTS: The c.2268dup mutation was detected in 4 of the 12 patients. Apart from the c.2268dup and a previously documented mutation (c.2647C>T), two novel TPO alterations, c.670_672del and c.1186C>T, were also detected in our patients. In silico analyses predicted that the novel alterations affect the structure/function of the TPO protein.

    CONCLUSIONS: The c.2268dup mutation was detected in approximately one-third of the Malaysian-Chinese patients with thyroid dyshormonogenesis. The detection of the novel c.670_672del and c.1186C>T alterations expand the mutation spectrum of TPO associated with thyroid dyshormonogenesis.

    Matched MeSH terms: Exons
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links