METHODS: In a placebo-controlled, double-blind, RCT, a total of 120 women aged between 19-40 with serum ferritin < 20 μg/l and fulfilled the eligibility criteria will be randomized into consuming either vitamin D3-fortified fruit juices containing 4000 IU (100 mcg) (vitamin D) or placebo-fruit juices (placebo) daily for eight weeks. At every 4-week interval, 10 ml fasting blood sample, information on dietary habit and anthropometric measurement will be collected. A mixed model repeated-measures analysis of variance will be performed to determine the effect of the intervention and the interaction with time points for all iron and vitamin D status blood biomarkers.
DISCUSSION: Vitamin D supplementation in food fortification as a novel iron absorption enhancer might be a future and relevant alternative management of iron deficiency as opposed to the oral iron therapy that has poor adherence.
TRIAL REGISTRATION: Clinicaltrials.gov: registration number NCT04618289, registration date October 28, 2020, protocol ID JKEUPM-2020-033.
OBJECTIVES: To determine the effect of vitamin D supplementation given to infants, or lactating mothers, on vitamin D deficiency, bone density and growth in healthy term breastfed infants.
SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to 29 May 2020 supplemented by searches of clinical trials databases, conference proceedings, and citations.
SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs in breastfeeding mother-infant pairs comparing vitamin D supplementation given to infants or lactating mothers compared to placebo or no intervention, or sunlight, or that compare vitamin D supplementation of infants to supplementation of mothers.
DATA COLLECTION AND ANALYSIS: Two review authors assessed trial eligibility and risk of bias and independently extracted data. We used the GRADE approach to assess the certainty of evidence.
MAIN RESULTS: We included 19 studies with 2837 mother-infant pairs assessing vitamin D given to infants (nine studies), to lactating mothers (eight studies), and to infants versus lactating mothers (six studies). No studies compared vitamin D given to infants versus periods of infant sun exposure. Vitamin D supplementation given to infants: vitamin D at 400 IU/day may increase 25-OH vitamin D levels (MD 22.63 nmol/L, 95% CI 17.05 to 28.21; participants = 334; studies = 6; low-certainty) and may reduce the incidence of vitamin D insufficiency (25-OH vitamin D < 50 nmol/L) (RR 0.57, 95% CI 0.41 to 0.80; participants = 274; studies = 4; low-certainty). However, there was insufficient evidence to determine if vitamin D given to the infant reduces the risk of vitamin D deficiency (25-OH vitamin D < 30 nmol/L) up till six months of age (RR 0.41, 95% CI 0.16 to 1.05; participants = 122; studies = 2), affects bone mineral content (BMC), or the incidence of biochemical or radiological rickets (all very-low certainty). We are uncertain about adverse effects including hypercalcaemia. There were no studies of higher doses of infant vitamin D (> 400 IU/day) compared to placebo. Vitamin D supplementation given to lactating mothers: vitamin D supplementation given to lactating mothers may increase infant 25-OH vitamin D levels (MD 24.60 nmol/L, 95% CI 21.59 to 27.60; participants = 597; studies = 7; low-certainty), may reduce the incidences of vitamin D insufficiency (RR 0.47, 95% CI 0.39 to 0.57; participants = 512; studies = 5; low-certainty), vitamin D deficiency (RR 0.15, 95% CI 0.09 to 0.24; participants = 512; studies = 5; low-certainty) and biochemical rickets (RR 0.06, 95% CI 0.01 to 0.44; participants = 229; studies = 2; low-certainty). The two studies that reported biochemical rickets used maternal dosages of oral D3 60,000 IU/day for 10 days and oral D3 60,000 IU postpartum and at 6, 10, and 14 weeks. However, infant BMC was not reported and there was insufficient evidence to determine if maternal supplementation has an effect on radiological rickets (RR 0.76, 95% CI 0.18 to 3.31; participants = 536; studies = 3; very low-certainty). All studies of maternal supplementation enrolled populations at high risk of vitamin D deficiency. We are uncertain of the effects of maternal supplementation on infant growth and adverse effects including hypercalcaemia. Vitamin D supplementation given to infants compared with supplementation given to lactating mothers: infant vitamin D supplementation compared to lactating mother supplementation may increase infant 25-OH vitamin D levels (MD 14.35 nmol/L, 95% CI 9.64 to 19.06; participants = 269; studies = 4; low-certainty). Infant vitamin D supplementation may reduce the incidence of vitamin D insufficiency (RR 0.61, 95% CI 0.40 to 0.94; participants = 334; studies = 4) and may reduce vitamin D deficiency (RR 0.35, 95% CI 0.17 to 0.72; participants = 334; studies = 4) but the evidence is very uncertain. Infant BMC and radiological rickets were not reported and there was insufficient evidence to determine if maternal supplementation has an effect on infant biochemical rickets. All studies enrolled patient populations at high risk of vitamin D deficiency. Studies compared an infant dose of vitamin D 400 IU/day with varying maternal vitamin D doses from 400 IU/day to > 4000 IU/day. We are uncertain about adverse effects including hypercalcaemia.
AUTHORS' CONCLUSIONS: For breastfed infants, vitamin D supplementation 400 IU/day for up to six months increases 25-OH vitamin D levels and reduces vitamin D insufficiency, but there was insufficient evidence to assess its effect on vitamin D deficiency and bone health. For higher-risk infants who are breastfeeding, maternal vitamin D supplementation reduces vitamin D insufficiency and vitamin D deficiency, but there was insufficient evidence to determine an effect on bone health. In populations at higher risk of vitamin D deficiency, vitamin D supplementation of infants led to greater increases in infant 25-OH vitamin D levels, reductions in vitamin D insufficiency and vitamin D deficiency compared to supplementation of lactating mothers. However, the evidence is very uncertain for markers of bone health. Maternal higher dose supplementation (≥ 4000 IU/day) produced similar infant 25-OH vitamin D levels as infant supplementation of 400 IU/day. The certainty of evidence was graded as low to very low for all outcomes.
Aim: This research aimed to optimize electrospray-operating parameters in producing alginate-RJ microbeads.
Materials and Methods: Optimization of alginate-RJ microbeads electrospray parameters was carried out using 24 factorial design with three center points (19 runs). The studied parameters were flow rate, high voltage, nozzle size, and tip-to-collector distance, whereas the responses were particle size, particle size distribution, and sphericity factor. The responses of each run were analyzed using Design-Expert software.
Results: Nozzle size is a significant parameter that influences the particle size. Flow rate is a significant parameter influencing the sphericity factor.
Conclusion: Screening of the electrospray-operating parameters paves the way in determining the significant parameters and their design space to produce consistent alginate-RJ microbeads.