Displaying publications 81 - 100 of 269 in total

Abstract:
Sort:
  1. Haq MA, Baral P, Yaragal S, Pradhan B
    Sensors (Basel), 2021 Nov 08;21(21).
    PMID: 34770722 DOI: 10.3390/s21217416
    Studies relating to trends of vegetation, snowfall and temperature in the north-western Himalayan region of India are generally focused on specific areas. Therefore, a proper understanding of regional changes in climate parameters over large time periods is generally absent, which increases the complexity of making appropriate conclusions related to climate change-induced effects in the Himalayan region. This study provides a broad overview of changes in patterns of vegetation, snow covers and temperature in Uttarakhand state of India through bulk processing of remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) data, meteorological records and simulated global climate data. Additionally, regression using machine learning algorithms such as Support Vectors and Long Short-term Memory (LSTM) network is carried out to check the possibility of predicting these environmental variables. Results from 17 years of data show an increasing trend of snow-covered areas during pre-monsoon and decreasing vegetation covers during monsoon since 2001. Solar radiation and cloud cover largely control the lapse rate variations. Mean MODIS-derived land surface temperature (LST) observations are in close agreement with global climate data. Future studies focused on climate trends and environmental parameters in Uttarakhand could fairly rely upon the remotely sensed measurements and simulated climate data for the region.
    Matched MeSH terms: Machine Learning
  2. Cacha LA, Parida S, Dehuri S, Cho SB, Poznanski RR
    J Integr Neurosci, 2016 Dec;15(4):593-606.
    PMID: 28093025 DOI: 10.1142/S0219635216500345
    The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.
    Matched MeSH terms: Machine Learning*
  3. Ramamurthy S, Meng Er H, Nadarajah VD, Pook PCK
    Curr Pharm Teach Learn, 2016 03 21;8(3):364-374.
    PMID: 30070247 DOI: 10.1016/j.cptl.2016.02.017
    OBJECTIVES: To study the impact of open and closed book formative examinations on pharmacy students' learning approach and also to assess their performance and perception about open book (OB) and closed book (CB) systems of examination.

    METHODS: A crossover study was conducted among Year 1 and Year 2 pharmacy students. Students were invited to participate voluntarily for one OB and one CB online formative test in a chemistry module in each year. Evaluation of their learning approach and perception of the OB and CB systems of examination was conducted using Deep Information Processing (DIP) questionnaire and Student Perception questionnaire respectively. The mean performance scores of OB and CB examinations were compared.

    RESULTS: Analysis of DIP scores showed that there was no significant difference (p > 0.05) in the learning approach adopted for the two different examination systems. However, the mean score obtained in the OB examination was significantly higher (p < 0.01) than those obtained in the CB examination. Preference was given by a majority of students for the OB examination, possibly because it was associated with lower anxiety levels, less requirement of memorization, and more problem solving.

    CONCLUSION: There is no difference in deep learning approach of students, whether the format is of the OB or CB type examinations. However, the performance of students was significantly better in OB examination than CB. Hence, using OB examination along with CB examination will be useful for student learning and help them adapt to growing and changing knowledge in pharmacy education and practice.

    Matched MeSH terms: Machine Learning
  4. Hariharan M, Sindhu R, Vijean V, Yazid H, Nadarajaw T, Yaacob S, et al.
    Comput Methods Programs Biomed, 2018 Mar;155:39-51.
    PMID: 29512503 DOI: 10.1016/j.cmpb.2017.11.021
    BACKGROUND AND OBJECTIVE: Infant cry signal carries several levels of information about the reason for crying (hunger, pain, sleepiness and discomfort) or the pathological status (asphyxia, deaf, jaundice, premature condition and autism, etc.) of an infant and therefore suited for early diagnosis. In this work, combination of wavelet packet based features and Improved Binary Dragonfly Optimization based feature selection method was proposed to classify the different types of infant cry signals.

    METHODS: Cry signals from 2 different databases were utilized. First database contains 507 cry samples of normal (N), 340 cry samples of asphyxia (A), 879 cry samples of deaf (D), 350 cry samples of hungry (H) and 192 cry samples of pain (P). Second database contains 513 cry samples of jaundice (J), 531 samples of premature (Prem) and 45 samples of normal (N). Wavelet packet transform based energy and non-linear entropies (496 features), Linear Predictive Coding (LPC) based cepstral features (56 features), Mel-frequency Cepstral Coefficients (MFCCs) were extracted (16 features). The combined feature set consists of 568 features. To overcome the curse of dimensionality issue, improved binary dragonfly optimization algorithm (IBDFO) was proposed to select the most salient attributes or features. Finally, Extreme Learning Machine (ELM) kernel classifier was used to classify the different types of infant cry signals using all the features and highly informative features as well.

    RESULTS: Several experiments of two-class and multi-class classification of cry signals were conducted. In binary or two-class experiments, maximum accuracy of 90.18% for H Vs P, 100% for A Vs N, 100% for D Vs N and 97.61% J Vs Prem was achieved using the features selected (only 204 features out of 568) by IBDFO. For the classification of multiple cry signals (multi-class problem), the selected features could differentiate between three classes (N, A & D) with the accuracy of 100% and seven classes with the accuracy of 97.62%.

    CONCLUSION: The experimental results indicated that the proposed combination of feature extraction and selection method offers suitable classification accuracy and may be employed to detect the subtle changes in the cry signals.

    Matched MeSH terms: Machine Learning
  5. Sayeed S, Ahmad AF, Peng TC
    F1000Res, 2022;11:17.
    PMID: 38269303 DOI: 10.12688/f1000research.73613.1
    The Internet of Things (IoT) is leading the physical and digital world of technology to converge. Real-time and massive scale connections produce a large amount of versatile data, where Big Data comes into the picture. Big Data refers to large, diverse sets of information with dimensions that go beyond the capabilities of widely used database management systems, or standard data processing software tools to manage within a given limit. Almost every big dataset is dirty and may contain missing data, mistyping, inaccuracies, and many more issues that impact Big Data analytics performances. One of the biggest challenges in Big Data analytics is to discover and repair dirty data; failure to do this can lead to inaccurate analytics results and unpredictable conclusions. We experimented with different missing value imputation techniques and compared machine learning (ML) model performances with different imputation methods. We propose a hybrid model for missing value imputation combining ML and sample-based statistical techniques. Furthermore, we continued with the best missing value inputted dataset, chosen based on ML model performance for feature engineering and hyperparameter tuning. We used k-means clustering and principal component analysis. Accuracy, the evaluated outcome, improved dramatically and proved that the XGBoost model gives very high accuracy at around 0.125 root mean squared logarithmic error (RMSLE). To overcome overfitting, we used K-fold cross-validation.
    Matched MeSH terms: Machine Learning
  6. Prime SS, Cirillo N, Cheong SC, Prime MS, Parkinson EK
    Cancer Lett, 2021 10 10;518:102-114.
    PMID: 34139286 DOI: 10.1016/j.canlet.2021.05.025
    This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers.
    Matched MeSH terms: Machine Learning
  7. AlThuwaynee OF, Kim SW, Najemaden MA, Aydda A, Balogun AL, Fayyadh MM, et al.
    Environ Sci Pollut Res Int, 2021 Aug;28(32):43544-43566.
    PMID: 33834339 DOI: 10.1007/s11356-021-13255-4
    This study investigates uncertainty in machine learning that can occur when there is significant variance in the prediction importance level of the independent variables, especially when the ROC fails to reflect the unbalanced effect of prediction variables. A variable drop-off loop function, based on the concept of early termination for reduction of model capacity, regularization, and generalization control, was tested. A susceptibility index for airborne particulate matter of less than 10 μm diameter (PM10) was modeled using monthly maximum values and spectral bands and indices from Landsat 8 imagery, and Open Street Maps were used to prepare a range of independent variables. Probability and classification index maps were prepared using extreme-gradient boosting (XGBOOST) and random forest (RF) algorithms. These were assessed against utility criteria such as a confusion matrix of overall accuracy, quantity of variables, processing delay, degree of overfitting, importance distribution, and area under the receiver operating characteristic curve (ROC).
    Matched MeSH terms: Machine Learning*
  8. Sahu R, Dash SR, Cacha LA, Poznanski RR, Parida S
    J Integr Neurosci, 2020 Mar 30;19(1):1-9.
    PMID: 32259881 DOI: 10.31083/j.jin.2020.01.24
    Electroencephalography is the recording of brain electrical activities that can be used to diagnose brain seizure disorders. By identifying brain activity patterns and their correspondence between symptoms and diseases, it is possible to give an accurate diagnosis and appropriate drug therapy to patients. This work aims to categorize electroencephalography signals on different channels' recordings for classifying and predicting epileptic seizures. The collection of the electroencephalography recordings contained in the dataset attributes 179 information and 11,500 instances. Instances are of five categories, where one is the symptoms of epilepsy seizure. We have used traditional, ensemble methods and deep machine learning techniques highlighting their performance for the epilepsy seizure detection task. One dimensional convolutional neural network, ensemble machine learning techniques like bagging, boosting (AdaBoost, gradient boosting, and XG boosting), and stacking is implemented. Traditional machine learning techniques such as decision tree, random forest, extra tree, ridge classifier, logistic regression, K-Nearest Neighbor, Naive Bayes (gaussian), and Kernel Support Vector Machine (polynomial, gaussian) are used for classifying and predicting epilepsy seizure. Before using ensemble and traditional techniques, we have preprocessed the data set using the Karl Pearson coefficient of correlation to eliminate irrelevant attributes. Further accuracy of classification and prediction of the classifiers are manipulated using k-fold cross-validation methods and represent the Receiver Operating Characteristic Area Under the Curve for each classifier. After sorting and comparing algorithms, we have found the convolutional neural network and extra tree bagging classifiers to have better performance than all other ensemble and traditional classifiers.
    Matched MeSH terms: Machine Learning*
  9. Jasmine Pemeena Priyadarsini M, Kotecha K, Rajini GK, Hariharan K, Utkarsh Raj K, Bhargav Ram K, et al.
    J Healthc Eng, 2023;2023:3563696.
    PMID: 36776955 DOI: 10.1155/2023/3563696
    The primary objective of this proposed framework work is to detect and classify various lung diseases such as pneumonia, tuberculosis, and lung cancer from standard X-ray images and Computerized Tomography (CT) scan images with the help of volume datasets. We implemented three deep learning models namely Sequential, Functional & Transfer models and trained them on open-source training datasets. To augment the patient's treatment, deep learning techniques are promising and successful domains that extend the machine learning domain where CNNs are trained to extract features and offers great potential from datasets of images in biomedical application. Our primary aim is to validate our models as a new direction to address the problem on the datasets and then to compare their performance with other existing models. Our models were able to reach higher levels of accuracy for possible solutions and provide effectiveness to humankind for faster detection of diseases and serve as best performing models. The conventional networks have poor performance for tilted, rotated, and other abnormal orientation and have poor learning framework. The results demonstrated that the proposed framework with a sequential model outperforms other existing methods in terms of an F1 score of 98.55%, accuracy of 98.43%, recall of 96.33% for pneumonia and for tuberculosis F1 score of 97.99%, accuracy of 99.4%, and recall of 98.88%. In addition, the functional model for cancer outperformed with an accuracy of 99.9% and specificity of 99.89% and paves way to less number of trained parameters, leading to less computational overhead and less expensive than existing pretrained models. In our work, we implemented a state-of-the art CNN with various models to classify lung diseases accurately.
    Matched MeSH terms: Machine Learning
  10. Zhang Y, Feng Y, Ren Z, Zuo R, Zhang T, Li Y, et al.
    Bioresour Technol, 2023 Apr;374:128746.
    PMID: 36813050 DOI: 10.1016/j.biortech.2023.128746
    The ideal conditions for anaerobic digestion experiments with biochar addition are challenging to thoroughly study due to different experimental purposes. Therefore, three tree-based machine learning models were developed to depict the intricate connection between biochar properties and anaerobic digestion. For the methane yield and maximum methane production rate, the gradient boosting decision tree produced R2 values of 0.84 and 0.69, respectively. According to feature analysis, digestion time and particle size had a substantial impact on the methane yield and production rate, respectively. When particle sizes were in the range of 0.3-0.5 mm and the specific surface area was approximately 290 m2/g, corresponding to a range of O content (>31%) and biochar addition (>20 g/L), the maximum promotion of methane yield and maximum methane production rate were attained. Therefore, this study presents new insights into the effects of biochar on anaerobic digestion through tree-based machine learning.
    Matched MeSH terms: Machine Learning
  11. Saeed, Sana, Ong, Hong Choon
    MyJurnal
    Support vector machine (SVM) is one of the most popular algorithms in machine learning
    and data mining. However, its reduced efficiency is usually observed for imbalanced
    datasets. To improve the performance of SVM for binary imbalanced datasets, a new scheme
    based on oversampling and the hybrid algorithm were introduced. Besides the use of a
    single kernel function, SVM was applied with multiple kernel learning (MKL). A weighted
    linear combination was defined based on the linear kernel function, radial basis function
    (RBF kernel), and sigmoid kernel function for MKL. By generating the synthetic samples
    in the minority class, searching the best choices of the SVM parameters and identifying
    the weights of MKL by minimizing the objective function, the improved performance of
    SVM was observed. To prove the strength of the proposed scheme, an experimental study,
    including noisy borderline and real imbalanced datasets was conducted. SVM was applied
    with linear kernel function, RBF kernel, sigmoid kernel function and MKL on all datasets.
    The performance of SVM with all kernel functions was evaluated by using sensitivity,
    G Mean, and F measure. A significantly improved performance of SVM with MKL was
    observed by applying the proposed scheme.
    Matched MeSH terms: Machine Learning
  12. Ng GYL, Tan SC, Ong CS
    PLoS One, 2023;18(10):e0292961.
    PMID: 37856458 DOI: 10.1371/journal.pone.0292961
    Cell type identification is one of the fundamental tasks in single-cell RNA sequencing (scRNA-seq) studies. It is a key step to facilitate downstream interpretations such as differential expression, trajectory inference, etc. scRNA-seq data contains technical variations that could affect the interpretation of the cell types. Therefore, gene selection, also known as feature selection in data science, plays an important role in selecting informative genes for scRNA-seq cell type identification. Generally speaking, feature selection methods are categorized into filter-, wrapper-, and embedded-based approaches. From the existing literature, methods from filter- and embedded-based approaches are widely applied in scRNA-seq gene selection tasks. The wrapper-based method that gives promising results in other fields has yet been extensively utilized for selecting gene features from scRNA-seq data; in addition, most of the existing wrapper methods used in this field are clustering instead of classification-based. With a large number of annotated data available today, this study applied a classification-based approach as an alternative to the clustering-based wrapper method. In our work, a quantum-inspired differential evolution (QDE) wrapped with a classification method was introduced to select a subset of genes from twelve well-known scRNA-seq transcriptomic datasets to identify cell types. In particular, the QDE was combined with different machine-learning (ML) classifiers namely logistic regression, decision tree, support vector machine (SVM) with linear and radial basis function kernels, as well as extreme learning machine. The linear SVM wrapped with QDE, namely QDE-SVM, was chosen by referring to the feature selection results from the experiment. QDE-SVM showed a superior cell type classification performance among QDE wrapping with other ML classifiers as well as the recent wrapper methods (i.e., FSCAM, SSD-LAHC, MA-HS, and BSF). QDE-SVM achieved an average accuracy of 0.9559, while the other wrapper methods achieved average accuracies in the range of 0.8292 to 0.8872.
    Matched MeSH terms: Machine Learning
  13. Ling L, Aldoghachi AF, Chong ZX, Ho WY, Yeap SK, Chin RJ, et al.
    Int J Mol Sci, 2022 Dec 06;23(23).
    PMID: 36499713 DOI: 10.3390/ijms232315382
    Detecting breast cancer (BC) at the initial stages of progression has always been regarded as a lifesaving intervention. With modern technology, extensive studies have unraveled the complexity of BC, but the current standard practice of early breast cancer screening and clinical management of cancer progression is still heavily dependent on tissue biopsies, which are invasive and limited in capturing definitive cancer signatures for more comprehensive applications to improve outcomes in BC care and treatments. In recent years, reviews and studies have shown that liquid biopsies in the form of blood, containing free circulating and exosomal microRNAs (miRNAs), have become increasingly evident as a potential minimally invasive alternative to tissue biopsy or as a complement to biomarkers in assessing and classifying BC. As such, in this review, the potential of miRNAs as the key BC signatures in liquid biopsy are addressed, including the role of artificial intelligence (AI) and machine learning platforms (ML), in capitalizing on the big data of miRNA for a more comprehensive assessment of the cancer, leading to practical clinical utility in BC management.
    Matched MeSH terms: Machine Learning
  14. El-Badawy IM, Singh OP, Omar Z
    Technol Health Care, 2021;29(1):59-72.
    PMID: 32716337 DOI: 10.3233/THC-202198
    BACKGROUND: The quantitative features of a capnogram signal are important clinical metrics in assessing pulmonary function. However, these features should be quantified from the regular (artefact-free) segments of the capnogram waveform.

    OBJECTIVE: This paper presents a machine learning-based approach for the automatic classification of regular and irregular capnogram segments.

    METHODS: Herein, we proposed four time- and two frequency-domain features experimented with the support vector machine classifier through ten-fold cross-validation. MATLAB simulation was conducted on 100 regular and 100 irregular 15 s capnogram segments. Analysis of variance was performed to investigate the significance of the proposed features. Pearson's correlation was utilized to select the relatively most substantial ones, namely variance and the area under normalized magnitude spectrum. Classification performance, using these features, was evaluated against two feature sets in which either time- or frequency-domain features only were employed.

    RESULTS: Results showed a classification accuracy of 86.5%, which outperformed the other cases by an average of 5.5%. The achieved specificity, sensitivity, and precision were 84%, 89% and 86.51%, respectively. The average execution time for feature extraction and classification per segment is only 36 ms.

    CONCLUSION: The proposed approach can be integrated with capnography devices for real-time capnogram-based respiratory assessment. However, further research is recommended to enhance the classification performance.

    Matched MeSH terms: Machine Learning
  15. Aburas MM, Ahamad MSS, Omar NQ
    Environ Monit Assess, 2019 Mar 05;191(4):205.
    PMID: 30834982 DOI: 10.1007/s10661-019-7330-6
    Spatio-temporal land-use change modeling, simulation, and prediction have become one of the critical issues in the last three decades due to uncertainty, structure, flexibility, accuracy, the ability for improvement, and the capability for integration of available models. Therefore, many types of models such as dynamic, statistical, and machine learning (ML) models have been used in the geographic information system (GIS) environment to fulfill the high-performance requirements of land-use modeling. This paper provides a literature review on models for modeling, simulating, and predicting land-use change to determine the best approach that can realistically simulate land-use changes. Therefore, the general characteristics of conventional and ML models for land-use change are described, and the different techniques used in the design of these models are classified. The strengths and weaknesses of the various dynamic, statistical, and ML models are determined according to the analysis and discussion of the characteristics of these models. The results of the review confirm that ML models are the most powerful models for simulating land-use change because they can include all driving forces of land-use change in the simulation process and simulate linear and non-linear phenomena, which dynamic models and statistical models are unable to do. However, ML models also have limitations. For instance, some ML models are complex, the simulation rules cannot be changed, and it is difficult to understand how ML models work in a system. However, this can be solved via the use of programming languages such as Python, which in turn improve the simulation capabilities of the ML models.
    Matched MeSH terms: Machine Learning
  16. Abu A, Leow LK, Ramli R, Omar H
    BMC Bioinformatics, 2016 Dec 22;17(Suppl 19):505.
    PMID: 28155645 DOI: 10.1186/s12859-016-1362-5
    BACKGROUND: Taxonomists frequently identify specimen from various populations based on the morphological characteristics and molecular data. This study looks into another invasive process in identification of house shrew (Suncus murinus) using image analysis and machine learning approaches. Thus, an automated identification system is developed to assist and simplify this task. In this study, seven descriptors namely area, convex area, major axis length, minor axis length, perimeter, equivalent diameter and extent which are based on the shape are used as features to represent digital image of skull that consists of dorsal, lateral and jaw views for each specimen. An Artificial Neural Network (ANN) is used as classifier to classify the skulls of S. murinus based on region (northern and southern populations of Peninsular Malaysia) and sex (adult male and female). Thus, specimen classification using Training data set and identification using Testing data set were performed through two stages of ANNs.

    RESULTS: At present, the classifier used has achieved an accuracy of 100% based on skulls' views. Classification and identification to regions and sexes have also attained 72.5%, 87.5% and 80.0% of accuracy for dorsal, lateral, and jaw views, respectively. This results show that the shape characteristic features used are substantial because they can differentiate the specimens based on regions and sexes up to the accuracy of 80% and above. Finally, an application was developed and can be used for the scientific community.

    CONCLUSIONS: This automated system demonstrates the practicability of using computer-assisted systems in providing interesting alternative approach for quick and easy identification of unknown species.

    Matched MeSH terms: Machine Learning*
  17. Awan MJ, Mohd Rahim MS, Salim N, Rehman A, Nobanee H
    J Healthc Eng, 2022;2022:2550120.
    PMID: 35444781 DOI: 10.1155/2022/2550120
    In recent times, knee joint pains have become severe enough to make daily tasks difficult. Knee osteoarthritis is a type of arthritis and a leading cause of disability worldwide. The middle of the knee contains a vital portion, the anterior cruciate ligament (ACL). It is necessary to diagnose the ACL ruptured tears early to avoid surgery. The study aimed to perform a comparative analysis of machine learning models to identify the condition of three ACL tears. In contrast to previous studies, this study also considers imbalanced data distributions as machine learning techniques struggle to deal with this problem. The paper applied and analyzed four machine learning classification models, namely, random forest (RF), categorical boosting (Cat Boost), light gradient boosting machines (LGBM), and highly randomized classifier (ETC) on the balanced, structured dataset of ACL. After oversampling a hyperparameter adjustment, the above four models have achieved an average accuracy of 95.72%, 94.98%, 94.98%, and 98.26%. There are 2070 observations and eight features in the collection of three diagnosis ACL classes after oversampling. The area under curve value was approximately 0.998, respectively. Experiments were performed using twelve machine learning algorithms with imbalanced and balanced datasets. However, the accuracy of the imbalanced dataset has remained under 76% for all twelve models. After oversampling, the proposed model may contribute to the investigation of ACL tears on magnetic resonance imaging and other knee ligaments efficiently and automatically without involving radiologists.
    Matched MeSH terms: Machine Learning
  18. Qaisar SM, Mihoub A, Krichen M, Nisar H
    Sensors (Basel), 2021 Feb 22;21(4).
    PMID: 33671583 DOI: 10.3390/s21041511
    The usage of wearable gadgets is growing in the cloud-based health monitoring systems. The signal compression, computational and power efficiencies play an imperative part in this scenario. In this context, we propose an efficient method for the diagnosis of cardiovascular diseases based on electrocardiogram (ECG) signals. The method combines multirate processing, wavelet decomposition and frequency content-based subband coefficient selection and machine learning techniques. Multirate processing and features selection is used to reduce the amount of information processed thus reducing the computational complexity of the proposed system relative to the equivalent fixed-rate solutions. Frequency content-dependent subband coefficient selection enhances the compression gain and reduces the transmission activity and computational cost of the post cloud-based classification. We have used MIT-BIH dataset for our experiments. To avoid overfitting and biasness, the performance of considered classifiers is studied by using five-fold cross validation (5CV) and a novel proposed partial blind protocol. The designed method achieves more than 12-fold computational gain while assuring an appropriate signal reconstruction. The compression gain is 13 times compared to fixed-rate counterparts and the highest classification accuracies are 97.06% and 92.08% for the 5CV and partial blind cases, respectively. Results suggest the feasibility of detecting cardiac arrhythmias using the proposed approach.
    Matched MeSH terms: Machine Learning
  19. Ke B, Nguyen H, Bui XN, Bui HB, Choi Y, Zhou J, et al.
    Chemosphere, 2021 Aug;276:130204.
    PMID: 34088091 DOI: 10.1016/j.chemosphere.2021.130204
    Heavy metals in water and wastewater are taken into account as one of the most hazardous environmental issues that significantly impact human health. The use of biochar systems with different materials helped significantly remove heavy metals in the water, especially wastewater treatment systems. Nevertheless, heavy metal's sorption efficiency on the biochar systems is highly dependent on the biochar characteristics, metal sources, and environmental conditions. Therefore, this study implicates the feasibility of biochar systems in the heavy metal sorption in water/wastewater and the use of artificial intelligence (AI) models in investigating efficiency sorption of heavy metal on biochar. Accordingly, this work investigated and proposed 20 artificial intelligent models for forecasting the sorption efficiency of heavy metal onto biochar based on five machine learning algorithms and bagging technique (BA). Accordingly, support vector machine (SVM), random forest (RF), artificial neural network (ANN), M5Tree, and Gaussian process (GP) algorithms were used as the key algorithms for the aim of this study. Subsequently, the individual models were bagged with each other to generate new ensemble models. Finally, 20 intelligent models were developed and evaluated, including SVM, RF, M5Tree, GP, ANN, BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN. Of those, the hybrid models (i.e., BA-SVM, BA-RF, BA-M5Tree, BA-GP, BA-ANN, SVM-RF, SVM-M5Tree, SVM-GP, SVM-ANN, RF-M5Tree, RF-GP, RF-ANN, M5Tree-GP, M5Tree-ANN, GP-ANN) are introduced as the novelty of this study for estimating the heavy metal's sorption efficiency on the biochar systems. Also, the biochar characteristics, metal sources, and environmental conditions were comprehensively assessed and used, and they are considered as a novelty of the study as well. For this aim, a dataset of sorption efficiency of heavy metal was collected and processed with 353 experimental tests. Various performance indexes were applied to evaluate the models, such as RMSE, R2, MAE, color intensity, Taylor diagram, box and whiskers plots. This study's findings revealed that AI models could predict heavy metal's sorption efficiency onto biochar with high reliability, and the efficiency of the ensemble models is higher than those of individual models. The results also reported that the SVM-ANN ensemble model is the most superior model among 20 developed models. The predictive model proposed that heavy metal's efficiency sorption on biochar can be accurately forecasted and early warning for the water pollution by heavy metal.
    Matched MeSH terms: Machine Learning
  20. Nhu VH, Mohammadi A, Shahabi H, Ahmad BB, Al-Ansari N, Shirzadi A, et al.
    PMID: 32650595 DOI: 10.3390/ijerph17144933
    We used AdaBoost (AB), alternating decision tree (ADTree), and their combination as an ensemble model (AB-ADTree) to spatially predict landslides in the Cameron Highlands, Malaysia. The models were trained with a database of 152 landslides compiled using Synthetic Aperture Radar Interferometry, Google Earth images, and field surveys, and 17 conditioning factors (slope, aspect, elevation, distance to road, distance to river, proximity to fault, road density, river density, normalized difference vegetation index, rainfall, land cover, lithology, soil types, curvature, profile curvature, stream power index, and topographic wetness index). We carried out the validation process using the area under the receiver operating characteristic curve (AUC) and several parametric and non-parametric performance metrics, including positive predictive value, negative predictive value, sensitivity, specificity, accuracy, root mean square error, and the Friedman and Wilcoxon sign rank tests. The AB model (AUC = 0.96) performed better than the ensemble AB-ADTree model (AUC = 0.94) and successfully outperformed the ADTree model (AUC = 0.59) in predicting landslide susceptibility. Our findings provide insights into the development of more efficient and accurate landslide predictive models that can be used by decision makers and land-use managers to mitigate landslide hazards.
    Matched MeSH terms: Machine Learning*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links