Displaying publications 81 - 100 of 190 in total

Abstract:
Sort:
  1. Githiori JB, Höglund J, Waller PJ, Leyden Baker R
    Vet Parasitol, 2003 Dec 30;118(3-4):215-26.
    PMID: 14729169
    Parasitic nematodes are among the most common and economically important infectious diseases of grazing livestock, especially in small ruminants in the tropics and subtropics in Kenya the control of gastrointestinal nematode infections in sheep and goats is usually made with synthetic anthelmintics but substantial levels of anthelmintic resistance have been recorded. A number of medicinal plants, that may provide possible alternatives, and are used by pastoralists and smallholder farmers in Kenya as deworming agents for their livestock and equines, namely Aframomum sanguineum, Dodonea angustifolia, Hildebrandtia sepalosa, Myrsine africana, Rapanea melanophloeos from Kenya, and Azadirachta indica from Kenya and Malaysia, together with the chemicals embelin and santonin that occur in some of these plants, were evaluated against Heligmosomoides polygyrus in mice. Commercial anthelmintics, namely ivermectin, pyrantel and piperazine, were also investigated, both to validate the mouse model system and to assess efficacy of these drugs against H. polygyrus. Pyrantel and ivermectin were highly effective in reducing the numbers of H. polygyrus worms as well as eggs in faeces of the mice, but piperazine had a lower activity. Application of santonin and M. africana significantly reduced the number of total worm counts (TWC) but not faecal egg counts (FEC). The use of embelin, R. melanophloeos and A. indica reduced FEC but not TWC. In all cases, however, reductions were well below the a priori level of 70% required for biological significance. A. sanguineum, D. angustifolia and H. sepalosa had no effect on either TWC or FEC. In conclusion, none of the plant preparations had any biologically significant anthelmintic effect in this monogastric host-parasite model system.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  2. Siew YY, Yew HC, Neo SY, Seow SV, Lew SM, Lim SW, et al.
    J Ethnopharmacol, 2019 May 10;235:75-87.
    PMID: 30599223 DOI: 10.1016/j.jep.2018.12.040
    ETHNOPHARMACOLOGICAL RELEVANCE: The extensive biodiversity of plants in Southeast Asia and inadequate research hitherto warrant a continued investigation into medicinal plants. On the basis of a careful review of fresh medicinal plant usage to treat cancer from previous ethnobotanical interviews in Singapore and from the traditional uses of the indigenous plants, fresh leaves of seven locally grown medicinal plant species were evaluated for anti-proliferative activity.

    AIM OF THE STUDY: To evaluate the anti-proliferative activity of local medicinal plant species Clausena lansium Skeels, Clinacanthus nutans (Burm. f.) Lindau, Leea indica (Burm. f.) Merr., Pereskia bleo (Kunth) DC., Strobilanthes crispus (L.) Blume, Vernonia amygdalina Delile and Vitex trifolia L.

    MATERIALS AND METHOD: Fresh, healthy and mature leaves of the seven medicinal plants were harvested from various locations in Singapore and Malaysia for Soxhlet, ultrasonication and maceration extractions in three different solvents (water, ethanol and methanol). Cell proliferation assay using water soluble tetrazolium salt (WST-1) assay was performed on twelve human cancer cell lines derived from breast (MDA-MB-231, T47D), cervical (C33A), colon (HCT116), leukemia (U937), liver (HepG2, SNU-182, SNU-449), ovarian (OVCAR-5, PA-1, SK-OV-3) and uterine (MES-SA/DX5) cancer.

    RESULTS: A total of 37 fresh leaf extracts from seven medicinal plants were evaluated for their anti-tumour activities in twelve human cancer cell lines. Of these, the extracts of C. lansium, L. indica, P. bleo, S. crispus, V. amygdalina and V. trifolia exhibited promising anti-proliferative activity against multiple cancer cell lines. Further investigation of selected promising leaf extracts indicated that maceration methanolic extract of L. indica was most effective overall against majority of the cancer cell lines, with best IC50 values of 31.5 ± 11.4 µg/mL, 37.5 ± 0.7 µg/mL and 43.0 ± 6.2 µg/mL in cervical C33A, liver SNU-449, and ovarian PA-1 cancer cell lines, respectively.

    CONCLUSION: The results of this study provide new scientific evidence for the traditional use of local medicinal plant species C. lansium, L . indica, P. bleo, S. crispus, V. amygdalina and V. trifolia in cancer treatment. These results highlight the importance of the upkeep of these indigenous plants in modern society and their relevance as resources for drug discovery.

    Matched MeSH terms: Plants, Medicinal/chemistry*
  3. Dwivedi MK, Shukla R, Sharma NK, Manhas A, Srivastava K, Kumar N, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114076.
    PMID: 33789139 DOI: 10.1016/j.jep.2021.114076
    ETHANOPHARMACOLOGICAL RELEVANCE: Limited drugs, rise in drug resistance against frontline anti-malarial drugs, non-availability of efficacious vaccines and high cost of drug development hinders malaria intervention programs. Search for safe, effective and affordable plant based anti-malarial agents, thus becomes crucial and vital in the current scenario. The Vitex negundo L. is medicinal plant possessing a variety of pharmaceutically important compounds. The plant is used traditionally worldwide for the treatment of malaria including India and Malaysia by the indigenous tribes. In vitro studies have reported the anti-malarial use of the plant in traditional medicinal systems.

    AIM OF THE STUDY: The aim of the current study is to evaluate the traditionally used medicinal plants for in vitro anti-malarial activity against human malaria parasite Plasmodium falciparum and profiling secondary metabolite using spectroscopic and chromatographic methods. Chemical profiling of active secondary metabolites in the extracts was undertaken using LC-MS.

    MATERIALS AND METHODS: Based on the ethno-botanical data V. negundo L. was selected for in vitro anti-malarial activity against P. falciparum chloroquine-sensitive (3D7) and multidrug resistant (K1) strains using SYBR Green-I based fluorescence assay. Cytotoxicity of extracts was evaluated in VERO cell line using the MTT assay. Haemolysis assay was performed using human red blood cells. Secondary metabolites profiling was undertaken using chromatographic and spectroscopic analysis. Liquid chromatography analysis was performed using a C18, 150 X 2.1, 2.6 μm column with gradient mobile phase Solvent A: 95% (H2O: ACN), Solvent B: Acetonitrile, Solvent C: Methanol, Solvent D: 5 mM NH4 in 95:5 (H2O: ACN) at a constant flow rate of 0.250 ml/min. The LC-MS spectra were acquired in both positive and negative ion modes with electrospray ionization (ESI) source.

    RESULTS: The anti-malarial active extract of V. negundo L. leaf exhibited potent anti-malarial activity with IC50 values of 7.21 μg/ml and 7.43 μg/ml against 3D7 and K1 strains, respectively with no evidence of significant cytotoxicity against mammalian cell line (VERO) and no toxicity as observed in haemolysis assay. The HPLC-LC-MS analysis of the extract led to identification of 73 compounds. We report for the first time the presence of Sabinene hydrate acetate, 5-Hydroxyoxindole, 2(3,4-dimethoxyphenyl)-6, 7-dimethoxychromen-4-one, Cyclotetracosa-1, 13-diene and 5, 7-Dimethoxyflavanone in the anti-malarial active extract of V. negundo L. leaf. Agnuside, Behenic acid and Globulol are some of the novel compounds with no reports of anti-malarial activity so far and require further evaluation in pure form for the development of potent anti-malarial compounds.

    CONCLUSIONS: The result report and scientifically validate the traditional use of V. negundo L. for the treatment of malaria providing new avenues for anti-malarial drug development. Several novel and unknown compounds were identified that need to be further characterized for anti-malarial potential.

    Matched MeSH terms: Plants, Medicinal/chemistry
  4. Muhammad H, Gomes-Carneiro MR, Poça KS, De-Oliveira AC, Afzan A, Sulaiman SA, et al.
    J Ethnopharmacol, 2011 Jan 27;133(2):647-53.
    PMID: 21044879 DOI: 10.1016/j.jep.2010.10.055
    Orthosiphon stamineus, Benth, also known as Misai Kucing in Malaysia and Java tea in Indonesia, is traditionally used in Southeastern Asia to treat kidney dysfunctions, diabetes, gout and several other illnesses. Recent studies of Orthosiphon stamineus pharmacological profile have revealed antioxidant properties and other potentially useful biological activities thereby lending some scientific support to its use in folk medicine. So far the genotoxicity of Orthosiphon stamineus extracts has not been evaluated. In this study the genotoxic potential of Orthosiphon stamineus aqueous extract was investigated by the Salmonella/microsome mutation assay and the mouse bone marrow micronucleus test.
    Matched MeSH terms: Plants, Medicinal/chemistry
  5. Al Nasr IS
    Trop Biomed, 2020 Mar 01;37(1):15-23.
    PMID: 33612714
    The organisms of the genus Leishmania are flagellated protozoan parasites and are the causative agents of leishmaniasis. This disease is a major health problem, especially in tropical countries. Currently, cutaneous leishmaniasis is treated by chemotherapy using pentavalent antimonials, but these drugs have serious organo-toxicity, drug resistance on several occasions, and low efficiency in controlling the infection. The present work is carried out to evaluate the in vitro antileishmanial activity of methanolic extracts and phytochemical fractions of two plants ethnobotanically used against leishmaniasis and skin infection, Calotropis procera and Rhazya stricta leaves against Leishmania major promastigote and amastigote stages and cytotoxicity against the Vero cell line. The leaves of C. procera and R. stricta were extracted with methanol and fractionated by petroleum ether, chloroform, ethyl acetate, n-butanol, and water. The methanolic extracts of the leaves of C. procera and R. stricta exhibited antileishmanial activity against L. major promastigotes with IC50 values of 66.8 and 42.4 µg mL-1, respectively. While their CC50 2.3 and 298 µg mL-1 and their SI 0.03 and 7.03 respectively. However, the fractionations of the methanolic extract of C. procera leaves revealed antiparasitic activity against both L. major promastigote and amastigote stages in vitro, which significantly increased with polarity with the exception of n-butanol. Hence the best activity was revealed by the water fraction (IC50 of 26.3 and 29.0 µg mL-1) for the two stages. In conclusion, further phytochemical investigation should be performed for the C. procera water extract in terms of antileishmanial active ingredient isolation that may enhance the possibility of avoiding toxic substances and overcome the low SI (1.1 and 1.01).
    Matched MeSH terms: Plants, Medicinal/chemistry
  6. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L
    PMID: 22238476
    Natural products from medicinal plants, either as pure compounds or as standardized extracts, provide unlimited opportunities for new drug leads because of the unmatched availability of chemical diversity. Due to an increasing demand for chemical diversity in screening programs, seeking therapeutic drugs from natural products, interest particularly in edible plants has grown throughout the world. Botanicals and herbal preparations for medicinal usage contain various types of bioactive compounds. The focus of this paper is on the analytical methodologies, which include the extraction, isolation and characterization of active ingredients in botanicals and herbal preparations. The common problems and key challenges in the extraction, isolation and characterization of active ingredients in botanicals and herbal preparations are discussed. As extraction is the most important step in the analysis of constituents present in botanicals and herbal preparations, the strengths and weaknesses of different extraction techniques are discussed. The analysis of bioactive compounds present in the plant extracts involving the applications of common phytochemical screening assays, chromatographic techniques such as HPLC and, TLC as well as non-chromatographic techniques such as immunoassay and Fourier Transform Infra Red (FTIR) are discussed.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  7. Kam TS, Sim KM
    J Nat Prod, 2002 May;65(5):669-72.
    PMID: 12027738
    Five new indole alkaloids of the ibogan type (1-5), in addition to 12 other known iboga alkaloids, were obtained from the leaf and stem-bark extract of the Malayan species Tabernaemontana corymbosa, viz., 19(S)-hydroxyibogamine (1), 19-epi-isovoacristine (2), isovoacryptine (3), 3R/S-ethoxyheyneanine (4), and 3R/S-ethoxy-19-epi-heyneanine (5). The structures were determined using NMR and MS analysis and comparison with known related compounds.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  8. Xu YJ, Wu XH, Tan BK, Lai YH, Vittal JJ, Imiyabir Z, et al.
    J Nat Prod, 2000 Apr;63(4):473-6.
    PMID: 10785416
    Leaf extracts of the Malaysian plant Aglaia laxiflora provided two cytotoxic compounds, a new rocaglaol rhamnoside (1), a known rocaglaol (2), new (but inactive) flavonol-cinnamaminopyrrolidine adducts (3-6), and their probable biosynthetic precursors (7 and trimethoxyflavonol). All structures were elucidated primarily by 2D NMR spectroscopy. The structure and stereochemistry of aglaxiflorin A (3) were confirmed by single-crystal X-ray crystallography.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  9. Fu X, Sévenet T, Remy F, Païs M, Hamid A, Hadi A, et al.
    J Nat Prod, 1993 Jul;56(7):1153-63.
    PMID: 8377019
    Four complex flavanones, kurziflavolactones A [2], B [3], C [4], and D [5] and a complex chalcone 6 with an unprecedented carbon side chain on the flavanone or chalcone A ring have been isolated from a Malaysian plant, Cryptocarya kurzii (Lauraceae). Their structures were determined by extensive spectroscopic analysis, especially 2D nmr experiments. Compounds 3 and 6 showed slight cytotoxicity against KB cells, with IC50 values of 4 and 15 micrograms/ml, respectively. A biosynthetic pathway for the formation of these compounds is suggested.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  10. Xu J, Harrison LJ, Vittal JJ, Xu YJ, Goh SH
    J Nat Prod, 2000 Aug;63(8):1062-5.
    PMID: 10978198
    Leaf extracts of Callicarpa pentandra provided four new clerodane-type diterpenoids (1-4), of which 1, 2, and 4 have ring-A-contracted structures. Their structures and stereochemistry were established by spectral data interpretation, and for 3 also by single-crystal X-ray diffraction.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  11. Lim WJ, Yap AT, Mangudi M, Hu CY, Yeo CY, Eyo ZW, et al.
    Drug Test Anal, 2017 Mar;9(3):491-499.
    PMID: 27367276 DOI: 10.1002/dta.2034
    Matched MeSH terms: Plants, Medicinal/chemistry
  12. Yap HY, Fung SY, Ng ST, Tan CS, Tan NH
    Int J Med Sci, 2015;12(1):23-31.
    PMID: 25552915 DOI: 10.7150/ijms.10019
    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.
    Matched MeSH terms: Plants, Medicinal/chemistry
  13. Mohd-Hairul AR, Sade AB, Yiap BC, Raha AR
    Genet. Mol. Res., 2011;10(4):2757-64.
    PMID: 22095601 DOI: 10.4238/2011.November.8.1
    DNA extraction was carried out on 32 medicinal plant samples available in Malaysia using the TriOmic(TM) extraction kit. Amounts of 0.1 g flowers or young leaves were ground with liquid nitrogen, lysed at 65°C in RY1(plus) buffer and followed by RNAse treatment. Then, RY2 buffer was added to the samples and mixed completely by vortexing before removal of cell debris by centrifugation. Supernatants were transferred to fresh microcentrifuge tubes and 0.1 volume RY3 buffer was added to each of the transferred supernatant. The mixtures were applied to spin columns followed by a centrifugation step to remove buffers and other residues. Washing step was carried out twice by applying 70% ethanol to the spin columns. Genomic DNA of the samples was recovered by applying 50 μL TE buffer to the membrane of each spin column, followed by a centrifugation step at room temperature. A modification of the TriOmic(TM) extraction procedure was carried out by adding chloroform:isoamyl alcohol (24:1) steps in the extraction procedure. The genomic DNA extracted from most of the 32 samples showed an increase of total yield when chloroform:isoamyl alcohol (24:1) steps were applied in the TriOmicTM extraction procedure. This preliminary study is very important for molecular studies of medicinal plants available in Malaysia since the DNA extraction can be completed in a shorter period of time (within 1 h) compared to manual extraction, which entails applying phenol, chloroform and ethanol precipitation, and requires 1-2 days to complete.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  14. Аrbаin D, Saputri GA, Syahputra GS, Widiyastuti Y, Susanti D, Taher M
    J Ethnopharmacol, 2021 Oct 05;278:114316.
    PMID: 34116190 DOI: 10.1016/j.jep.2021.114316
    ETHNOPHARMACOLOGICAL RELEVANCE: The genus Pterocarpus (Fabaceae) has about 46 species that are distributed over Asia, especially Indonesia, Africa, and several countries in America. Particularly, P. indicus and P. santalinus have been recorded as ancestor recipe in the old Indonesian book (Cabe puyang warisan nenek moyang). These plants have found application in traditional medicine, such as in the treatment of inflammatory diseases, gonorrhoea, infection, coughs, mouth ulcers, boils, diarrhoea, as well as in the management of pain (as an analgesic).

    AIM OF THE REVIEW: The present review aimed to comprehensively summarise the current researches on the traditional and scientific applications of the genus Pterocarpus with regard to the phytochemical content, in vivo and in vitro bioactivities, as well as clinical evidence that may be useful for future drug development.

    MATERIALS AND METHODS: Information about the Pterocarpus genus were obtained from local classic herbal literature and electronic databases, such as PubMed, Scopus, and Google Scholar. The scientific name of the species and its synonyms were checked with the information of The Plant List. Additionally, clinical trial results were obtained from the Cochrane library.

    RESULTS: Several phytochemical constituents of the plants, e.g., flavonoids, isoflavonoids, terpenoids, phenolic acids, and fatty acids have been reported. There are about 11 species of Pterocarpus that have been scientifically studied for their biological activities, including anti-inflammatory, anti-microbial, analgesic, and anti-hyperglycemic. Of which, the anti-hyperglycemic activity of the extracts and phytochemicals of P. indicus and P. marsupium is particularly remarkable, allowing them to be further studied under clinical trial.

    CONCLUSION: The present review has provided an insight into the traditional applications of the plants and some of them have been validated by scientific evidence, particularly their applications as anti-inflammatory and anti-microbial agents. In addition, the genus has demonstrated notable anti-diabetic activity in various clinical trials.

    Matched MeSH terms: Plants, Medicinal/chemistry
  15. Gnanaraj C, Shah MD, Haque AT, Makki JS, Iqbal M
    PMID: 27279582 DOI: 10.1615/JEnvironPatholToxicolOncol.2016013802
    Synedrella nodiflora is a medicinal plant that is used by the natives of Sabah, Malaysia to treat rheumatism and several other ailments. This study aims to evaluate the ability of the crude aqueous extract of S. nodiflora leaves to protect against carbon tetrachloride (CCl4)-mediated hepatic injury in rats. S. nodiflora aqueous extract was orally administered to adult Sprague Dawley rats once daily for 14 days (150 and 300 mg/kg body weight [b.w.]) before CCl4 oral treatment (1.0 mL/kg b.w.) on the 13th and 14th days. Serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), hepatic antioxidant enzymes, and malondialdehyde (MDA) levels were estimated. Immunohistochemistry was performed for oxidative stress markers (4-hydroxynonenal [HNE], 8-hydroxy-deoxyguanosine [8-OHdG]) and proinflammatory markers (tumor necrosis factor-α, interleukin-6, prostaglandin E2). Biochemical, immunohistochemical, histological, and ultrastructural findings were in agreement to support the hepatoprotective effect of S. nodiflora against CCl4-mediated oxidative hepatic damage. Hepatoprotective effects of S. nodiflora might be attributable to the presence of phenolic antioxidants and their free radical scavenging property.
    Matched MeSH terms: Plants, Medicinal/chemistry
  16. Muhammad H, Maslan SF, Md Saad WM, Thani NSIA, Ibnu Rasid EN, Mahomoodally MF, et al.
    Food Chem Toxicol, 2019 Sep;131:110538.
    PMID: 31152790 DOI: 10.1016/j.fct.2019.05.046
    Dioscorea hispida var. daemona (Roxb) Prain & Burkill (DH), also known a tropical yam or intoxicating yam is a bitter wild tuber which is consumed as a staple food and traditionally used as a remedy in Malaysia. However, DH is also notorious for its intoxicating effects and there is currently a dearth of study of possible effects of DH on liver and placental tissues and hence its safe consumption warrants in-depth investigation. This study was therefore designed to investigate into the effect of DH on liver and placenta of pregnant rat via histopathological examination. Thirty pregnant Sprague-Dawley rats were randomly divided into five groups consisting of a control (distilled water) and four DH aqueous extract groups (250, 500, 1000 and 2000 mg/kg body weight). The extracts were administered via oral gavage daily throughout the study and animals were sacrificed on day 21. Paraffin-embedded, hematoxylin and eosin stained sections of placenta and liver were examined. Significant changes (p 
    Matched MeSH terms: Plants, Medicinal/chemistry*
  17. Prabhu S, Vijayakumar S, Manogar P, Maniam GP, Govindan N
    Biomed Pharmacother, 2017 Aug;92:528-535.
    PMID: 28575810 DOI: 10.1016/j.biopha.2017.05.077
    Peroxisome proliferator-activated receptor gamma (PPARγ), a type II nuclear receptor present in adipose tissue, colon and macrophages. It reduces the hyperglycemia associated metabolic syndromes. Particularly, type II diabetes-related cardiovascular system risk in human beings. The fatty acid storage and glucose metabolism are regulated by PPARγ activation in human body. According to recent reports commercially available PPARγ activating drugs have been causing severe side effects. At the same time, natural products have been proved to be a promising area of drug discovery. Recently, many studies have been attempted to screen and identify a potential drug candidate to activate PPARγ. Hence, in this study we have selected some of the bio-active molecules from traditional medicinal plants. Molecular docking studies have been carried out against the target, PPARγ. We Results suggested that Punigluconin has a efficient docking score and it is found to have good binding affinities than other ligands. Hence, we concluded that Punigluconin is a better drug candidate for activation of PPARγ gene expression. Further studies are necessary to confirm their efficacy and possibly it can develop as a potential drug in future.
    Matched MeSH terms: Plants, Medicinal/chemistry
  18. Mohammed A, Chiruvella KK, Rao YK, Geethangili M, Raghavan SC, Ghanta RG
    PLoS One, 2015;10(10):e0141154.
    PMID: 26488879 DOI: 10.1371/journal.pone.0141154
    Andrographis lineata is an herbal medicinal plant used in traditional medicine as a substitute for Andrographis paniculata. Here, using mature leaf explants of A. lineata we demonstrate for the first time the callus induction established on MS medium containing 1.0 mg l-1 IAA. Dried callus was subjected to solvent extraction with acetone. Further the acetone residue was separated by silica gel column chromatography, crystallized and characterized on the basis of nuclear magnetic resonance (proton and c13) and liquid chromatographic mass spectroscopy. This analysis revealed the occurrence of two known flavones namely, 7-O-methylwogonin (MW) and Echioidinin (ED). Furthermore, these compounds were tested for their cytotoxicity against leukemic cell line, CEM. We identify that ED and MW induced cytotoxicity in a time- and concentration-dependent manner. Further increase in the LDH release upon treatment with ED and MW further confirmed our cytotoxicity results against leukemic cell line. Strikingly, MW was more potent than ED when compared by trypan blue and MTT assays. Our results recapitulate the utility of callus cultures for the production of plant specific bioactive secondary metabolites instead of using wild plants. Together, our in vitro studies provide new insights of A. lineata callus cultures serving as a source for cancer chemotherapeutic agents.
    Matched MeSH terms: Plants, Medicinal/chemistry*
  19. Kavitha N, Chen Y, Kanwar JR, Sasidharan S
    Biomed Pharmacother, 2017 Mar;87:609-620.
    PMID: 28081471 DOI: 10.1016/j.biopha.2016.12.127
    Phaleria macrocarpa (Boerl.) is a well-known medicinal plant and have been extensively used as traditional medicine for ages in treatment of various diseases. The purpose of this study was to determine the in situ cytotoxicity effect P. macrocarpa fruit ethyl acetate fraction (PMEAF) by using various conventional and modern microscopy techniques. The cytotoxicity of PMEAF treated MDA-MB-231 cells was determined through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay and CyQuant Cell Proliferation Assay after 24h of treatment. Both results were indicated that the PMEAF is a potential anticancer agent with the average IC50 values of 18.10μg/mL by inhibiting the MDA-MB-231 cell proliferation. Various conventional and modern microscopy techniques such as light microscopy, holographic microscopy, transmission (TEM) and scanning (SEM) electron microscope were used for the observation of morphological changes in PMEAF treated MDA-MB-231cells for 24h. The characteristic of apoptotic cell death includes cell shrinkage, membrane blebs, chromatin condensation and the formation of apoptotic bodies were observed. PMEAF might be the best candidate for developing more potent anticancer drugs or chemo-preventive supplements.
    Matched MeSH terms: Plants, Medicinal/chemistry
  20. Sit NW, Chan YS, Lai SC, Lim LN, Looi GT, Tay PL, et al.
    J Mycol Med, 2018 Sep;28(3):561-567.
    PMID: 30060991 DOI: 10.1016/j.mycmed.2018.07.001
    OBJECTIVES: This study was conducted to evaluate the antidermatophytic activity of 48 extracts obtained from medicinal plants (Cibotium barometz, Melastoma malabathricum, Meuhlenbeckia platyclada, Rhapis excelsa, Syzygium myrtifolium, Vernonia amygdalina) and marine algae (Caulerpa sertularioides, Kappaphycus alvarezii) against Trichophyton rubrum and Trichophyton interdigitale (ATCC reference strains), and the cytotoxicity using African monkey kidney epithelial (Vero) cells. Active plant extracts were screened for the presence of phytochemicals and tested against clinical isolates of Trichophyton tonsurans.

    METHODS: Six different extracts (hexane, chloroform, ethyl acetate, ethanol, methanol and water) were obtained from each plant or algae sample using sequential solvent extraction. The antidermatophytic activity for the extracts was assessed using a colourimetric broth microdilution method. The viability of Vero cells was measured by Neutral Red uptake assay.

    RESULTS: All the extracts (except the water extracts of V. amygdalina, C. sertularioides and K. alvarezii) showed antidermatophytic activity against Trichophyton spp. The minimum fungicidal concentration (MFC) ranges for the plant extracts against T. rubrum and T. interdigitale are 0.0025-2.50 and 0.005-2.50mg/mL, respectively. The algae extracts exhibited lower potency against both species, showing MFC ranges of 0.08-2.50 and 0.31-2.50mg/mL, respectively. The ethanol and methanol extracts from the leaves of R. excelsa, and the methanol and water extracts from the leaves of S. myrtifolium were highly active (MFC<0.1mg/mL) and with high selectivity indices (SI>2.8) against reference strains of T. rubrum and T. interdigitale, and most of the clinical isolates of T. tonsurans. Phytochemical analysis indicates the presence of alkaloids, anthraquinones, flavonoids, saponins, tannins, phenolics and triterpenoids in the extracts.

    CONCLUSIONS: The medicinal plant extracts exhibited stronger antidermatophytic activity compared to the algae extracts. The leaves of R. excelsa and S. myrtifolium are potential sources of new antidermatophytic agents against Trichophyton spp.

    Matched MeSH terms: Plants, Medicinal/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links