Displaying publications 981 - 1000 of 1781 in total

Abstract:
Sort:
  1. Domnic G, Jeng-Yeou Chear N, Abdul Rahman SF, Ramanathan S, Lo KW, Singh D, et al.
    J Ethnopharmacol, 2021 Oct 28;279:114391.
    PMID: 34224811 DOI: 10.1016/j.jep.2021.114391
    ETHNOPHARMACOLOGICAL RELEVANCE: Mitragyna speciosa (Korth.) or kratom is a medicinal plant indigenous to Southeast Asia. The leaf of M. speciosa is used as a remedy in pain management including cancer related pain, in a similar way as opioids and cannabis. Despite its well-known analgesic effect, there is a scarce of information on the cancer-suppressing potential of M. speciosa and its active constituents.

    AIM OF THE STUDY: To assess the potential applicability of M. speciosa alkaloids (mitragynine, speciociliatine or paynantheine) as chemosensitizers for cisplatin in Nasopharyngeal carcinoma (NPC) cell lines.

    MATERIALS AND METHODS: The cytotoxic effects of the extracts, fractions and compounds were determined by conducting in vitro cytotoxicity assays. Based on the cytotoxic screening, the alkaloid extract of M. speciosa exhibited potent inhibitory effect on the NPC cell line NPC/HK1, and therefore, was chosen for further fractionation and purification. NPC cell lines NPC/HK1 and C666-1 were treated with combinations of cisplatin and M. speciosa alkaloids combinations in 2D monolayer culture. The effect of cisplatin and mitragynine as a combination on cell migration was tested using in vitro wound healing and spheroid invasion assays.

    RESULTS: In our bioassay guided isolation, both methanolic and alkaloid extracts showed mild to moderate cytotoxic effect against the NPC/HK1 cell line. Both NPC cell lines (NPC/HK1 and C666-1) were insensitive to single agent and combination treatments of the M. speciosa alkaloids. However, mitragynine and speciociliatine sensitized the NPC/HK1 and C666-1 cells to cisplatin at ~4- and >5-fold, respectively in 2D monolayer culture. The combination of mitragynine and cisplatin also significantly inhibited cell migration of the NPC cell lines. Similarly, the combination also of mitragynine and cisplatin inhibited growth and invasion of NPC/HK1 spheroids in a dose-dependent manner. In addition, the spheroids did not rapidly develop resistance to the drug combinations at higher concentrations over 10 days.

    CONCLUSION: Our data indicate that both mitragynine and speciociliatine could be potential chemosensitizers for cisplatin. Further elucidation focusing on the drug mechanistic studies and in vivo studies are necessary to support delineate the therapeutic applicability of M. speciosa alkaloids for NPC treatment.

    Matched MeSH terms: Cell Line, Tumor
  2. Zhang Y, Yu J, Tan L, Wang X, Li R, Kim DY
    J Microbiol, 2021 Nov;59(11):1044-1055.
    PMID: 34570337 DOI: 10.1007/s12275-021-1361-8
    Getah virus (GETV), which was first isolated in Malaysia in 1955, and Sagiyama virus (SAGV), isolated in Japan in 1956, are members of the genus Alphavirus in the family Togaviridae. It is a consensus view that SAGV is a variant of GETV. In the present study, we determined the complete sequences of the prototype GETV MM2021 and SAGV M6-Mag132 genomic RNA extracted from plaque-purified viruses. The MM2021 genome was 11,692 nucleotides (nt) in length in the absence of 3' poly(A) tail, and the length of M6-Mag132 genome was 11,698 nt. Through sequence alignment of MM2021 and M6-Mag132, we located all the amino acid differences between these two strains, which were scattered in all the encoded proteins. Subsequently, we validated the close evolutionary relationship between GETV and SAGV by constructing phylogenetic trees based on either complete genomes or structural genomes. We eventually analyzed the growth kinetics of GETV and SAGV as well as other representative alphaviruses in various mammalian and insect cell lines. It was shown that human-oriented cell lines such as HEK-293T and Hela cells were relatively resistant to GETV and SAGV infection due to absence of proviral factors or species-specific barrier. On the other hand, both GETV and SAGV replicated efficiently in non-human cell lines. Our results provide essential genetic information for future epidemiological surveillance on Alphaviruses and lay the foundation for developing effective interventions against GETV and SAGV.
    Matched MeSH terms: Cell Line
  3. Ng KW, Salhimi SM, Majid AM, Chan KL
    Planta Med, 2010 Jun;76(9):935-40.
    PMID: 20112179 DOI: 10.1055/s-0029-1240813
    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation.
    Matched MeSH terms: Cell Line, Tumor
  4. Ramli MM, Rosman AS, Mazlan NS, Ahmad MF, Halin DSC, Mohamed R, et al.
    Sci Rep, 2021 10 19;11(1):20702.
    PMID: 34667216 DOI: 10.1038/s41598-021-00171-3
    Breast cancer is one of the most reported cancers that can lead to death. Despite the advances in diagnosis and treatment procedures, the possibility of cancer recurrences is still high in many cases. With that in consideration, researchers from all over the world are showing interest in the unique features of Graphene oxide (GO), such as its excellent and versatile physicochemical properties, to explore further its potential and benefits towards breast cancer cell treatment. In this study, the cell viability and electrical response of GO, in terms of resistivity and impedance towards the breast cancer cells (MCF7) and normal breast cells (MCF10a), were investigated by varying the pH and concentration of GO. Firstly, the numbers of MCF7 and MCF10a were measured after being treated with GO for 24 and 48 h. Next, the electrical responses of these cells were evaluated by using interdigitated gold electrodes (IDEs) that are connected to an LCR meter. Based on the results obtained, as the pH of GO increased from pH 5 to pH 7, the number of viable MCF7 cells decreased while the number of viable MCF10a slightly increased after the incubation period of 48 h. Similarly, the MCF7 also experienced higher cytotoxicity effects when treated with GO concentrations of more than 25 µg/mL. The findings from the electrical characterization of the cells observed that the number of viable cells has corresponded to the impedance of the cells. The electrical impedance of MCF7 decreased as the number of highly insulating viable cell membranes decreased. But in contrast, the electrical impedance of MCF10a increased as the number of highly insulating viable cell membranes increased. Hence, it can be deduced that the GO with higher pH and concentration influence the MCF7 cancer cell line and MCF10a normal breast cell.
    Matched MeSH terms: Cell Line, Tumor
  5. Yunus U, Zulfiqar MA, Ajmal M, Bhatti MH, Chaudhry GE, Muhammad TST, et al.
    Biomed Mater, 2020 09 26;15(6):065004.
    PMID: 32442994 DOI: 10.1088/1748-605X/ab95e1
    Gemcitabine (GEM) is used to treat various cancers such as breast, pancreatic, non-small lung, ovarian, bladder, and cervical cancers. GEM, however, has the problem of non-selectivity. Water-soluble, fluorescent, and mono-dispersed carbon dots (CDs) were fabricated by ultrasonication of sucrose. The CDs were further conjugated with GEM through amide linkage. The physical and morphological properties of these carbon dot-gemcitabine (CD-GEM) conjugates were determined using different analytical techniques. In vitro cytotoxicity and apoptosis studies of CD-GEM conjugates were evaluated by various bioactivity assays on human cell lines, MCF-7 (human breast adenocarcinoma), and HeLa (cervical cancer) cell lines. The results of kinetic studies have shown a maximum drug loading efficacy of 17.0 mg of GEM per 50.0 mg of CDs. The CDs were found biocompatible, and the CD-GEM conjugates exhibited excellent bioactivity and exerted potent cytotoxicity against tumor cells with an IC50 value of 19.50 μg ml-1 in HeLa cells, which is lower than the IC50 value of pure GEM (∼20.10 μg ml-1). In vitro studies on CD-GEM conjugates demonstrated the potential to replace the conventional administration of GEM. CD-GEM conjugates are more stable, have a higher aqueous solubility, and are more cytotoxic as compared to GEM alone. The CD-GEM conjugates show reduced side effects in the normal cells along with excellent cellular uptake. Hence, CD-GEM conjugates are more selective toward cancerous cell lines as compared to non-cancerous cells. Also, the CD-GEM conjugates successfully induced early and late apoptosis in cancer cell lines and might be effective and safe to use for in vivo applications.
    Matched MeSH terms: Cell Line, Tumor
  6. Zafar MN, Butt AM, Chaudhry GE, Perveen F, Nazar MF, Masood S, et al.
    J Inorg Biochem, 2021 11;224:111590.
    PMID: 34507110 DOI: 10.1016/j.jinorgbio.2021.111590
    The bidentate N-(1-Alkylpyridin-4(1H)-ylidene)amide (PYA) pro-ligands [H2LBn][Cl]2 (2), and [H2LMe][TfO]2 (3) were prepared by simple alkylation reactions of the known compound, N,N-di(pyridin-4-yl)oxalamide (H2L, 1). The Pd(II) complexes, [Pd(LBn)2][Cl]2 (4), [Pd(LMe)2][Cl][TfO] (5), Pd(LBn)Cl2 (6) and Pd(LMe)Cl2 (7) were synthesized through reactions between these pro-ligands and suitable Pd(II) substrates in the presence of base. The molecular structures of 3 and 6 were obtained by single crystal X-ray structure determinations. Studies of the experimental and computational DNA binding interactions of the compounds 1-7 revealed that overall 4 and 6 have the largest values for the binding parameters Kb and ΔGbo. The results showed a good correlation with the steric and electronic parameters obtained by quantitative structure activity relationship (QSAR) studies. In-vitro cytotoxicity studies against four different cell lines showed that the human breast cancer cell lines MCF-7, T47D and cervical cancer cell line HeLa had either higher or similar sensitivities towards 4, 6 and 2, respectively, compared to cisplatin. In general, the cytotoxicity of the compounds, represented by IC50 values, decreased in the order 4 > 6 > 2 > 5 > 3 > 1 > 7 in cancer cell lines. Apoptosis contributed significantly to the cytotoxic effects of these anticancer agents as evaluated by apoptosis studies.
    Matched MeSH terms: Cell Line, Tumor
  7. Shah K, Chan LW, Wong TW
    Drug Deliv, 2017 Nov;24(1):1631-1647.
    PMID: 29063794 DOI: 10.1080/10717544.2017.1384298
    The study investigated aerosolization, pulmonary inhalation, intracellular trafficking potential in macrophages and pharmacokinetics profiles of rifampicin-oleic acid first-generation nanoemulsion and its respective chitosan- and chitosan-folate conjugate-decorated second and third-generation nanoemulsions, delivered via nebulization technique. The nanoemulsions were prepared by conjugate synthesis and spontaneous emulsification techniques. They were subjected to physicochemical, drug release, aerosolization, inhalation, cell culture and pharmacokinetics analysis. The nanoemulsions had average droplet sizes of 40-60 nm, with narrow polydispersity indices. They exhibited desirable pH, surface tension, viscosity, refractive index, density and viscosity attributes for pulmonary rifampicin administration. All nanoemulsions demonstrated more than 95% aerosol output and inhalation efficiency greater than 75%. The aerosol output, aerosolized and inhaled fine particle fractions were primarily governed by the size and surface tension of nanoemulsions in an inverse relationship. The nanoemulsions were found to be safe with third-generation nanoemulsion exhibiting higher cell internalization potential, reduced plasma drug concentration, and higher lung drug content.
    Matched MeSH terms: Cell Line
  8. Saw WS, Ujihara M, Chong WY, Voon SH, Imae T, Kiew LV, et al.
    Colloids Surf B Biointerfaces, 2018 Jan 01;161:365-374.
    PMID: 29101882 DOI: 10.1016/j.colsurfb.2017.10.064
    Physiochemical changes, including size, are known to affect gold nanoparticle cellular internalization and treatment efficacy. Here, we report the effect of four sizes of cystine/citric acid-coated confeito-like gold nanoparticles (confeito-AuNPs) (30, 60, 80 and 100nm) on cellular uptake, intracellular localization and photothermal anticancer treatment efficiency in MDA-MB231 breast cancer cells. Cellular uptake is size dependent with the smallest size of confeito-AuNPs (30nm) having the highest cellular internalization via clathrin- and caveolae-mediated endocytosis. However, the other three sizes (60, 80 and 100nm) utilize clathrin-mediated endocytosis for cellular uptake. The intracellular localization of confeito-AuNPs is related to their endocytosis mechanism, where all sizes of confeito-AuNPs were localized highly in the lysosome and mitochondria, while confeito-AuNPs (30nm) gave the highest localization in the endoplasmic reticulum. Similarly, a size-dependent trend was also observed in in vitro photothermal treatment experiments, with the smallest confeito-AuNPs (30nm) giving the highest cell killing rate, whereas the largest size of confeito-AuNPs (100nm) displayed the lowest photothermal efficacy. Its desirable physicochemical characteristics, biocompatible nature and better photothermal efficacy will form the basis for further development of multifunctional confeito-AuNP-based nanotherapeutic applications.
    Matched MeSH terms: Cell Line, Tumor
  9. Mat Isa N, Abdul Mutalib NE, Alitheen NB, Song AA, Rahim RA
    J. Mol. Microbiol. Biotechnol., 2017;27(4):246-251.
    PMID: 29055951 DOI: 10.1159/000481257
    This study demonstrates that cell wall treatment of Lactococcus lactis harbouring the internal ribosome entry site-incorporated lactococcal bicistronic vector pNZ:VIG mediated the delivery of genes into an eukaryotic cell line, DF1 cells, through bactofection. Bactofection analysis showed that the pNZ:VIG plasmid in L. lactis can be transferred into DF1 cells and that both the VP2 and gfp genes cloned in the plasmid can be transcribed and translated. The protein band relative to the Mr of VP2 protein (49 kDa) was successfully detected via Western blot analysis, while green fluorescence was successfully detected using a fluorescence microscope. The intensity of the bands detected increased for samples treated with both 1.5% (w/v) glycine and 10 μg/mL of lysozyme when compared to L. lactis treated with glycine alone and without treatment. Cell wall treatment of L. lactis with a combination of both glycine and lysozyme was not only shown to mediate plasmid transfer to DF1 cells, but also to increase the plasmid transfer efficiency.
    Matched MeSH terms: Cell Line
  10. Salama M, Elhussiny M, Magdy A, Omran AG, Alsayed A, Ashry R, et al.
    Metab Brain Dis, 2018 04;33(2):583-587.
    PMID: 29080085 DOI: 10.1007/s11011-017-0137-7
    Tauopathy comprises a group of disorders caused by abnormal aggregates of tau protein. In these disorders phosphorylated tau protein tends to accumulate inside neuronal cells (soma) instead of the normal axonal distribution of tau. A suggested therapeutic strategy for tauopathy is to induce autophagy to increase the ability to get rid of the unwanted tau aggregates. One of the key controllers of autophagy is mTOR. Blocking mTOR leads to stimulation of autophagy. Recently, unravelling molecular structure of mTOR showed that it is formed of two subunits: mTORC1/C2. So, blocking both subunits of mTOR seems more attractive as it will explore all abilities of mTOR molecule. In the present study, we report using pp242 which is a dual mTORC1/C2 blocker in cellular model of tauopathy using LUHMES cell line. Adding fenazaquin to LUHMES cells induced tauopathy in the form of increased phospho tau aggregates. Moreover, fenazaquin treated cells showed the characteristic somatic redistribution of tau. PP242 use in the present tauopathy model reversed the pathology significantly without observable cellular toxicity for the used dosage of 1000 nM. The present study suggests the possible use of pp242 as a dual mTOR blocker to treat tauopathy.
    Matched MeSH terms: Cell Line, Tumor
  11. Chin CY, Jalil J, Ng PY, Ng SF
    J Ethnopharmacol, 2018 Feb 15;212:188-199.
    PMID: 29080829 DOI: 10.1016/j.jep.2017.10.016
    ETHNOPHARMACOLOGICAL RELEVANCE: M.oleifera is a medicinal plant traditionally used for skin sores, sore throat and eye infections. Recently, the wound healing property of the leaves of M. oleifera was has been well demonstrated experimentally in both in vivo and in vitro models. However, there is a lack of research which focuses on formulating M.oleifera into a functional wound dressing. In this study, the M.oleifera leaf standardized aqueous extract with highest potency in vitro migration was formulated into a film for wound healing application.

    MATERIALS AND METHODS: Firstly, M. oleifera leaf were extracted in various solvents (aqueous, 50%, 70% and 100% ethanolic extracts) and standardized by reference standards using UHPLC technique. The extracts were then tested for cell migration and proliferation using HDF and HEK cell lines. M. oleifera leaf aqueous extract was then incorporated into alginate-pectin (SA-PC) based film dressing. The film dressings were characterized for the physicochemical properties and the bioactives release from the M. oleifera leaf extract loaded film dressing was also investigated using Franz diffusion cells.

    RESULTS: All extracts were found to contain vicenin-2, chlorogenic acid, gallic acid, quercetin, kaempferol, rosmarinic acid and rutin. Among all M. oleifera extracts, aqueous standardized leaf extracts showed the highest human dermal fibroblast and human keratinocytes cells proliferation and migration properties. Among the film formulations, SA-PC (3% w/v) composite film dressing containing M. oleifera aqueous leaf extract was found to possess optimal physicochemical properties as wound dressing.

    CONCLUSION: A potentially applicable wound dressing formulated as an alginate-pectin film containing aqueous extracts of M. oleifera has been developed. The dressing would be suitable for wounds with moderate exudates.

    Matched MeSH terms: Cell Line
  12. Loh LN, McCarthy EMC, Narang P, Khan NA, Ward TH
    Traffic, 2017 11;18(11):733-746.
    PMID: 28799243 DOI: 10.1111/tra.12508
    Eukaryotic cells utilize multiple endocytic pathways for specific uptake of ligands or molecules, and these pathways are commonly hijacked by pathogens to enable host cell invasion. Escherichia coli K1, a pathogenic bacterium that causes neonatal meningitis, invades the endothelium of the blood-brain barrier, but the entry route remains unclear. Here, we demonstrate that the bacteria trigger an actin-mediated uptake route, stimulating fluid phase uptake, membrane ruffling and macropinocytosis. The route of uptake requires intact lipid rafts as shown by cholesterol depletion. Using a variety of perturbants we demonstrate that small Rho GTPases and their downstream effectors have a significant effect on bacterial invasion. Furthermore, clathrin-mediated endocytosis appears to play an indirect role in E. coli K1 uptake. The data suggest that the bacteria effect a complex interplay between the Rho GTPases to increase their chances of uptake by macropinocytosis into human brain microvascular endothelial cells.
    Matched MeSH terms: Cell Line
  13. Maherally Z, Fillmore HL, Tan SL, Tan SF, Jassam SA, Quack FI, et al.
    FASEB J, 2018 01;32(1):168-182.
    PMID: 28883042 DOI: 10.1096/fj.201700162R
    The blood-brain barrier (BBB) consists of endothelial cells, astrocytes, and pericytes embedded in basal lamina (BL). Most in vitro models use nonhuman, monolayer cultures for therapeutic-delivery studies, relying on transendothelial electrical resistance (TEER) measurements without other tight-junction (TJ) formation parameters. We aimed to develop reliable, reproducible, in vitro 3-dimensional (3D) models incorporating relevant human, in vivo cell types and BL proteins. The 3D BBB models were constructed with human brain endothelial cells, human astrocytes, and human brain pericytes in mono-, co-, and tricultures. TEER was measured in 3D models using a volt/ohmmeter and cellZscope. Influence of BL proteins-laminin, fibronectin, collagen type IV, agrin, and perlecan-on adhesion and TEER was assessed using an electric cell-substrate impedance-sensing system. TJ protein expression was assessed by Western blotting (WB) and immunocytochemistry (ICC). Perlecan (10 µg/ml) evoked unreportedly high, in vitro TEER values (1200 Ω) and the strongest adhesion. Coculturing endothelial cells with astrocytes yielded the greatest resistance over time. ICC and WB results correlated with resistance levels, with evidence of prominent occludin expression in cocultures. BL proteins exerted differential effects on TEER, whereas astrocytes in contact yielded higher TEER values and TJ expression.-Maherally, Z., Fillmore, H. L., Tan, S. L., Tan, S. F., Jassam, S. A., Quack, F. I., Hatherell, K. E., Pilkington, G. J. Real-time acquisition of transendothelial electrical resistance in an all-human, in vitro, 3-dimensional, blood-brain barrier model exemplifies tight-junction integrity.
    Matched MeSH terms: Cell Line
  14. Lopez JAV, Petitbois JG, Vairappan CS, Umezawa T, Matsuda F, Okino T
    Org. Lett., 2017 08 18;19(16):4231-4234.
    PMID: 28783344 DOI: 10.1021/acs.orglett.7b01869
    Two new chlorinated fatty acid amides, columbamides D (1) and E (2), along with apratoxins A and C and wewakazole, were isolated from the organic extract of a Moorea bouillonii sample from Sabah, Malaysia. Structure elucidation was accomplished by a combination of MS and NMR analyses. The total synthesis of all four stereoisomers of 1 was completed, and the absolute configuration was determined by chiral-phase HPLC and Marfey's analysis.
    Matched MeSH terms: Cell Line, Tumor
  15. Selvarajah GT, Bonestroo FAS, Timmermans Sprang EPM, Kirpensteijn J, Mol JA
    BMC Vet Res, 2017 Nov 25;13(1):354.
    PMID: 29178874 DOI: 10.1186/s12917-017-1281-3
    BACKGROUND: Quantitative PCR (qPCR) is a common method for quantifying mRNA expression. Given the heterogeneity present in tumor tissues, it is crucial to normalize target mRNA expression data using appropriate reference genes that are stably expressed under a variety of pathological and experimental conditions. No studies have validated specific reference genes in canine osteosarcoma (OS). Previous gene expression studies involving canine OS have used one or two reference genes to normalize gene expression. This study aimed to validate a panel of reference genes commonly used for normalization of canine OS gene expression data using the geNorm algorithm. qPCR analysis of nine canine reference genes was performed on 40 snap-frozen primary OS tumors and seven cell lines.

    RESULTS: Tumors with a variety of clinical and pathological characteristics were selected. Gene expression stability and the optimal number of reference genes for gene expression normalization were calculated. RPS5 and HNRNPH were highly stable among OS cell lines, while RPS5 and RPS19 were the best combination for primary tumors. Pairwise variation analysis recommended four and two reference genes for optimal normalization of the expression data of canine OS tumors and cell lines, respectively.

    CONCLUSIONS: Appropriate combinations of reference genes are recommended to normalize mRNA levels in canine OS tumors and cell lines to facilitate standardized and reliable quantification of target gene expression, which is essential for investigating key genes involved in canine OS metastasis and for comparative biomarker discovery.

    Matched MeSH terms: Cell Line, Tumor
  16. Kumaran S, Pandurangan AK, Shenbhagaraman R, Esa NM
    Int J Med Mushrooms, 2017;19(8):675-684.
    PMID: 29199567 DOI: 10.1615/IntJMedMushrooms.2017021274
    The growth and lectin production of Ganoderma applanatum, a white rot fungus, was optimized in broth cultures. The fungus was found to have a higher growth rate and higher lectin activity when grown in a medium adjusted to pH 6.5 at 26°C under stationary conditions. Expression of lectin activity started in 5-day-old mycelial culture; maximum activity was expressed after the 15th day of incubation. Among the various carbon and nitrogen sources tested, the carbon source sucrose and the nitrogen source yeast extract support maximum growth and lectin production. Lectin from G. applanatum was purified by ammonium sulfate precipitation and ion exchange chromatography. The purified fraction revealed a single band with a molecular weight of 35.0 kDa. Moreover, carbohydrates such as mannitol, glucose, sucrose, maltose, mannose, galactose, sorbose, and fructose were found to inhibit the hemagglutinating activity of the lectin. The purified lectins from G. applanatum contain cytotoxic and proapoptotic activities against HT-29 colon adenocarcinoma cells.
    Matched MeSH terms: Cell Line, Tumor
  17. Toegel M, Azzam G, Lee EY, Knapp DJHF, Tan Y, Fa M, et al.
    Nat Commun, 2017 11 21;8(1):1663.
    PMID: 29162808 DOI: 10.1038/s41467-017-01592-3
    Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.
    Matched MeSH terms: Cell Line
  18. Mai CW, Kang YB, Nadarajah VD, Hamzah AS, Pichika MR
    Phytother Res, 2018 Jun;32(6):1108-1118.
    PMID: 29464796 DOI: 10.1002/ptr.6051
    In this study, a series of 20 structurally similar vanilloids (Vn) were tested for their antiproliferative effects against 12 human cancer cells: human breast (MCF-7 and MDA-MB-231), cervical (HeLa), ovarian (Caov-3), lung (A549), liver (HepG2), colorectal (HT-29 and HCT116), nasopharyngeal (CNE-1 and HK-1), and leukemic (K562 and CEM-SS) cancer cells. Among all the tested vanilloids, Vn16 (6-shogaol) exhibited the most potent cytotoxic effects against human colorectal cancer cells (HT-29). The apoptotic induction effects exhibited by Vn16 on HT-29 cells were confirmed using dual staining fluorescence microscopy and enzyme-linked immunosorbent assay. The effects of Vn16 on regulation of 43 apoptotic-related markers were determined in HT-29. The results suggested that 8 apoptotic markers (caspase 8, BAD, BAX, second mitochondrial-derived activator, caspase 3, survivin, bcl-2, and cIAP-2) were either upregulated or downregulated. These results further support the chemopreventive properties of foods that contain vanilloids.
    Matched MeSH terms: Cell Line, Tumor
  19. Weiland F, Arentz G, Klingler-Hoffmann M, McCarthy P, Lokman NA, Kaur G, et al.
    J Proteome Res, 2016 11 04;15(11):4073-4081.
    PMID: 27569743
    Although acetylation is regarded as a common protein modification, a detailed proteome-wide profile of this post-translational modification may reveal important biological insight regarding differential acetylation of individual proteins. Here we optimized a novel peptide IEF fractionation method for use prior to LC-MS/MS analysis to obtain a more in depth coverage of N-terminally acetylated proteins from complex samples. Application of the method to the analysis of the serous ovarian cancer cell line OVCAR-5 identified 344 N-terminally acetylated proteins, 12 of which are previously unreported. The protein peptidyl-prolyl cis-trans isomerase A (PPIA) was detected in both the N-terminally acetylated and unmodified forms and was further analyzed by data-independent acquisition in carboplatin-responsive parental OVCAR-5 cells and carboplatin-resistant OVCAR-5 cells. This revealed a higher ratio of unacetylated to acetylated N-terminal PPIA in the parental compared with the carboplatin-resistant OVCAR-5 cells and a 4.1-fold increase in PPIA abundance overall in the parental cells relative to carboplatin-resistant OVCAR-5 cells (P = 0.015). In summary, the novel IEF peptide fractionation method presented here is robust, reproducible, and can be applied to the profiling of N-terminally acetylated proteins. All mass spectrometry data is available as a ProteomeXchange repository (PXD003547).
    Matched MeSH terms: Cell Line, Tumor
  20. Jaudan A, Sharma S, Malek SNA, Dixit A
    PLoS One, 2018;13(2):e0191523.
    PMID: 29420562 DOI: 10.1371/journal.pone.0191523
    Pinostrobin (PN) is a naturally occurring dietary bioflavonoid, found in various medicinal herbs/plants. Though anti-cancer potential of many such similar constituents has been demonstrated, critical biochemical targets and exact mechanism for their apoptosis-inducing actions have not been fully elucidated. The present study was aimed to investigate if PN induced apoptosis in cervical cancer cells (HeLa) of human origin. It is demonstrated that PN at increasing dose effectivity reduced the cell viability as well as GSH and NO2- levels. Condensed nuclei with fragmented chromatin and changes in mitochondrial matrix morphology clearly indicated the role of mitochondria in PN induced apoptosis. A marked reduction in mitochondrial membrane potential and increased ROS production after PN treatment showed involvement of free radicals, which in turn further augment ROS levels. PN treatment resulted in DNA damage, which could have been triggered by an increase in ROS levels. Decrease in apoptotic cells in the presence of caspase 3 inhibitor in PN-treated cells suggested that PN induced apoptosis via caspase dependent pathways. Additionally, a significant increase in the expression of proteins of extrinsic (TRAIL R1/DR4, TRAIL R2/DR5, TNF RI/TNFRSF1A, FADD, Fas/TNFRSF6) and intrinsic pathway (Bad, Bax, HTRA2/Omi, SMAC/Diablo, cytochrome C, Pro-Caspase-3, Cleaved Caspase-3) was observed in the cells exposed to PN. Taken together, these observations suggest that PN efficiently induces apoptosis through ROS mediated extrinsic and intrinsic dependent signaling pathways, as well as ROS mediated mitochondrial damage in HeLa cells.
    Matched MeSH terms: Cell Line, Tumor
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links