Displaying publications 81 - 100 of 109 in total

Abstract:
Sort:
  1. Mohd SM, Abdul Manan MJ
    Malays J Nutr, 2012 Apr;18(1):125-36.
    PMID: 23713236 MyJurnal
    The haruan (Channa striatus) is an indigenous, predatory freshwater fish of Malaysia. It is a common food fish among the local populace with traditionally identified pharmacological benefits in treating wound and pain and in boosting energy of the sick. Channa striatus is also a subject of renewed interest in Malaysian folk medicine in the search for a better cure for diseases and ailments. Amino acids and fatty acids, found in high concentrations in the fish, might have contributed to its pharmacological properties. Important amino acids of the fish include glycine, lysine and arginine, while its fatty acids are arachidonic acid, palmitic acid and docosahexaenoic acid. They appear to effect their influence through the formation of several types of bioactive molecules. Extracts of the fish are produced from whole fish, roe, mucus and skin of the fish. This review updates research findings on potential uses of Channa striatus, beyond the traditional prescription as a wound healer, pain reliever and energy booster to include its properties as a ACE-inhibitor, anti-depressant and neuroregenerative agent. The fish appears to have wide-ranging medical uses and should be studied more intensively to unearth its other properties and mechanisms of action.
    Matched MeSH terms: Fatty Acids/analysis
  2. Akmar ZD, Norhaizan ME, Azimah R, Azrina A, Chan YM
    Malays J Nutr, 2013 Apr;19(1):87-98.
    PMID: 24800387 MyJurnal
    INTRODUCTION: There is a lack of information on the trans fatty acid (TFA) content in Malaysian foods. The objective of this study is to determine the TFA content of bakery products, snacks, dairy products, fast foods, cooking oils and semisolid fats, and breakfast cereals and Malaysian fast foods. This study also estimated the quantity of each isomer in the foods assayed.
    METHODS: The trans fatty acid content of each food sample was assessed in duplicate by separating the fatty acid methyl esters (FAME) in a gas chromatography system equipped with HP-88 column (USA: split ratio 10: 1) for cis/trans separation. Five major TFA isomers, palmitoelaidic acid (16: 1t9), petroselaidic acid (18:1t6), elaidic acid (18:1t9), vaccenic acid (18: 1t11) and linoelaidic acid (18:2t9, 12), were measured using gas chromatography (GC) and the data were expressed in unit values of g/100 g lipid or g/100 g food.
    RESULTS: The total TFA contents in the studied foods were < 0.001 g-8.77 g/100 g lipid or < 0.001 g-5.79 g/100 g foods. This value falls within the standard and international recommendation level for TFA. The measured range of specific TFA isomers were as follows: palmitoelaidic acid (< 0.001 g-0.26 g/100 g lipid), petroselaidic acid (< 0.001 g - 3.09 g/100 g lipid), elaidic acid (< 0.001 g-0.87 g/100 g lipid), vaccenic acid (< 0.001 g-0.41 g/100 g lipid) and linoelaidic acid (< 0.001 g-6.60 g/100 g lipid).
    CONCLUSION: These data indicate that most of the tested foods have low TFA contents (< 1 g/100 g lipid).
    Matched MeSH terms: Trans Fatty Acids/analysis*
  3. Koo HC, Kaur S, Chan KQ, Soh WH, Ang YL, Chow WS, et al.
    J Hum Nutr Diet, 2020 10;33(5):670-677.
    PMID: 32250007 DOI: 10.1111/jhn.12753
    INTRODUCTION: Little is known about the relationship of whole-grain intake with dietary fatty acids intake. The present study aimed to assess the whole-grain intake and its relationships with dietary fatty acids intake among multiethnic schoolchildren in Kuala Lumpur, Malaysia.

    METHODS: This cross-sectional study was conducted among 392 schoolchildren aged 9-11 years, cluster sampled from five randomly selected schools in Kuala Lumpur. Whole-grain and fatty acids intakes were assessed by 3-day, 24-h diet recalls. All whole-grain foods were considered irrespective of the amount of whole grain they contained.

    RESULTS: In total, 55.6% (n = 218) were whole-grain consumers. Mean (SD) daily intake of whole grain in the total sample was 5.13 (9.75) g day-1 . In the whole-grain consumer's only sample, mean (SD) intakes reached 9.23 (11.55) g day-1 . Significant inverse associations were found between whole-grain intake and saturated fatty acid (SAFA) intake (r = -0.357; P 

    Matched MeSH terms: Fatty Acids/analysis*
  4. Yusuf AL, Adeyemi KD, Roselina K, Alimon AR, Goh YM, Samsudin AA, et al.
    Food Res Int, 2018 09;111:699-707.
    PMID: 30007735 DOI: 10.1016/j.foodres.2018.06.015
    The effects of dietary supplementation of different parts of Andrographis paniculata on fatty acids, lipid oxidation, microbiota and quality attributes of Longissimus thoracis et lumborum (LTL) muscle in goats were assessed. Twenty four, entire Boer bucks (4 months old; 20.18 ± 0.19 kg BW) were randomly allotted to either a basal diet without additive (AP0), a basal diet + 1.5% Andrographis paniculata leaves (APL) or a basal diet + 1.5% Andrographis paniculata whole plant (APW). The bucks were fed the diets for 100 d and slaughtered. The LTL muscle was subjected to a 7 d chill storage. The AP0 meat had higher (p  .05) on muscle glycogen, pH, drip loss, chemical composition and lactic acid bacteria count. Cooking loss, shear force, and TBARS values were lower (p 
    Matched MeSH terms: Fatty Acids/analysis*
  5. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    World J Microbiol Biotechnol, 2020 Jan 07;36(1):17.
    PMID: 31912247 DOI: 10.1007/s11274-019-2790-y
    In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
    Matched MeSH terms: Fatty Acids/analysis*
  6. Kämpfer P, Lai WA, Arun AB, Young CC, Rekha PD, Martin K, et al.
    Int J Syst Evol Microbiol, 2012 Nov;62(Pt 11):2750-2756.
    PMID: 22286908 DOI: 10.1099/ijs.0.039057-0
    A Gram-negative, coccoid-shaped bacterium, strain CC-CCM15-8(T), was isolated from a rhizosphere soil sample of the plant Crossostephium chinense (L.) Makino (Seremban) from Budai Township, Chiayi County, Taiwan. 16S rRNA gene sequence analysis clearly allocated strain CC-CCM15-8(T) to the Paracoccus cluster, showing highest similarities to the type strains of 'Paracoccus beibuensis' (98.8%), Paracoccus homiensis (97.6%), Paracoccus aestuarii (97.7%) and Paracoccus zeaxanthinifaciens (97.7%). The fatty acid profile, comprising C(18:1)ω7c as the major component and C(10:0) 3-OH as the characteristic hydroxylated fatty acid, supported the placement of strain CC-CCM15-8(T) within the genus Paracoccus. The polyamine pattern consisted of putrescine and spermidine as major components. Ubiqinone Q-10 was the major quinone type (95%); ubiquinone Q-9 was also detected (5%). The complex polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, and unidentified phospholipids, lipids and glycolipids. Levels of DNA-DNA relatedness between strain CC-CCM15-8(T) and 'P. beibuensis' LMG 25871(T), P. aestuarii DSM 19484(T), P. zeaxanthinifaciens LMG 21993(T) and P. homiensis KACC 11518(T) were 24.9% (34.8%, reciprocal analysis), 15.7% (17.5%), 17.7% (23.4%) and 16.0% (25.4%), respectively. Physiological and biochemical test results allowed the phenotypic differentiation of strain CC-CCM15-8(T) from its closest relatives in the genus Paracoccus. Based on the data presented, it is concluded that strain CC-CCM15-8(T) represents a novel species of the genus Paracoccus, for which the name Paracoccus rhizosphaerae sp. nov. is proposed. The type strain is CC-CCM15-8(T) (=LMG 26205(T)=CCM 7904(T)).
    Matched MeSH terms: Fatty Acids/analysis
  7. Hashim RB, Jamil EF, Zulkipli FH, Daud JM
    J Oleo Sci, 2015;64(2):205-9.
    PMID: 25748380 DOI: 10.5650/jos.ess14191
    Pangasius micronemus (Black Pangasius sp.) and Pangasius nasutus (Fruit Pangasius sp.) are two species of silver catfish widely consumed in Malaysia. The present study evaluated fatty acid profiles of fish muscles in these two Pangasius sp. from different farms and locations to determine which species or location is better in term of lipid quality. The results showed MUFAs (Monounsaturated fatty acid) content was highest (35.0-44.4%) followed by SFA (Saturated fatty acid) [32.0-41.5%] and PUFAs (polyunsaturated fatty acids) [9.3-19.3%]. P. micronemus of Sg. Kanchong displayed higher palmitic acid (SFA; 29.0%) than P. nasutus from Peramu (23.5%). In contrast, oleic acid (MUFA) revealed highest in P. nasutus (38.1%) while lowest in P. micronemus of Sg. Kanchong (29.7%). Additionally, utmost PUFAs belonged to P. micronemus of Sg. Kanchong (19.3%) and lower most in P. nasutus from Peramu (9.3%). P. micronemus presented with a higher EPA (eicosapentaenoic acid) [1.0-1.4%], DHA (Docosahexaenoic acid) [1.7-2.8%] and LA (Linoleic acid) [11.8-12.0%] than P. nasutus (EPA; 0.3%, DHA; 1.0%, LA; 4.8%). However, P. nasutus established higher GLA (gamma-linolenic acid) [0.4%] than P. micronemus (0.04-0.06%). Both Pangasius sp. can be regarded as good supplies of omega-3 and omega-6. Overall, P. micronemus from Sg. Kanchong is the best choice among all for reason high in EPA and DHA.
    Matched MeSH terms: Fatty Acids/analysis*
  8. Kaka A, Wahid H, Rosnina Y, Yimer N, Khumran AM, Sarsaifi K, et al.
    Anim. Reprod. Sci., 2015 Feb;153:1-7.
    PMID: 25544152 DOI: 10.1016/j.anireprosci.2014.12.001
    The present study was conducted to determine the effects of supplementing α-linolenic acid (ALA) into BioXcell(®) extender on post-cooling, post-thawed bovine spermatozoa and post thawed fatty acid composition. Twenty-four semen samples were collected from three bulls using an electro-ejaculator. Fresh semen samples were evaluated for general motility using computer assisted semen analyzer (CASA) whereas morphology and viability with eosin-nigrosin stain. Semen samples extended into BioXcell(®) were divided into five groups to which 0, 3, 5, 10 and 15 ng/ml of ALA were added, respectively. The treated samples were incubated at 37°C for 15 min for ALA uptake by sperm cells before being cooled for 2 h at 5°C. After evaluation, the cooled samples were packed into 0.25 ml straws and frozen in liquid nitrogen for 24 h before thawing and evaluation for semen quality. Evaluation of cooled and frozen-thawed semen showed that the percentages of all the sperm parameters improved with 5 ng/ml ALA supplement. ALA was higher in all treated groups than control groups than control group. In conclusion, 5 ng/ml ALA supplemented into BioXcell(®) extender improved the cooled and frozen-thawed quality of bull spermatozoa.
    Matched MeSH terms: Fatty Acids/analysis
  9. Kaka A, Wahid H, Rosnina Y, Yimer N, Khumran AM, Behan AA, et al.
    Reprod. Domest. Anim., 2015 Feb;50(1):29-33.
    PMID: 25366298 DOI: 10.1111/rda.12445
    The study was conducted to evaluate the effects of α-linolenic acid (ALA) on frozen-thawed quality and fatty acid composition of bull sperm. For that, twenty-four ejaculates obtained from three bulls were diluted in a Tris extender containing 0 (control), 3, 5, 10 and 15 ng/ml of ALA. Extended semen was incubated at 37°C for 15 min, to allow absorption of ALA by sperm cell membrane. The sample was chilled for 2 h, packed into 0.25-ml straws and frozen in liquid nitrogen for 24 h. Subsequently, straws were thawed and evaluated for total sperm motility (computer-assisted semen analysis), membrane functional integrity (hypo-osmotic swelling test), viability (eosin-nigrosin), fatty acid composition (gas chromatography) and lipid peroxidation (thiobarbituric acid-reactive substances (TBARS)). A higher (p < 0.05) percentage of total sperm motility was observed in ALA groups 5 ng/ml (47.74 ± 07) and 10 ng/ml (44.90 ± 0.7) in comparison with control (34.53 ± 3.0), 3 ng/ml (34.40 ± 2.6) and 15 ng/ml (34.60 ± 2.9). Still, the 5 ng/ml ALA group presented a higher (p < 0.05) percentage of viable sperms (74.13 ± 0.8) and sperms with intact membrane (74.46 ± 09) than all other experimental groups. ALA concentration and lipid peroxidation in post-thawed sperm was higher in all treated groups when compared to the control group. As such, the addition of 5 ng/ml of ALA to Tris extender improved quality of frozen-thawed bull spermatozoa.
    Matched MeSH terms: Fatty Acids/analysis
  10. Jusoh M, Loh SH, Chuah TS, Aziz A, Cha TS
    Phytochemistry, 2015 Mar;111:65-71.
    PMID: 25583439 DOI: 10.1016/j.phytochem.2014.12.022
    Microalgae lipids and oils are potential candidates for renewable biodiesel. Many microalgae species accumulate a substantial amount of lipids and oils under environmental stresses. However, low growth rate under these adverse conditions account for the decrease in overall biomass productivity which directly influence the oil yield. This study was undertaken to investigate the effect of exogenously added auxin (indole-3-acetic acid; IAA) on the oil content, fatty acid compositions, and the expression of fatty acid biosynthetic genes in Chlorella vulgaris (UMT-M1). Auxin has been shown to regulate growth and metabolite production of several microalgae. Results showed that oil accumulation was highest on days after treatment (DAT)-2 with enriched levels of palmitic (C16:0) and stearic (C18:0) acids, while the linoleic (C18:2) and α-linolenic (C18:3n3) acids levels were markedly reduced by IAA. The elevated levels of saturated fatty acids (C16:0 and C18:0) were consistent with high expression of the β-ketoacyl ACP synthase I (KAS I) gene, while low expression of omega-6 fatty acid desaturase (ω-6 FAD) gene was consistent with low production of C18:2. However, the increment of stearoyl-ACP desaturase (SAD) gene expression upon IAA induction did not coincide with oleic acid (C18:1) production. The expression of omega-3 fatty acid desaturase (ω-3 FAD) gene showed a positive correlation with the synthesis of PUFA and C18:3n3.
    Matched MeSH terms: Fatty Acids/analysis
  11. Phan CW, David P, Tan YS, Naidu M, Wong KH, Kuppusamy UR, et al.
    ScientificWorldJournal, 2014;2014:378651.
    PMID: 25121118 DOI: 10.1155/2014/378651
    Two strains of Pleurotus giganteus (commercial and wild) were tested for their ability to induce neurite outgrowth in rat pheochromocytoma (PC12) and mouse neuroblastoma-2a (N2a) cells. Treatment with the mushroom extracts resulted in neuronal differentiation and neuronal elongation, but not nerve growth factor (NGF) production. Linoleic acid (4.5-5.0%, w/w) which is a major fatty acid present in the ethanol extract promoted NGF biosynthesis when augmented with low concentration of NGF (5 ng/mL). The two strains of mushroom were found to be high in protein (154-192 g kg(-1)), total polysaccharides, phenolics, and flavonoids as well as vitamins B1, B2, and B3. The total phenolics present in the mushroom extracts were positively correlated to the antioxidant activity (free radical scavenging, ferric reducing power, and lipid peroxidation inhibition). To conclude, P. giganteus could potentially be used in well-balanced diet and as a source of dietary antioxidant to promote neuronal health.
    Matched MeSH terms: Fatty Acids/analysis
  12. Sarmin NIM, Tan GYA, Franco CMM, Edrada-Ebel R, Latip J, Zin NM
    Int J Syst Evol Microbiol, 2013 Oct;63(Pt 10):3733-3738.
    PMID: 23645019 DOI: 10.1099/ijs.0.047878-0
    A spore-forming streptomycete designated strain SUK12(T) was isolated from a Malaysian ethnomedicinal plant. Its taxonomic position, established using a polyphasic approach, indicates that it is a novel species of the genus Streptomyces. Morphological and chemical characteristics of the strain were consistent with those of members of the genus Streptomyces. Analysis of the almost complete 16S rRNA gene sequence placed strain SUK12(T) in the genus Streptomyces where it formed a distinct phyletic line with recognized species of this genus. The strain exhibited highest sequence similarity to Streptomyces corchorusii DSM 40340(T) (98.2 %) followed by Streptomyces chrestomyceticus NRRL B-3310(T) (98.1 %). The G+C content of the genomic DNA was 74 mol%. Chemotaxonomic data [MK-9(H8) as the major menaquinone; LL-diaminopimelic acid as a component of cell-wall peptidoglycan; C12 : 0, C14 : 0, C15 : 0 and C17 : 1 as the major fatty acids; phospholipid type II] supported the affiliation of strain SUK12(T) to the genus Streptomyces. The results of the phylogenetic analysis and phenotypic data derived from this and previous studies allowed the genotypic and phenotypic differentiation of strain SUK12(T) from the related species of the genus Streptomyces. The DNA-DNA relatedness value between strain SUK12(T) and S. corchorusii DSM 40340(T) is 18.85±4.55 %. Strain SUK12(T) produces phenazine-1-carboxylic acid, known as tubermycin B, an antibacterial agent. It is proposed, therefore, that strain SUK12(T) ( = DSM 42048(T) = NRRL B-24860(T)) be classified in the genus Streptomyces as the type strain of Streptomyces kebangsaanensis sp. nov.
    Matched MeSH terms: Fatty Acids/analysis
  13. Lee LH, Cheah YK, Sidik SM, Xie QY, Tang YL, Lin HP, et al.
    Int J Syst Evol Microbiol, 2013 Jan;63(Pt 1):241-248.
    PMID: 22389286 DOI: 10.1099/ijs.0.038232-0
    Three novel actinobacteria, strains 39(T), 40 and 41, were isolated from soil collected from Barrientos Island in the Antarctic. The taxonomic status of these strains was determined using a polyphasic approach. Comparison of 16S rRNA gene sequences revealed that strain 39(T) represented a novel lineage within the family Dermacoccaceae and was most closely related to members of the genera Demetria (96.9 % 16S rRNA gene sequence similarity), Branchiibius (95.7 %), Dermacoccus (94.4-95.3 %), Calidifontibacter (94.6 %), Luteipulveratus (94.3 %), Yimella (94.2 %) and Kytococcus (93.1 %). Cells were irregular cocci and short rods. The peptidoglycan type was A4α with an L-Lys-L-Ser-D-Asp interpeptide bridge. The cell-wall sugars were galactose and glucose. The major menaquinone was MK-8(H(4)). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphoglycolipid, two glycolipids and one unknown phospholipid. The acyl type of the cell-wall polysaccharide was N-acetyl. The major cellular fatty acids were anteiso-C(17 : 0) (41.97 %), anteiso-C(17 : 1)ω9c (32.16 %) and iso-C(16 : 0) (7.68 %). The DNA G+C content of strain 39(T) was 68.4 mol%. On the basis of phylogenetic and phenotypic differences from other genera of the family Dermacoccaceae, a novel genus and species, Barrientosiimonas humi gen. nov., sp. nov., is proposed; the type strain of the type species is 39(T) (=CGMCC 4.6864(T) = DSM 24617(T)).
    Matched MeSH terms: Fatty Acids/analysis
  14. Iluyemi FB, Hanafi MM, Radziah O, Kamarudin MS
    Bioresour Technol, 2006 Feb;97(3):477-82.
    PMID: 16216731
    Palm kernel cake (PKC), an agro-industrial by-product used extensively in the animal feed industry, has limited use in fish feeds due to its high fiber and low protein contents. In this study, PKC was processed under solid state culture conditions with five fungal strains and the effect of this fungal culturing on the amino acid, fatty acid, cellulose and hemicellulose fractions was evaluated. Fungal strains used were Sclerotium rolfsii, Trichoderma harzianum, Trichoderma longiobrachiatum, Trichoderma koninggi and Aspergillus niger. Fungal growth was carried out at 50% moisture level and 1% inoculum level for 7 days. A significant increase in protein content from 18.76% to 32.79% was obtained by growing T. longibrachiatum on PKC. Cellulose level decreased significantly from 28.31% to 12.11% for PKC cultured with T. longibrachiatum, and hemicellulose from 37.03% to 19.01% for PKC cultured with A. niger. Fungal culturing of PKC brought about an increase in the level of unsaturated- and a decrease in the level of the saturated-fatty acids.
    Matched MeSH terms: Fatty Acids/analysis
  15. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Fatty Acids/analysis
  16. Kadhum AA, Shamma MN
    Crit Rev Food Sci Nutr, 2017 Jan 02;57(1):48-58.
    PMID: 26048727
    Lipid is the general name given to fats and oils, which are the basic components of cooking oils, shortening, ghee, margarine, and other edible fats. The chosen term depends on the physical state at ambient temperature; fats are solids and oils are liquids. The chemical properties of the lipids, including degree of saturation, fatty acid chain length, and acylglycerol molecule composition are the basic determinants of physical characteristics such as melting point, cloud point, solid fat content, and thermal behavior. This review will discuss the major lipid modification strategies, hydrogenation, and chemical and enzymatic interesterification, describing the catalysts used mechanisms, kinetics, and impacts on the health-related properties of the final products. Enzymatic interesterification will be emphasized as method that produces a final product with good taste, zero trans fatty acids, and a low number of calories, requires less contact with chemicals, and is cost efficient.
    Matched MeSH terms: Trans Fatty Acids/analysis
  17. Wong PL, Fauzi NA, Mohamed Yunus SN, Abdul Hamid NA, Abd Ghafar SZ, Azizan A, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640504 DOI: 10.3390/molecules25133067
    Plants and plant-based products have been used for a long time for medicinal purposes. This study aimed to determine the antioxidant and anti-α-glucosidase activities of eight selected underutilized plants in Malaysia: Leucaena leucocephala, Muntingia calabura, Spondias dulcis, Annona squamosa, Ardisia elliptica, Cynometra cauliflora, Ficus auriculata, and Averrhoa bilimbi. This study showed that the 70% ethanolic extract of all plants exhibited total phenolic content (TPC) ranging from 51 to 344 mg gallic acid equivalent (GAE)/g dry weight. A. elliptica showed strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) scavenging activities, with half maximal inhibitory concentration (IC50) values of 2.17 and 49.43 μg/mL, respectively. Most of the tested plant extracts showed higher inhibition of α-glucosidase enzyme activity than the standard, quercetin, particularly A. elliptica, F. auriculata, and M. calabura extracts with IC50 values of 0.29, 0.36, and 0.51 μg/mL, respectively. A total of 62 metabolites including flavonoids, triterpenoids, benzoquinones, and fatty acids were tentatively identified in the most active plant, i.e., A. elliptica leaf extract, by using ultra-high-performance liquid chromatography (UHPLC)-electrospray ionization (ESI) Orbitrap MS. This study suggests a potential natural source of antioxidant and α-glucosidase inhibitors from A. elliptica.
    Matched MeSH terms: Fatty Acids/analysis
  18. Wu Y, Mou B, Song S, Tan CP, Lai OM, Shen C, et al.
    Food Res Int, 2020 10;136:109301.
    PMID: 32846513 DOI: 10.1016/j.foodres.2020.109301
    Present study prepared curcumin liposomes with high encapsulation efficiency (>70%) using bovine milk and krill phospholipids; and investigated the effects of phospholipids composition on storage stability, in-vitro bioavailability, antioxidative and anti-hyperglycemic properties of the curcumin liposomes. Curcumin liposomes prepared from bovine milk phospholipids have smaller particle sizes (163.1 ± 6.42 nm) and greater negative zeta potentials (-26.7 mv) as compared to that prepared from krill phospholipids (particle size: 212.2 ± 4.1 nm, zeta potential: -15.23 mv). In addition, curcumin liposomes from bovine milk phospholipids demonstrated better stability under harsh storage conditions (alkaline conditions, oxygen, high temperature and relative humidity). Nevertheless, curcumin-loaded liposomes prepared from bovine milk phospholipids have inferior bioavailability compared to that prepared from krill phospholipids. No significant differences can be observed in terms of anti-oxidative and anti-hyperglycemic properties of liposomes prepared from both bovine milk and krill phospholipids. Findings from present study will open up new opportunities for development of stable curcumin liposomes with good functional properties (high digestibility, bioavailability and pharmacological effects).
    Matched MeSH terms: Fatty Acids/analysis
  19. Katayama T, Nagao N, Kasan NA, Khatoon H, Rahman NA, Takahashi K, et al.
    J Biotechnol, 2020 Nov 10;323:113-120.
    PMID: 32768414 DOI: 10.1016/j.jbiotec.2020.08.001
    We isolated fifty-two strains from the marine aquaculture ponds in Malaysia that were evaluated for their lipid production and ammonium tolerance and four isolates were selected as new ammonium tolerant microalgae with high-lipid production: TRG10-p102 Oocystis heteromucosa (Chlorophyceae); TRG10-p103 and TRG10-p105 Thalassiosira weissflogii (Bacillariophyceae); and TRG10-p201 Amphora coffeiformis (Bacillariophyceae). Eicosapentenoic acid (EPA) in three diatom strain was between 2.6 and 18.6 % of total fatty acids, which were higher than in O. heteromucosa. Only A. coffeiformi possessed arachidonic acid. Oocystis heteromucosa naturally grew at high ammonium concentrations (1.4-10 mM), whereas the growth of the other strains, T. weissflogii and A. coffeiformi, were visibly inhibited at high ammonium concentrations (>1.4 mM-NH4). However, two strains of T. weissflogii were able to grow at up to 10 mM-NH4 by gradually acclimating to higher ammonium concentrations. The ammonium tolerant strains, especially T. weissflogii which have high EPA contents, were identified as a valuable candidate for biomass production utilizing NH4-N media, such as ammonium-rich wastewater.
    Matched MeSH terms: Fatty Acids/analysis
  20. Hena S, Fatihah N, Tabassum S, Ismail N
    Water Res, 2015 Sep 1;80:346-56.
    PMID: 26043271 DOI: 10.1016/j.watres.2015.05.001
    Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions for both biomass yield and lipid production of microalgae. Biomass yield and lipid production in microalgae are a contradictory problem because required conditions for both targets are different. Simultaneously, the mass cultivation of microalgae for biofuel production also depends extremely on the performance of the microalgae strains used. In this study a green unicellular microalgae Chlorella sorokiniana (DS6) isolated from the holding tanks of farm wastewater treatment plant using multi-step screening and acclimation procedures was found high-lipid producing facultative heterotrophic microalgae strain capable of growing on dairy farm effluent (DFE) for biodiesel feedstock and wastewater treatment. Morphological features and the phylogenetic analysis for the 18S rRNA identified the isolated strains. A novel three stage cultivation process of facultative strain of C. sorokiniana was examined for lipid production.
    Matched MeSH terms: Fatty Acids/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links