Displaying publications 981 - 1000 of 3445 in total

Abstract:
Sort:
  1. Budiati T, Rusul G, Wan-Abdullah WN, Chuah LO, Ahmad R, Thong KL
    J Food Prot, 2016 Apr;79(4):659-65.
    PMID: 27052872 DOI: 10.4315/0362-028X.JFP-15-372
    A total of 43 Salmonella enterica isolates belonging to different serovars (Salmonella Albany, Salmonella Agona, Salmonella Corvallis, Salmonella Stanley, Salmonella Typhimurium, Salmonella Mikawasima, and Salmonella Bovismorbificans) were isolated from catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from nine wet markets and eight ponds in Penang, Malaysia. Thirteen, 19, and 11 isolates were isolated from 9 of 32 catfish, 14 of 32 tilapia, and 11 of 44 water samples, respectively. Fish reared in ponds were fed chicken offal, spoiled eggs, and commercial fish feed. The genetic relatedness of these Salmonella isolates was determined by random amplified polymorphic DNA PCR (RAPD-PCR) using primer OPC2, repetitive extragenic palindromic PCR (REP-PCR), and pulsed-field gel electrophoresis (PFGE). Composite analysis of the RAPD-PCR, REP-PCR, and PFGE results showed that the Salmonella serovars could be differentiated into six clusters and 15 singletons. RAPD-PCR differentiated the Salmonella isolates into 11 clusters and 10 singletons, while REP-PCR differentiated them into 4 clusters and 1 singleton. PFGE differentiated the Salmonella isolates into seven clusters and seven singletons. The close genetic relationship of Salmonella isolates from catfish or tilapia obtained from different ponds, irrespective of the type of feed given, may be caused by several factors, such as the quality of the water, density of fish, and size of ponds.
    Matched MeSH terms: DNA Primers/genetics; Random Amplified Polymorphic DNA Technique
  2. Nakowong P, Chatchawal P, Chaibun T, Boonapatcharoen N, Promptmas C, Buajeeb W, et al.
    Talanta, 2024 Mar 01;269:125495.
    PMID: 38043336 DOI: 10.1016/j.talanta.2023.125495
    Cervical cancer emerges as the third most prevalent types of malignancy among women on a global scale. Cervical cancer is significantly associated with the persistent infection of human papillomavirus (HPV) type 16. The process of diagnosing is crucial in order to prevent the progression of a condition into a malignant state. The early detection of cervical cancer through initial stage screening is of the utmost significance in both the prevention and effective management of this disease. The present detection methodology is dependent on quantitative polymerase chain reaction (qPCR), which necessitates the use of a costly heat cycler instrument. In this study, we report the development of an electrochemical DNA biosensor integrated with an isothermal recombinase polymerase amplification (RPA) reaction for the detection and identification of the high-risk HPV-16 genotype. The electrochemical biosensor exhibited a high degree of specificity and sensitivity, as evidenced by its limit of detection (LOD) of 0.23 copies/μL of HPV-16 DNA. The validity of this electrochemical platform was confirmed through the analysis of 40 cervical tissues samples, and the findings were consistent with those obtained through polymerase chain reaction (PCR) testing. Our straightforward electrochemical detection technology and quick turnaround time at 75 min make the assay suitable for point-of-care testing in low-resource settings.
    Matched MeSH terms: DNA, Viral/analysis; DNA, Viral/genetics
  3. Lai MY, Ooi CH, Lau YL
    Am J Trop Med Hyg, 2017 Nov;97(5):1597-1599.
    PMID: 28820700 DOI: 10.4269/ajtmh.17-0427
    In this study, we developed a recombinase polymerase amplification (RPA) assay for specific diagnosis of Plasmodium knowlesi. Genomic DNA was extracted from whole blood samples using a commercial kit. With incubation at 37°C, the samples were successfully amplified within 20 minutes. The end product of RPA was further examined by loading onto agarose gel and a specific band was observed with a size of 128 bp. The RPA assay exhibited high sensitivity with limits of detection down to one copy of the plasmid. From the specificity experiments, it was demonstrated that all P. knowlesi samples (N = 45) were positive while other Plasmodium spp. (N = 42) and negative samples (N = 6) were negative. Therefore, the RPA assay is a highly promising approach with the potential to be used in resource-limited settings. This assay can be further optimized for bedside and on field application.
    Matched MeSH terms: DNA, Protozoan/blood; DNA, Protozoan/isolation & purification*
  4. Tay ST, Cheah PC, Puthucheary SD
    J Clin Microbiol, 2010 Apr;48(4):1465-7.
    PMID: 20089759 DOI: 10.1128/JCM.01131-09
    Four flagellin allelic types (I to IV) of Burkholderia pseudomallei were identified based on their sequence variation and restriction fragment length polymorphism (RFLP) analysis of the amplified flagellin gene. Flagellin allelic type I was the most predominantly (75.0%) found among the 100 clinical isolates of B. pseudomallei investigated in this study.
    Matched MeSH terms: DNA Fingerprinting*; Sequence Analysis, DNA
  5. Mahalingam S, Cheong YM, Kan S, Yassin RM, Vadivelu J, Pang T
    J Clin Microbiol, 1994 Dec;32(12):2975-9.
    PMID: 7883885
    Isolates of Vibrio cholerae O1 El Tor from two well-defined cholera outbreaks in Malaysia were analyzed by using pulsed-field gel electrophoresis (PFGE). Isolates from sporadic cases occurring during the same time period were also studied. Digestion of chromosomal DNA from these isolates of V. cholerae O1 with restriction endonucleases NotI (5'-GCGGCCGC-3') and SfiI (5'-GGCCNNNN-3'), followed by PFGE, produced restriction endonuclease analysis (REA) patterns consisting of 13 to 24 bands (ranging in size from 46 to 398 kbp). Analysis of the REA patterns generated by PFGE after digestion with NotI and SfiI suggested the clonal nature and close genetic identity of the isolates obtained during each of the two outbreaks (Dice coefficient, 0.93 to 1.0). Although they had very similar REA patterns, the two outbreak clones were not identical. Isolates of V. cholerae O1 from sporadic cases, on the other hand, appeared to be much more heterogeneous (five different REA patterns detected in the five isolates tested; Dice coefficient, 0.31 to 0.81) than those obtained during the two outbreaks. We conclude that PFGE of V. cholerae O1 chromosomal DNA digested with infrequently cutting restriction endonucleases is a useful method for molecular typing of V. cholerae isolates for epidemiological purposes.
    Matched MeSH terms: DNA Restriction Enzymes; DNA, Bacterial/genetics*
  6. Ng KP, Ngeow YF, Yew SM, Hassan H, Soo-Hoo TS, Na SL, et al.
    Eukaryot Cell, 2012 May;11(5):703-4.
    PMID: 22544898 DOI: 10.1128/EC.00074-12
    Daldinia eschscholzii is an invasive endophyte that is most commonly found in plant tissues rich in secondary metabolites. We report the draft genome sequence of D. eschscholzii isolated from blood culture. The draft genome is 35,494,957 bp in length, with 42,898,665 reads, 61,449 contigs, and a G+C content of 46.8%. The genome was found to contain a high abundance of genes associated with plant cell wall degradation enzymes, mycotoxin production, and antifungal drug resistance.
    Matched MeSH terms: DNA, Fungal/analysis; DNA, Fungal/genetics*
  7. Lim CS, Goh SL, Krishnan G, Ng CC
    Protein Expr Purif, 2014 Mar;95:8-12.
    PMID: 24291446 DOI: 10.1016/j.pep.2013.11.007
    This paper describes the recombinant production of a biologically active Epstein-Barr virus BZLF1 trans-activator, i.e., Z-encoded broadly reactive activator (ZEBRA), that recognized specific DNA motifs. We used auto-induction for histidine-tagged BZLF1 expression in Escherichia coli and immobilized cobalt affinity membrane chromatography for protein purification under native conditions. We obtained the purified BZLF1 at a yield of 5.4mg per gram of wet weight cells at 75% purity, in which 27% of the recombinant BZLF1 remained biologically active. The recombinant BZLF1 bound to oligonucleotides containing ZEBRA response elements, either AP-1 or ZIIIB, but not a ZIIIB mutant. The recombinant BZLF1 showed a specific DNA-binding activity which could be useful for functional studies.
    Matched MeSH terms: DNA/metabolism*; DNA/chemistry
  8. Osama A, Gan HM, Teh CS, Yap KP, Thong KL
    J Bacteriol, 2012 Dec;194(24):6933.
    PMID: 23209200 DOI: 10.1128/JB.01832-12
    The genome sequence analysis of a clinical Vibrio cholerae VC35 strain from an outbreak case in Malaysia indicates multiple genes involved in host adaptation and a novel Na(+)-driven multidrug efflux pump-coding gene in the genome of Vibrio cholerae with the highest similarity to VMA_001754 of Vibrio mimicus VMA223.
    Matched MeSH terms: DNA, Bacterial/genetics; Sequence Analysis, DNA
  9. Ngeow YF, Wong YL, Lokanathan N, Wong GJ, Ong CS, Ng KP, et al.
    J Bacteriol, 2012 Sep;194(17):4786.
    PMID: 22887681 DOI: 10.1128/JB.01104-12
    We report the draft genome sequence of a clinical isolate, strain M115, identified as Mycobacterium massiliense, a member of the newly created taxon of Mycobacterium abscessus subspecies bolletii comb. nov.
    Matched MeSH terms: DNA, Bacterial/genetics; Sequence Analysis, DNA
  10. Gan HM, Chew TH, Tay YL, Lye SF, Yahya A
    J Bacteriol, 2012 Sep;194(17):4759-60.
    PMID: 22887664 DOI: 10.1128/JB.00990-12
    Hydrogenophaga sp. strain PBC is an effective degrader of 4-aminobenzenesulfonate isolated from textile wastewater. Here we present the assembly and annotation of its genome, which may provide further insights into its metabolic potential. This is the first announcement of the draft genome sequence of a strain from the genus Hydrogenophaga.
    Matched MeSH terms: DNA, Bacterial/genetics; Sequence Analysis, DNA
  11. Lee PS, Sing KW, Wilson JJ
    PLoS One, 2015;10(4):e0123871.
    PMID: 25898278 DOI: 10.1371/journal.pone.0123871
    Most tropical mammal species are threatened or data-deficient. Data collection is impeded by the traditional monitoring approaches which can be laborious, expensive and struggle to detect cryptic diversity. Monitoring approaches using mammal DNA derived from invertebrates are emerging as cost- and time-effective alternatives. As a step towards development of blowfly-derived DNA as an effective method for mammal monitoring in the biodiversity hotspot of Peninsular Malaysia, our objectives were (i) to determine the persistence period of amplifiable mammal mtDNA in blowfly guts through a laboratory feeding experiment (ii) to design and test primers that can selectively amplify mammal COI DNA mini-barcodes in the presence of high concentrations of blowfly DNA. The persistence period of amplifiable mammal mtDNA in blowfly guts was 24 h to 96 h post-feeding indicating the need for collecting flies within 24 h of capture to detect mammal mtDNA of sufficient quantity and quality. We designed a new primer combination for a COI DNA mini-barcode that did not amplify blowfly DNA and showed 89% amplification success for a dataset of mammals from Peninsular Malaysia. The short (205 bp) DNA mini-barcode could distinguish most mammal species (including separating dark taxa) and is of suitable length for high-throughput sequencing. Our new DNA mini-barcode target and a standardized trapping protocol with retrieval of blowflies every 24 h could point the way forward in the development of blowfly-derived DNA as an effective method for mammal monitoring.
    Matched MeSH terms: DNA, Mitochondrial/genetics*; Sequence Analysis, DNA
  12. Li Z, Gopinath SCB, Lakshmipriya T, Anbu P, Perumal V, Wang X
    Biomed Microdevices, 2020 Sep 17;22(4):67.
    PMID: 32940771 DOI: 10.1007/s10544-020-00522-3
    Nanoscale materials have been employed in the past 2 decades in applications such as biosensing, therapeutics and medical diagnostics due to their beneficial optoelectronic properties. In recent years, silver nanoparticles (AgNPs) have gained attention due to their higher plasmon excitation efficiency than gold nanoparticles, as proved by sharper and stronger plasmon resonance peaks. The current work is focused on utilizing self-assembled DNA-AgNPs on microdevices for the detection of gynecological cancers. Human papilloma virus (HPV) mostly spreads through sexual transmittance and can cause various gynecological cancers, including cervical, ovarian and endometrial cancers. In particular, oncogene E7 from the HPV strain 16 (HPV-16 E7) is responsible for causing these cancers. In this research, the target sequence of HPV-16 E7 was detected by an AgNP-conjugated capture probe on a dielectrode sensor. The detection limit was in the range between 10 and 100 aM (by 3σ estimation). The sensitivity of the AgNP-conjugated probe was 10 aM and similar to the sensitivity of gold nanoparticle conjugation sensors, and the mismatched control DNA failed to detect the target, proving selective HPV detection. Morphological assessments on the AgNPs and the sensing surfaces by high-resolution microscopy revealed the surface arrangement. This sensing platform can be expanded to develop sensors for the detection various clinically relevant targets.
    Matched MeSH terms: DNA/analysis; DNA/chemistry
  13. Permeen AM, Sam CK, Pathmanathan R, Prasad U, Wolf H
    J Virol Methods, 1990 Mar;27(3):261-7.
    PMID: 2157729
    The presence of Epstein Barr virus (EBV) DNA in biopsies from the post-nasal space (PNS) of patients suspected of nasopharyngeal carcinoma (NPC) was detected by in situ cytohybridization with an EBV DNA probe labelled with the novel labelling compound digoxigenin. The digoxigenin probe was hybridised to cryostat sections of NPC biopsies and subsequently detected by an enzyme immunoassay procedure. It was found that in situ cytohybridization using the digoxigenin probe was much more rapid and sensitive (96 h compared to five weeks) than the current method of using 3H-labelled probe. Using the digoxigenin EBV probe, it was found that in all the eighteen NPC biopsies tested, EBV DNA was detected in malignant epithelial cells and infiltrating lymphocytes. EBV DNA was also detected in some normal epithelial cells in these NPC biopsies. EBV DNA was not detected in epithelial cells of non-malignant biopsies.
    Matched MeSH terms: DNA, Viral/analysis*; DNA Probes
  14. Kuan CS, Ismail R, Kwan Z, Yew SM, Yeo SK, Chan CL, et al.
    PLoS One, 2016;11(6):e0156119.
    PMID: 27280438 DOI: 10.1371/journal.pone.0156119
    A yeast-like organism was isolated from the skin scraping sample of a stasis dermatitis patient in the Mycology Unit Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. The isolate produced no pigment and was not identifiable using chromogenic agar and API 20C AUX. The fungus was identified as Metschnikowia sp. strain UM 1034, which is close to that of Metschnikowia drosophilae based on ITS- and D1/D2 domain-based phylogenetic analysis. However, the physiology of the strain was not associated to M. drosophilae. This pathogen exhibited low sensitivity to all tested azoles, echinocandins, 5-flucytosine and amphotericin B. This study provided insight into Metschnikowia sp. strain UM 1034 phenotype profiles using a Biolog phenotypic microarray (PM). The isolate utilized 373 nutrients of 760 nutrient sources and could adapt to a broad range of osmotic and pH environments. To our knowledge, this is the first report of the isolation of Metschnikowia non-pulcherrima sp. from skin scraping, revealing this rare yeast species as a potential human pathogen that may be misidentified as Candida sp. using conventional methods. Metschnikowia sp. strain UM 1034 can survive in flexible and diverse environments with a generalist lifestyle.
    Matched MeSH terms: DNA, Fungal/genetics; DNA, Ribosomal/genetics; Sequence Analysis, DNA
  15. Chen X, Li QY, Li GD, Xu FJ, Jiang Y, Han L, et al.
    Antonie Van Leeuwenhoek, 2016 Sep;109(9):1177-83.
    PMID: 27260265 DOI: 10.1007/s10482-016-0718-1
    A novel aerobic, non-motile, Gram-positive, rod-shaped actinobacterium, designated YIM 100951(T), was isolated from the faeces of civets (Viverra zibetha) living in the National Nature Protect Region in Selangor, Malaysia. Strain YIM 100951(T) shows high similarities with Microbacterium barkeri DSM 20145(T) (97.6 %), Microbacterium oryzae MB10(T) (97.3 %), Microbacterium lemovicicum ViU22(T) (97.1 %) and Microbacterium indicum BBH6(T) (97.0 %) based on their 16S rRNA genes. However, phylogenetic analysis showed that strain YIM 100951(T) formed a clade with Microbacterium halotolerans YIM 70130(T) (96.7 %), Microbacterium populi 10-107-8(T) (96.7 %) and Microbacterium sediminis YLB-01(T) (96.9 %). DNA-DNA hybridization was carried out between strains YIM 100951(T) and M. barkeri DSM 20145(T), the result showed a value of 23.2 ± 4.5 %. In addition, some of the physiological, biochemical and chemotaxonomic characteristics of strain YIM 100951(T) are different from the closely related strains. Thus, we suggest that strain YIM 100951(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium gilvum sp. nov. is proposed. The type strain is YIM 100951(T) (=DSM 26235(T) = CCTCC AB 2012971(T)).
    Matched MeSH terms: DNA, Bacterial/genetics; DNA, Ribosomal/genetics; Sequence Analysis, DNA
  16. Chaurasia MK, Nizam F, Ravichandran G, Arasu MV, Al-Dhabi NA, Arshad A, et al.
    Fish Shellfish Immunol, 2016 Jan;48:228-38.
    PMID: 26631804 DOI: 10.1016/j.fsi.2015.11.034
    Considering the importance of heat shock proteins (HSPs) in the innate immune system of prawn, a comparative molecular approach was proposed to study the crustacean large HSPs 60, 70 and 90. Three different large HSPs were identified from freshwater prawn Macrobrachium rosenbergii (Mr) cDNA library during screening. The structural and functional characteristic features of HSPs were studied using various bioinformatics tools. Also, their gene expression and mRNA regulation upon various pathogenic infections was studied by relative quantification using 2(-ΔΔCT) method. MrHSP60 contains a long chaperonin 60 domain at 46-547 which carries a chaperonin 60 signature motif between 427 and 438, whereas MrHSP70 contains a long HSP70 domain at 21-624 and MrHSP90 carries a HSP90 domain at 188-719. The two dimensional analysis showed that MrHSP60 contains more amino acids (52%) in helices, whereas MrHSP70 (40.6%) and MrHSP90 (51.8%) carried more residues in coils. Gene expression results showed significant (P 
    Matched MeSH terms: DNA Virus Infections/immunology; DNA Virus Infections/veterinary; DNA, Complementary/genetics
  17. Wang M, Yan S, Brown CL, Shaharom-Harrison F, Shi SF, Yang TB
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):3865-3875.
    PMID: 25319302
    To examine the phylogeographical pattern of Tetrancistrum nebulosi (Monogenea, Dactylogyridae) in the South China Sea, fragments of mitochondrial cytochrome c oxidase subunit I and NADH dehydrogenase subunit 2 genes were obtained for 220 individuals collected from 8 localities along the southeast coast of China and 1 locality in Terengganu, Malaysia. Based on these two genes, two and three distinct clades with geographic signals were revealed on the phylogenetic trees respectively. The divergence between these clades was estimated to occur in the late Pleistocene. Analysis of molecular variance and pairwise FSTsuggested a high rate of gene flow among individuals sampled from the Chinese coast, but with obvious genetic differentiation from the Malaysian population. Mismatch distribution and neutrality tests indicated that the T. nebulosi population experienced expansion in Pleistocene low sea level periods. Vicariance was considered to account for the genetic divergence between Chinese and Malaysian populations, while sea level fluctuations and mainland-island connections during glacial cycles were associated with the slight genetic divergence between the populations along the mainland coast of China and those off Sanya. On the contrary, oceanographic circulations and host migration could lead to genetic homogeneity of populations distributed along the mainland coast of China.
    Matched MeSH terms: DNA, Mitochondrial/genetics; DNA, Mitochondrial/chemistry; Sequence Analysis, DNA/veterinary
  18. Rashid JI, Yusof NA, Abdullah J, Hashim U, Hajian R
    PMID: 25491829 DOI: 10.1016/j.msec.2014.09.010
    This work describes the incorporation of SiNWs/AuNPs composite as a sensing material for DNA detection on indium tin-oxide (ITO) coated glass slide. The morphology of SiNWs/AuNPs composite as the modifier layer on ITO was studied by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The morphological studies clearly showed that SiNWs were successfully decorated with 20 nm-AuNPs using self-assembly monolayer (SAM) technique. The effective surface area for SiNWs/AuNPs-modified ITO enhanced about 10 times compared with bare ITO electrode. SiNWs/AuNPs nanocomposite was further explored as a matrix for DNA probe immobilization in detection of dengue virus as a bio-sensing model to evaluate its performance in electrochemical sensors. The hybridization of complementary DNA was monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as the redox indicator. The fabricated biosensor was able to discriminate significantly complementary, non-complementary and single-base mismatch oligonucleotides. The electrochemical biosensor was sensitive to target DNA related to dengue virus in the range of 9.0-178.0 ng/ml with detection limit of 3.5 ng/ml. In addition, SiNWs/AuNPs-modified ITO, regenerated up to 8 times and its stability was up to 10 weeks at 4°C in silica gel.
    Matched MeSH terms: DNA Probes/metabolism; DNA Probes/chemistry; DNA, Complementary/analysis*
  19. Nanjundan N, Selvakumar P, Narayanasamy R, Haque RA, Velmurugan K, Nandhakumar R, et al.
    J. Photochem. Photobiol. B, Biol., 2014 Dec;141:176-85.
    PMID: 25463665 DOI: 10.1016/j.jphotobiol.2014.10.009
    Two nickel(II) complexes with formula NiL1 and NiL2 (HL1 = S-allyl-4-methoxybenzylidene hydrazinecarbodithioate, HL2 = S-allyl-1-napthylidenehydrazinecarbodithioate) have been synthesized and characterized by elemental analysis, FT-IR, NMR, UV-vis spectroscopy and ESI mass spectrometry. The crystal structure of complex 1 has been determined by single crystal X-ray diffractometry. Both HL1 and HL2 ligands are coordinated to the metal in thiolate form. In complexes, squareplanar geometry of the nickel is coordinated with two bidentate ligand units acting through azomethine nitrogen and thiolato sulfur atoms. To explore the potential medicinal value of the complexes with calf thymus DNA and bovine serum albumin (BSA) were studied at normal physiological conditions using fluorescence spectral techniques. The DNA binding constant values of the complexes were found in the range from 5.02 × 10(4), 3.54 × 10(4), and the binding affinities are in the following order 1 > 2. In addition, nickel complexes 1 and 2 shows better binding propensity to the bovine serum albumin (BSA) protein, giving a Ksv value 5.8 × 10(4), 4.47 × 10(4) respectively. From the oxidative cleavage of the complexes with pBR322 DNA, it is inferred that the effects of cleavage are dose-dependent. In addition, in vitro cytotoxicity of the complexes assayed against Vero and HeLa cell lines have shown higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing cancer cells even at various concentrations.
    Matched MeSH terms: DNA/metabolism; DNA/chemistry*; DNA Cleavage/drug effects
  20. Anshary H, Sriwulan, Freeman MA, Ogawa K
    Korean J Parasitol, 2014 Feb;52(1):9-19.
    PMID: 24623876 DOI: 10.3347/kjp.2014.52.1.9
    Anisakis spp. (Nematoda: Anisakidae) parasitize a wide range of marine animals, mammals serving as the definitive host and different fish species as intermediate or paratenic hosts. In this study, 18 fish species were investigated for Anisakis infection. Katsuwonus pelamis, Euthynnus affinis, Caranx sp., and Auxis thazard were infected with high prevalence of Anisakis type I, while Cephalopholis cyanostigma and Rastrelliger kanagurta revealed low prevalence. The mean intensity of Anisakis larvae in K. pelamis and A. thazard was 49.7 and 5.6, respectively. A total of 73 Anisakis type I larvae collected from K. pelamis and A. thazard were all identified as Anisakis typica by PCR-RFLP analysis. Five specimens of Anisakis from K. pelamis and 15 specimens from A. thazard were sequenced using ITS1-5.8S-ITS2 region and 6 specimens from A. thazard and 4 specimens from K. pelamis were sequenced in mtDNA cox2 region. Alignments of the samples in the ITS region showed 2 patterns of nucleotides. The first pattern (genotype) of Anisakis from A. thazard had 100% similarity with adult A. typica from dolphins from USA, whereas the second genotype from A. thazard and K. pelamis had 4 base pairs different in ITS1 region with adult A. typica from USA. In the mtDNA cox2 regions, Anisakis type I specimens from A. thazard and K. pelamis showed similarity range from 94% to 99% with A. typica AB517571/DQ116427. The difference of 4 bp nucleotides in ITS1 regions and divergence into 2 subgroups in mtDNA cox2 indicating the existence of A. typica sibling species in the Makassar Strait.
    Matched MeSH terms: DNA Fingerprinting; Sequence Analysis, DNA; DNA, Intergenic/genetics; DNA, Intergenic/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links