Displaying publications 81 - 89 of 89 in total

Abstract:
Sort:
  1. Kampan NC, Madondo MT, McNally OM, Stephens AN, Quinn MA, Plebanski M
    Front Immunol, 2017;8:1482.
    PMID: 29163543 DOI: 10.3389/fimmu.2017.01482
    Background: Epithelial ovarian cancer (EOC) remains a highly lethal gynecological malignancy. Ascites, an accumulation of peritoneal fluid present in one-third of patients at presentation, is linked to poor prognosis. High levels of regulatory T cells (Tregs) in ascites are correlated with tumor progression and reduced survival. Malignant ascites harbors high levels of Tregs expressing the tumor necrosis factor receptor 2 (TNFR2), as well as pro-inflammatory factors such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). IL-6 is also associated with poor prognosis. Herein, we study the effect of IL-6 and TNF present in ascites on the modulation of TNFR2 expression on T cells, and specifically Tregs.

    Methods: Ascites and respective peripheral blood sera were collected from 18 patients with advanced EOC and soluble biomarkers, including IL-6, sTNFR2, IL-10, TGF-β, and TNF, were quantified using multiplexed bead-based immunoassay. Peripheral blood mononuclear cells (PBMC) from healthy donors were incubated with cell-free ascites for 48 h (or media as a negative control). In some experiments, IL-6 or TNF within the ascites were neutralized by using monoclonal antibodies. The phenotype of TNFR2(+) Tregs and TNFR2(-) Tregs were characterized post incubation in ascites. In some experiments, cell sorted Tregs were utilized instead of PBMC.

    Results: High levels of immunosuppressive (sTNFR2, IL-10, and TGF-β) and pro-inflammatory cytokines (IL-6 and TNF) were present in malignant ascites. TNFR2 expression on all T cell subsets was higher in post culture in ascites and highest on CD4(+)CD25(hi)FoxP3(+) Tregs, resulting in an increased TNFR2(+) Treg/effector T cell ratio. Furthermore, TNFR2(+) Tregs conditioned in ascites expressed higher levels of the functional immunosuppressive molecules programmed cell death ligand-1, CTLA-4, and GARP. Functionally, TNFR2(+) Treg frequency was inversely correlated with interferon-gamma (IFN-γ) production by effector T cells, and was uniquely able to suppress TNFR2(+) T effectors. Blockade of IL-6, but not TNF, within ascites decreased TNFR2(+) Treg frequency. Results indicating malignant ascites promotes TNFR2 expression, and increased suppressive Treg activity using PBMC were confirmed using purified Treg subsets.

    Conclusion: IL-6 present in malignant ovarian cancer ascites promotes increased TNFR2 expression and frequency of highly suppressive Tregs.

    Matched MeSH terms: Leukocytes, Mononuclear
  2. Hossen MS, Billah Prince MM, Tanvir EM, Chowdhury MAZ, Rahman MA, Alam F, et al.
    PMID: 29861774 DOI: 10.1155/2018/6254929
    The current study aimed to investigate the ameliorative effects of two types of mushrooms, Ganoderma lucidum (GL) and Auricularia polytricha (AP), against carbofuran- (CF) induced toxicity in rats. Male Wistar rats (n = 42) were divided into six equal groups. The rats in the negative control group received oral administration of CF at 1 mg/kg with the normal diet for 28 days. The treatment groups received oral administration of ethanolic extract of GL or AP at 100 mg/kg followed by coadministration of CF at 1 mg/kg with the normal diet for the same experimental period, respectively. In the CF alone treated group, there were significant decreases in the erythrocytic and thrombocytic indices but increases in the concentrations of the total leukocytes, including the agranulocytes. A significant increase in all of the liver function biomarkers except albumin, in lipid profiles except high-density lipoprotein, and in the kidney function markers occurred in the negative control group compared to the rats of the normal control and positive control groups. The coadministration of mushroom extracts significantly ameliorated the toxic effects of the CF. The GL mushroom extract was more efficacious than that of the AP mushroom, possibly due to the presence of high levels of phenolic compounds and other antioxidants in the GL mushroom.
    Matched MeSH terms: Leukocytes, Mononuclear
  3. Shaari K, Suppaiah V, Wai LK, Stanslas J, Tejo BA, Israf DA, et al.
    Bioorg Med Chem, 2011 Nov 1;19(21):6340-7.
    PMID: 21958738 DOI: 10.1016/j.bmc.2011.09.001
    A bioassay-guided investigation of Melicope ptelefolia Champ ex Benth (Rutaceae) resulted in the identification of an acyphloroglucinol, 2,4,6-trihydroxy-3-geranylacetophenone or tHGA, as the active principle inhibiting soybean 15-LOX. The anti-inflammatory action was also demonstrated on human leukocytes, where the compound showed prominent inhibitory activity against human PBML 5-LOX, with an IC(50) value of 0.42 μM, very close to the effect produced by the commonly used standard, NDGA. The compound concentration-dependently inhibited 5-LOX product synthesis, specifically inhibiting cysteinyl leukotriene LTC(4) with an IC(50) value of 1.80 μM, and showed no cell toxicity effects. The anti-inflammatory action does not seem to proceed via redox or metal chelating mechanism since the compound tested negative for these bioactivities. Further tests on cyclooxygenases indicated that the compound acts via a dual LOX/COX inhibitory mechanism, with greater selectivity for 5-LOX and COX-2 (IC(50) value of 0.40 μM). The molecular features that govern the 5-LOX inhibitory activity was thus explored using in silico docking experiments. The residues Ile 553 and Hie 252 were the most important residues in the interaction, each contributing significant energy values of -13.45 (electrostatic) and -5.40 kcal/mol (electrostatic and Van der Waals), respectively. The hydroxyl group of the phloroglucinol core of the compound forms a 2.56Å hydrogen bond with the side chain of the carboxylate group of Ile 553. Both Ile 553 and Hie 252 are crucial amino acid residues which chelate with the metal ion in the active site. Distorting the geometry of these ligands could be the reason for the inhibition activity shown by tHGA. The molecular simulation studies supported the bioassay results and served as a good model for understanding the way tHGA binds in the active site of human 5-LOX enzyme.
    Matched MeSH terms: Leukocytes, Mononuclear/enzymology
  4. Lau YL, Thiruvengadam G, Lee WW, Fong MY
    Parasitol Res, 2011 Sep;109(3):871-8.
    PMID: 21455621 DOI: 10.1007/s00436-011-2315-6
    In this study, we successfully expressed a chimerical surface antigen 1 and 2 (SAG1/2) of Toxoplasma gondii in Pichia pastoris. Eighty human serum samples, including 60 from confirmed cases of toxoplasmosis, were tested against the purified recombinant SAG1/2 in Western blots. Results of Western blots targeted at Toxoplasma IgG and IgM showed that the recombinant SAG1/2 reacted with all sera from the toxoplasmosis cases but none with the Toxoplasma-negative serum samples. These results showed that the P. pastoris-derived recombinant SAG1/2 was sensitive and specific and suitable for use as antigen for detecting anti-Toxoplasma antibodies. To further investigate the immunological characteristic of the recombinant protein, the recombinant SAG1/2 was injected subcutaneously into BALB/c mice, and their serum was tested against total protein lysate of T. gondii. Mice immunized with the recombinant SAG1/2 reacted specifically with the native SAG1 and SAG2 of T. gondii. Significant proliferation of splenocytes stimulated with tachyzoite total protein lysate was observed in vaccinated BALB/c mice but not in those from negative control mice. Specific production of IFN-γ, the Th1-type cytokines, was also found in stimulated splenocytes from vaccinated mice. These results show that the chimeric protein recombinant SAG1/2 can elicit a Th1-associated protection against T. gondii infections in mice. Finally, vaccinated mice were significantly protected against lethal challenge with live T. gondii RH strain tachyzoites (P 
    Matched MeSH terms: Leukocytes, Mononuclear/immunology
  5. Raihan R, Akbar SMF, Al Mahtab M, Khan MSI, Tabassum S, Tee KK, et al.
    Viral Immunol, 2020 09;33(7):530-534.
    PMID: 32513066 DOI: 10.1089/vim.2019.0198
    Hepatitis B virus (HBV) is a noncytopathic virus and billions of HBV-infected patients live uneventful lives and do not suffer from notable liver damage. However, HBV also causes progressive liver diseases characterized by hepatic inflammation, hepatic fibrosis, and liver cancer in millions of HBV-infected patients. The goal of this study was to evaluate the role of mutant HBV in HBV pathogenesis. In a cohort of 360 chronic HBV-infected patients, mutations at T1762/A1764 of HBV genome were detected in most of the patients with HBV-induced liver cirrhosis and hepatocellular carcinoma. To explore if mutations at T1762/A1764 of HBV genome has any role in progressive liver disease, peripheral blood mononuclear cells (PBMCs) and antigen-presenting dendritic cells (DCs) were isolated from five chronic hepatitis B (CHB) patients with mutations at T1762/A1764 and five comparable patients of CHB without mutations at T1762/A1764. DCs were pulsed with hepatitis B surface antigen (HBsAg). The levels of cytokines produced by PBMCs and DCs as well as nitrite production by DCs were evaluated. Significantly higher levels of interleukin-12, tumor necrosis factor-alpha, interferon-gamma, and transforming growth factor-beta were detected in cultures of PBMCs, DCs, and HBsAg-pulsed DCs from CHB patients with mutations at T1762/A1764 compared with those without mutations (p 
    Matched MeSH terms: Leukocytes, Mononuclear/immunology
  6. Hashim NM, Rahmani M, Ee GC, Sukari MA, Yahayu M, Oktima W, et al.
    J Biomed Biotechnol, 2012;2012:130627.
    PMID: 21960741 DOI: 10.1155/2012/130627
    An investigation of the chemical constituents in Artocarpus obtusus species led to the isolation of three new xanthones, pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2), and pyranocycloartobiloxanthone B (3). The compounds were subjected to antiproliferative assay against human promyelocytic leukemia (HL60), human chronic myeloid leukemia (K562), and human estrogen receptor (ER+) positive breast cancer (MCF7) cell lines. Pyranocycloartobiloxanthone A (1) consistently showed strong cytotoxic activity against the three cell lines compared to the other two with IC(50) values of 0.5, 2.0 and 5.0 μg/mL, respectively. Compound (1) was also observed to exert antiproliferative activity and apoptotic promoter towards HL60 and MCF7 cell lines at respective IC(50) values. The compound (1) was not toxic towards normal cell lines human nontumorigenic breast cell line (MCF10A) and human peripheral blood mononuclear cells (PBMCs) with IC(50) values of more than 30 μg/mL.
    Matched MeSH terms: Leukocytes, Mononuclear/drug effects
  7. Attiq A, Jalil J, Husain K, Mohamad HF, Ahmad A
    J Ethnopharmacol, 2021 Jul 15;275:114120.
    PMID: 33857595 DOI: 10.1016/j.jep.2021.114120
    ETHNOPHARMACOLOGICAL RELEVANCE: Numerous Alphonsea species including Alphonsea elliptica (mempisang) leaves and fruits are indigenously used in inflammatory conditions such as postpartum swelling and rheumatism in southeast Asian countries. In our previous in-vitro findings, A. elliptica methanol extract exhibited platelet-activating factor inhibition, suggesting the presence of phyto-constituents with anti-inflammatory potential.

    AIM OF THE STUDY: However, so far there is no literature available on the anti-inflammatory activity of this species. Henceforth, based on the above background and our previous laboratory findings, we hypothesize that phytoconstituents of A. elliptica could possess anti-inflammatory potential against inflammatory mediators including prostaglandin-E2 (PGE2), cyclooxegenase-2 (COX-2) and cytokines (IL-1β and IL-6).

    MATERIALS AND METHODS: Vacuum and column chromatography techniques were employed for the isolation of phytoconstituents. The structure elucidation was carried out using HRESI-MS, 1H and 13C-NMR analysis and compared with the published literature. For cytotoxicity analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed on peripheral blood mononuclear cells. In-vitro anti-inflammatory activities were evaluated against the levels of PGE2, COX-2, IL-1β and IL-6 in lipopolysaccharide (LPS)-induced human plasma using enzyme-linked immunosorbent assay and radioimmunoassay.

    RESULTS: Unprecedentedly, chromatographic purification of methanolic leaves extract afforded five flavones namely vitexin, isovitexin, orientin, isoorientin, schaftoside with three flavanols; kaempferol, myricetin and rutin from A elliptica. In cell viability analysis, isolates did not present cytotoxicity up to 50 μM. In anti-inflammatory evaluation, orientin and isoorientin exhibited strong (≥70%), while isovitexin and vitexin produced strong to moderate (50-69%) PGE2, COX-2, IL-1β and IL-6 inhibition at 25 and 50 μM. Isoorientin, orientin, isovitexin, and vitexin showed significant (p 

    Matched MeSH terms: Leukocytes, Mononuclear
  8. Ang Pei-Shen, Rajesh Ramasamy, Noor Hamidah Hussin, Cheong Soon-Keng, Seow Heng-Fong, Maha Abdullah
    MyJurnal
    Introduction: The phenotype and genotype of cancer cells portray hallmarks of cancer which may
    have clinical value. Cancer cell lines are ideal models to study and confirm these characteristics. We
    previously established two subtracted cDNA libraries with differentially expressed genes from an
    acute myeloid leukaemia patient with poor prognosis (PP) and good prognosis (GP). Objective: To
    compare gene expression of the leukaemia associated genes with selected biological characteristics
    in leukaemia cell lines and normal controls. Methodology: Expression of 28 PP genes associated
    with early fetal/embryonic development, HOX-related genes, hematopoiesis and aerobic glycolysis/
    hypoxia genes and 36 GP genes involved in oxidative phosphorylation, protein synthesis, chromatin
    remodelling and cell motility were examined in B-lymphoid (BV173, Reh and RS4;11) and myeloid
    (HL-60, K562) leukaemia cell lines after 72h in culture as well as peripheral blood mononuclear cells
    from healthy controls (N=5) using semi-quantitative polymerase chain reaction (PCR) method. Cell
    cycle profiles were analysed on flow cytometry while MTT cytotoxicity assay was used to determine
    drug resistance to epirubicin. Results: Genes expressed significantly higher in B-lymphoid leukaemia
    cell lines compared to healthy controls were mostly of the GP library i.e. oxidative phosphorylation
    (3/10), protein synthesis (4/11), chromatin remodelling (3/3) and actin cytoskeleton genes (1/5). Only
    two genes with significant difference were from the PP library. Cancer associated genes, HSPA9 and
    PSPH (GP library) and BCAP31 (PP library) were significantly higher in the B-lymphoid leukemia cell
    lines. No significant difference was observed between myeloid cell lines and healthy controls. This
    may also be due heterogeneity of cell lines studied. PBMC from healthy controls were not in cell cycle.
    G2/M profiles and growth curves showed B-lymphoid cells just reaching plateau after 72 hour culture
    while myeloid cells were declining. IC50 values from cytotoxicity assay revealed myeloid cell lines had
    an average 13-fold higher drug resistance to epirubicin compared to B-lymphoid cell lines. Only CCL1,
    was expressed at least two-fold higher in myeloid compared to B-lymphoid cell lines. In contrast,
    MTRNR2, EEF1A1, PTMA, HLA-DR, C6orf115, PBX3, ENPP4, SELL, and IL3Ra were expressed
    more than 2-fold higher in B-lymphoid compared to myeloid cell lines studied here. Conclusion: Thus,
    B-lymphoid leukaemia cell lines here exhibited active, proliferating characteristics closer to GP genes.
    Higher expression of several genes in B-lymphoid compared to myeloid leukaemia cell lines may be
    useful markers to study biological differences including drug resistance between lineages.
    Matched MeSH terms: Leukocytes, Mononuclear
  9. Orlikova B, Schumacher M, Juncker T, Yan CC, Inayat-Hussain SH, Hajjouli S, et al.
    Food Chem Toxicol, 2013 Sep;59:572-8.
    PMID: 23845509 DOI: 10.1016/j.fct.2013.06.051
    (R)-(+)-Goniothalamin (GTN), a styryl-lactone isolated from the medicinal plant Goniothalamus macrophyllus, exhibits pharmacological activities including cytotoxic and anti-inflammatory effects. In this study, GTN modulated TNF-α induced NF-κB activation. GTN concentrations up to 20 μM showed low cytotoxic effects in K562 chronic myelogenous leukemia and in Jurkat T cells. Importantly, at these concentrations, no cytotoxicity was observed in healthy peripheral blood mononuclear cells. Our results confirmed that GTN inhibited tumor necrosis factor-α (TNF-α)-induced NF-κB activation in Jurkat and K562 leukemia cells at concentrations as low as 5 μM as shown by reporter gene assays and western blots. Moreover, GTN down-regulated translocation of the p50/p65 heterodimer to the nucleus, prevented binding of NF-κB to its DNA response element and reduced TNF-α-activated interleukin-8 (IL-8) expression. In conclusion, GTN inhibits TNF-α-induced NF-κB activation at non-apoptogenic concentrations in different leukemia cell models without presenting toxicity towards healthy blood cells underlining the anti-leukemic potential of this natural compound.
    Matched MeSH terms: Leukocytes, Mononuclear/cytology; Leukocytes, Mononuclear/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links