Displaying publications 1021 - 1040 of 1776 in total

Abstract:
Sort:
  1. Zakaria R, Yusoff SFAZ, Law KC, Lim CS, Ahmad H
    Nanoscale Res Lett, 2017 Dec;12(1):50.
    PMID: 28101853 DOI: 10.1186/s11671-016-1793-y
    In this report, we experimentally investigate the formation of "flower-like silver structures" on graphene. Using an electrochemical deposition technique with deposition times of 2.5 and 5 min, agglomerations of silver nanoparticles (AgNPs) were deposited on the graphene surfaces, causing the formation of "flower-like structures" on the graphene substrate. Localized surface plasmon resonance (LSPR) was observed in the interaction between the structures and the graphene substrate. The morphology of the samples was observed using a field-emission scanning electron microscope (FESEM) and Raman spectroscopy. Thereafter, the potential of the flower-like Ag microstructures on graphene for use in Raman spectroscopic applications was examined. The signal showed a highest intensity value after a deposition time of 5 min, as portrayed by the intense local electromagnetic fields. For a better understanding, the CST Microwave Studio software, based on the finite element method (FEM), was applied to simulate the absorption characteristics of the structures on the graphene substrate. The absorption peak was redshifted due to the increment of the nanoparticle size.
  2. Dakheel KH, Abdul Rahim R, Neela VK, Al-Obaidi JR, Hun TG, Yusoff K
    Biomed Res Int, 2016;2016:4708425.
    PMID: 28078291 DOI: 10.1155/2016/4708425
    Twenty-five methicillin-resistant Staphylococcus aureus (MRSA) isolates were characterized by staphylococcal protein A gene typing and the ability to form biofilms. The presence of exopolysaccharides, proteins, and extracellular DNA and RNA in biofilms was assessed by a dispersal assay. In addition, cell adhesion to surfaces and cell cohesion were evaluated using the packed-bead method and mechanical disruption, respectively. The predominant genotype was spa type t127 (22 out of 25 isolates); the majority of isolates were categorized as moderate biofilm producers. Twelve isolates displayed PIA-independent biofilm formation, while the remaining 13 isolates were PIA-dependent. Both groups showed strong dispersal in response to RNase and DNase digestion followed by proteinase K treatment. PIA-dependent biofilms showed variable dispersal after sodium metaperiodate treatment, whereas PIA-independent biofilms showed enhanced biofilm formation. There was no correlation between the extent of biofilm formation or biofilm components and the adhesion or cohesion abilities of the bacteria, but the efficiency of adherence to glass beads increased after biofilm depletion. In conclusion, nucleic acids and proteins formed the main components of the MRSA clone t127 biofilm matrix, and there seems to be an association between adhesion and cohesion in the biofilms tested.
  3. Zakaria MA, Mohd Yusoff MZ, Zakaria MR, Hassan MA, Wood TK, Maeda T
    3 Biotech, 2018 Oct;8(10):435.
    PMID: 30306004 DOI: 10.1007/s13205-018-1461-2
    Pseudogenes in the Escherichia coli genome are assumed to be non-functional. In this study, Keio collection BW25113∆yqiG and YqiG-producing strain (BW25113/pCA24N-YqiG) were used to evaluate the importance of pseudogene yqiG in hydrogen metabolism. Our results show pseudogene protein YqiG was identified as an essential protein in the production of biohydrogen from glucose. The mutant yqiG decreased biohydrogen production from 37 µmol mg-1 protein to 6 µmol mg-1 protein compared to the wild-type strain, and glucose consumption was reduced by 80%. Through transcriptional analysis, we found that the yqiG mutation represses pflB transcription tenfold; pflB encodes pyruvate-formate lyase, one of the key enzymes in the anaerobic metabolism of E. coli. Moreover, production of YqiG stimulated glycolysis and increased biohydrogen productivity 1.5-fold compared to that of the wild-type strain. Thus, YqiG is important for the central glycolysis reaction and is able to influence hydrogen metabolism activity in E. coli.
  4. Zakaria N, Mahdzir MA, Yusoff M, Mohd Arshad N, Awang K, Nagoor NH
    Molecules, 2018 Oct 23;23(11).
    PMID: 30360475 DOI: 10.3390/molecules23112733
    BACKGROUND: Pinnatane A from the bark of Walsura pinnata was investigated for its anti-cancer properties by analyzing the cytotoxic activities and cell cycle arrest mechanism induced in two different liver cancer cell lines.

    METHODS: A 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to analyze the pinnatane A selectivity in inducing cell death in cancer and normal cells. Various biological assays were carried out to analyze the anti-cancer properties of pinnatane A, such as a live/dead assay for cell death microscopic visualization, cell cycle analysis using propidium iodide (PI) to identify the cell cycle arrest phase, annexin V-fluorescein isothiocyanate (annexin V-FITC)/PI flow cytometry assay to measure percentage of cell populations at different stages of apoptosis and necrosis, and DNA fragmentation assay to verify the late stage of apoptosis.

    RESULTS: The MTT assay identified pinnatane A prominent dose- and time-dependent cytotoxicity effects in Hep3B and HepG2 cells, with minimal effect on normal cells. The live/dead assay showed significant cell death, while cell cycle analysis showed arrest at the G₀/G₁ phase in both cell lines. Annexin V-FITC/PI flow cytometry and DNA fragmentation assays identified apoptotic cell death in Hep3B and necrotic cell death in HepG2 cell lines.

    CONCLUSIONS: Pinnatane A has the potential for further development as a chemotherapeutic agent prominently against human liver cells.

  5. Bello MB, Yusoff K, Ideris A, Hair-Bejo M, Peeters BPH, Omar AR
    Biomed Res Int, 2018;2018:7278459.
    PMID: 30175140 DOI: 10.1155/2018/7278459
    Newcastle disease (ND) is one of the most devastating diseases that considerably cripple the global poultry industry. Because of its enormous socioeconomic importance and potential to rapidly spread to naïve birds in the vicinity, ND is included among the list of avian diseases that must be notified to the OIE immediately upon recognition. Currently, virus isolation followed by its serological or molecular identification is regarded as the gold standard method of ND diagnosis. However, this method is generally slow and requires specialised laboratory with biosafety containment facilities, making it of little relevance under epidemic situations where rapid diagnosis is seriously needed. Thus, molecular based diagnostics have evolved to overcome some of these difficulties, but the extensive genetic diversity of the virus ensures that isolates with mutations at the primer/probe binding sites escape detection using these assays. This diagnostic dilemma leads to the emergence of cutting-edge technologies such as next-generation sequencing (NGS) which have so far proven to be promising in terms of rapid, sensitive, and accurate recognition of virulent Newcastle disease virus (NDV) isolates even in mixed infections. As regards disease control strategies, conventional ND vaccines have stood the test of time by demonstrating track record of protective efficacy in the last 60 years. However, these vaccines are unable to block the replication and shedding of most of the currently circulating phylogenetically divergent virulent NDV isolates. Hence, rationally designed vaccines targeting the prevailing genotypes, the so-called genotype-matched vaccines, are highly needed to overcome these vaccination related challenges. Among the recently evolving technologies for the development of genotype-matched vaccines, reverse genetics-based live attenuated vaccines obviously appeared to be the most promising candidates. In this review, a comprehensive description of the current and emerging trends in the detection, identification, and control of ND in poultry are provided. The strengths and weaknesses of each of those techniques are also emphasised.
  6. Anne JM, Boon YH, Saad B, Miskam M, Yusoff MM, Shahriman MS, et al.
    R Soc Open Sci, 2018 Aug;5(8):180942.
    PMID: 30225083 DOI: 10.1098/rsos.180942
    In this work, we reported the synthesis, characterization and adsorption study of two β-cyclodextrin (βCD) cross-linked polymers using aromatic linker 2,4-toluene diisocyanate (2,4-TDI) and aliphatic linker 1,6-hexamethylene diisocyanate (1,6-HDI) to form insoluble βCD-TDI and βCD-HDI. The adsorption of 2,4-dinitrophenol (DNP) on both polymers as an adsorbent was studied in batch adsorption experiments. Both polymers were well characterized using various tools that include Fourier transform infrared spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller analysis and scanning electron microscopy, and the results obtained were compared with the native βCD. The adsorption isotherm of 2,4-DNP onto polymers was studied. It showed that the Freundlich isotherm is a better fit for βCD-TDI, while the Langmuir isotherm is a better fit for βCD-HMDI. The pseudo-second-order kinetic model represented the adsorption process for both of the polymers. The thermodynamic study showed that βCD-TDI polymer was more favourable towards 2,4-DNP when compared with βCD-HDI polymer. Under optimized conditions, both βCD polymers were successfully applied on various environmental water samples for the removal of 2,4-DNP. βCD-TDI polymer showed enhanced sorption capacity and higher removal efficiency (greater than 80%) than βCD-HDI (greater than 70%) towards 2,4-DNP. The mechanism involved was discussed, and the effects of cross-linkers on βCD open up new perspectives for the removal of toxic contaminants from a body of water.
  7. Yusoff N, Ong SA, Ho LN, Wong YS, Saad FNM, Khalik W, et al.
    J Environ Sci (China), 2019 Jan;75:64-72.
    PMID: 30473308 DOI: 10.1016/j.jes.2018.03.001
    Hybrid growth microorganisms in sequencing batch reactors have proven effective for treating the toxic compound phenol, but the toxicity effect under different toxicity conditions has rarely been discussed. Therefore, the performance of the HG-SBR under toxic, acute and chronic organic loading can provide the overall operating conditions of the system. Toxic organic loading (TOL) was monitored during the first 7hr while introducing 50mg/L phenol to the system. The system was adversely affected with the sudden introduction of phenol to the virgin activated sludge, which caused a low degradation rate and high dissolved oxygen consumption during TOL. Acute organic loading (AOL) had significant effects at high phenol concentrations (600, 800 1000mg/L). The specific oxygen uptake rate (SOUR) gradually decreased to 4.9mg O2/(g MLVSS·hr) at 1000mg/L of phenol compared to 12.74mg O2/(g MLVSS·hr) for 200mg/L of phenol. The HG-SBR was further monitored during chronic organic loading (COL) over 67days. The effects of organic loading were more apparent at 800mg/L and 1000mg/L phenol concentrations, as the removal range was between 22%-30% and 18%-46% respectively, which indicated the severe effects of COL.
  8. Ooi PS, Draman N, Yusoff SSM, Zain WZW, Ganasagaran D, Chua HH
    Korean J Fam Med, 2019 Jul;40(4):269-272.
    PMID: 30486607 DOI: 10.4082/kjfm.17.0143
    Mammary Paget's disease is clinically defined as skin inflammation of the nipple area and is an adenocarcinoma of the epidermis of the nipple. The pathogenesis of mammary Paget's disease is relatively unknown; nonetheless, there are two popular theories that support the underlying carcinoma and de novo carcinogenesis. For the attending medical practitioner, mammary Paget's disease poses a diagnostic and therapeutic dilemma, especially in the absence of a clinically palpable breast mass. We report a rare case of a 48-year-old Malay woman who presented at Hospital Universiti Sains Malaysia, Kelantan, Malaysia with the symptom of skin erosion on the left nipple and unresponsiveness to multiple topical treatments. A full evaluation and assessment of the patient were conducted, and mammary Paget's disease was diagnosed.
  9. Jusoh N, Yeong YF, Lock SSM, Yub Harun N, Mohd Yusoff MH
    Polymers (Basel), 2019 Nov 04;11(11).
    PMID: 31689895 DOI: 10.3390/polym11111807
    The bottleneck of conventional polymeric membranes applied in industry has a tradeoff between permeability and selectivity that deters its widespread expansion. This can be circumvented through a hybrid membrane that utilizes the advantages of inorganic and polymer materials to improve the gas separation performance. The approach can be further enhanced through the incorporation of amine-impregnated fillers that has the potential to minimize defects while simultaneously enhancing gas affinity. An innovative combination between impregnated Linde T with different numbers of amine-functional groups (i.e., monoamine, diamine, and triamine) and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-derived polyimide has been elucidated to explore its potential in CO2/CH4 separation. Detailed physical properties (i.e., free volume and glass transition temperature) and gas transport behavior (i.e., solubility, permeability, and diffusivity) of the fabricated membranes have been examined to unveil the effect of different numbers of amine-functional groups in Linde T fillers. It was found that a hybrid membrane impregnated with Linde T using a diamine functional group demonstrated the highest improvement compared to a pristine polyimide with 3.75- and 1.75-fold enhancements in CO2/CH4 selectivities and CO2 permeability, respectively, which successfully lies on the 2008 Robeson's upper bound. The novel coupling of diamine-impregnated Linde T and 6FDA-derived polyimide is a promising candidate for application in large-scale CO2 removal processes.
  10. Hew KS, Asis AJ, Tan TB, Yusoff MM, Lai OM, Nehdi IA, et al.
    Food Chem, 2020 Mar 01;307:125545.
    PMID: 31654951 DOI: 10.1016/j.foodchem.2019.125545
    Corresponding the high presence of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in refined palm oil, this paper re-evaluated degumming and bleaching processes of physical palm oil refining to reduce the amount of said contaminants. Separation-free water degumming was incorporated into the process, and this significantly (p 
  11. Ahmed Ii JB, Pradhan B, Mansor S, Yusoff ZM, Ekpo SA
    Sensors (Basel), 2019 May 07;19(9).
    PMID: 31067734 DOI: 10.3390/s19092107
    In some parts of tropical Africa, termite mound locations are traditionally used to site groundwater structures mainly in the form of hand-dug wells with high success rates. However, the scientific rationale behind the use of mounds as prospective sites for locating groundwater structures has not been thoroughly investigated. In this paper, locations and structural features of termite mounds were mapped with the aim of determining the aquifer potential beneath termite mounds and comparing the same with adjacent areas, 10 m away. Soil and species sampling, field surveys and laboratory analyses to obtain data on physical, hydraulic and geo-electrical parameters from termite mounds and adjacent control areas followed. The physical and hydraulic measurements demonstrated relatively higher infiltration rates and lower soil water content on mound soils compared with the surrounding areas. To assess the aquifer potential, vertical electrical soundings were conducted on 28 termite mounds sites and adjacent control areas. Three (3) important parameters were assessed to compute potential weights for each Vertical Electrical Sounding (VES) point: Depth to bedrock, aquifer layer resistivity and fresh/fractured bedrock resistivity. These weights were then compared between those of termite mound sites and those from control areas. The result revealed that about 43% of mound sites have greater aquifer potential compared to the surrounding areas, whereas 28.5% of mounds have equal and lower potentials compared with the surrounding areas. The study concludes that termite mounds locations are suitable spots for groundwater prospecting owing to the deeper regolith layer beneath them which suggests that termites either have the ability to locate places with a deeper weathering horizon or are themselves agents of biological weathering. Further studies to check how representative our study area is of other areas with similar termite activities are recommended.
  12. Achour M, Binti Abdul Ghani Azmi I, Bin Isahak M, Mohd Nor MR, Mohd Yusoff MYZ
    Community Ment Health J, 2019 10;55(7):1226-1235.
    PMID: 31111298 DOI: 10.1007/s10597-019-00410-y
    There is increasing popularity among researchers, scholars, and policymakers concerning the efficacy of prayer as a coping strategy for job stress. This study examines the moderating effects of prayer and age on the relationship between job stress and nurses' well-being in UMMC. Three hundred (300) Muslim nursing staff working at the University of Malaya Medical Centre were sampled. Data were collected via questionnaires. The findings of this study show that the effect of job stress on well-being is significant for nurses and that prayer of nurses contributed to alleviating job stress and enhancing well-being. This study is limited to nurses in one public hospital in a developing country. Thus, it would be more interesting if the study could be extended to other public and private institutions in a Muslim country, and a comparison could be done between other religions as well.
  13. Mohd Khair SZN, Ismail AS, Embong Z, Mohamed Yusoff AA
    J Ophthalmic Vis Res, 2019 5 23;14(2):171-178.
    PMID: 31114654 DOI: 10.4103/jovr.jovr_210_17
    Purpose: To determine the mutational analyses of familial exudative vitreoretinopathy (FEVR)-causing genes in Malay patients with retinopathy of prematurity (ROP) to obtain preliminary data for gene alterations in the Malay community.

    Methods: A comparative cross-sectional study involving 86 Malay premature babies (ROP = 41 and non-ROP = 45) was performed from September 2012 to December 2014. Mutation analyses in (FEVR)-causing genes (NDP, FZD4, LRP5, and TSPAN12) were performed using DNA from premature babies using polymerase chain reaction (PCR) and direct sequencing. Sequencing results were confirmed with PCR-Restriction Fragment Length Polymorphism (RFLP).

    Results: We found variants of FZD4, LRP5, and TSPAN12 in this study. One patient from each group showed a non-synonymous alteration in FZD4, c.502C>T (p.P168S). A synonymous variant of LRP5 [c.3357G>A (p.V1119V)] was found in 30 ROP and 28 non-ROP patients. Two variants of TSPAN12, c.765G>T (p.P255P) and c.*39C>T (3'UTR), were also recorded (29 and 21 in ROP, 33 and 26 in non-ROP, respectively). Gestational age and birth weight were found to be significantly associated with ROP (P value < 0.001 and 0.001, respectively).

    Conclusion: Analysis of data obtained from the ROP Malay population will enhance our understanding of these FEVR-causing gene variants. The c.3357G>A (p.V1119V) variant of LRP5, and c.765G>T (p.P255P) and c.*39C>T variants of TSPAN12 could be common polymorphisms in the Malay ethnic group; however, this requires further elucidation. Future studies using larger groups and higher numbers of advanced cases are necessary to evaluate the relationship between FEVR-causing gene variants and the risk of ROP susceptibility in Malaysian infants.

  14. Razali MH, Ismail NA, Osman UM, Rozaini MZH, Yusoff M
    Data Brief, 2020 Feb;28:104992.
    PMID: 31890823 DOI: 10.1016/j.dib.2019.104992
    Titanate compounds was synthesized using hydrothermal method at various temperature (100, 150, 200, and 250 °C) for 24 hours. As-synthesized titanate was characterized using FTIR, XRD and nitrogen gas adsorption. FTIR spectra was scanned from 4000 to 400 cm-1 using Perkin Elmer Spectrum 100 FTIR spectrophotometer. XRD diffractogram was performed by using Rigaku Miniflex (II) X-ray diffractometer operating at a scanning rate of 2.00° min-1. The diffraction spectra were recorded at the diffraction angle, 2θ from 10° to 80° at room temperature. Nitrogen gas adsorption analysis was studied by using Micromeritics ASAP2020 (Alaska) to determine the surface area and pores size distribution. The nitrogen adsorption and desorption was measured at 77 K (temperature of liquid nitrogen) and the samples were degassed in a vacuum at 110 °C under nitrogen flow for overnight prior to analysis.
  15. Hashiguchi Y, Zakaria MR, Maeda T, Yusoff MZM, Hassan MA, Shirai Y
    Sci Total Environ, 2020 Mar 25;710:136277.
    PMID: 31923663 DOI: 10.1016/j.scitotenv.2019.136277
    Palm oil mill effluent (POME) contains complex and highly biodegradable organic matters so discharging it without appropriate treatment may lead to environmental problems. POME final discharge quality is normally determined based on conventional chemical detection such as by biological oxygen demand (BOD) and chemical oxygen demand (COD). The novelty of the present study is that the toxicity effects of the POME final discharge samples were evaluated based on whole effluent toxicity (WET) and toxicity identification evaluation (TIE) tests using Daphnia magna. The toxicity unit (TU) values were recorded to be in the range from TU = 1.1-11 obtained from WET, and the TIE manipulation tests suggested that a substantial amount of toxic compounds was contained in the POME final discharge. Phenol, 2,6-bis (1,1-dimethylethyl)- and heavy metals such as Cu and Zn were detected in all the effluents and were recognized as being the main toxicants in the POME final discharge. GC/MS analyses also successfully identified cyclic volatile methyl siloxanes; cyclotetrasiloxane, octamethyl- (D4), cyclopentasiloxane, decamethyl- (D5), cyclohexasiloxane, dodecamethyl- (D6). D4 was detected at 0.0148-0.0357 mg/L, which could be potentially toxic. The palm oil industry used only water in the form of steam to process the fruits, and the presence of these compounds might be derived from the detergents and grease used in palm oil mill cleaning and maintenance operations. An appropriate treatment process is thus required to eliminate these toxicants from the POME final discharge. It is recommended that two approaches, chemical-based monitoring as well as biological toxicity-based monitoring, should be utilized for achieving an acceptable quality of POME final discharge in the future.
  16. Chuah KH, Wan Yusoff WNI, Sthaneshwar P, Nik Mustapha NR, Mahadeva S, Chan WK
    Liver Int, 2019 07;39(7):1315-1324.
    PMID: 30825254 DOI: 10.1111/liv.14084
    INTRODUCTION: MACK-3 (combination of hoMa, Ast and CK18) was reported to be a good biomarker for the diagnosis of fibrotic non-alcoholic steatohepatitis (NASH). However, there is no external validation to date.

    AIM: To evaluate the accuracy of MACK-3 for the diagnosis of fibrotic NASH.

    METHODOLOGY: Consecutive adult non-alcoholic fatty liver disease (NAFLD) patients who had liver biopsy in a university hospital were included. MACK-3 was calculated using the online calculator using the following variables: fasting glucose, fasting insulin, aspartate aminotransferase (AST) and cytokeratin 18 (CK18). MACK-3 cut-offs ≤0.134 and ≥0.550 were used to predict absence and presence of fibrotic NASH, respectively. Histopathological examination of liver biopsy specimen was reported according to the NASH Clinical Research Network Scoring System.

    RESULTS: Data for 196 subjects were analysed. MACK-3 was good for diagnosis of fibrotic NASH (area under receiver-operating characteristics curve [AUROC] 0.80), comparable to the Fibrosis-4 index (FIB4) and the NAFLD fibrosis score (NFS) and superior to the BARD score and CK18. MACK-3 was good for diagnosis of active NASH (AUROC 0.81) and was superior to other blood fibrosis tests. The overall accuracy, percentage of subjects in grey zone, sensitivity, specificity, positive predictive value and negative predictive value of MACK-3 for diagnosis of fibrotic NASH was 79.1%, 46.9%, 100%, 43.8%, 43.1% and 100%, respectively, while for diagnosis of active NASH was 90.0%, 39.3%, 84.2%, 81.4%, 88.9% and 74.5%, respectively.

    CONCLUSION: MACK-3 is promising as a non-invasive test for active NASH and fibrotic NASH and may be useful to identify patients who need more aggressive intervention.

  17. Ali- Saeed R, Alabsi AM, Ideris A, Omar AR, Yusoff K, Ali AM
    Asian Pac J Cancer Prev, 2019 Mar 26;20(3):757-765.
    PMID: 30909682
    Aim: Newcastle disease virus (NDV) is a member of genus Avulavirus within the family Paramyxoviridae. Interest
    of using NDV as an anticancer agent has arisen from its ability to kill tumor cells with limited toxicity to normal cells.
    Methods: In this investigation, the proliferation of brain tumor cell line, glioblastoma multiform (DBTRG.05MG)
    induced by NDV strain AF2240 was evaluated in-vitro, by using MTT proliferation assay. Furthermore, Cytological
    observations were studied using fluorescence microscopy and transmission electron microscopy, DNA laddering in
    agarose gel electrophoresis assay used to detect the mode of cell death and analysis of the cellular DNA content by
    flowcytometery. Results: MTT proliferation assay, Cytological observations using fluorescence microscopy and
    transmission electron microscopy show the anti-proliferation effect and apoptogenic features of NDV on DBTRG.05MG.
    Furthermore, analysis of the cellular DNA content showed that there was a loss of treated cells in all cell cycle phases
    (G1, S and G2/M) accompanied with increasing in sub-G1 region (apoptosis peak). Conclusion: It could be concluded
    that NDV strain AF2240 is a potent antitumor agent that induce apoptosis and its cytotoxicity increasing while increasing
    of time and virus titer.
  18. Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Akseer R, et al.
    PLoS One, 2019;14(4):e0214326.
    PMID: 30939149 DOI: 10.1371/journal.pone.0214326
    Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.
  19. Rahman NA, Adnan MM, Yusoff A, Shu JMH, Rustam K
    Indian J Dent Res, 2020 4 5;31(1):61-66.
    PMID: 32246684 DOI: 10.4103/ijdr.IJDR_430_18
    Background: Dental personnel are vulnerable to work-related musculoskeletal symptoms (WMSS) due to the nature of their profession.

    Aim: To determine WMSS experienced by dental auxiliaries and their coping strategies toward these symptoms.

    Setting and Design: A cross-sectional study was conducted on 82 dental auxiliaries at a university dental hospital in Malaysia.

    Materials and Methods: Nordic musculoskeletal questionnaire and the Brief COPE questionnaire were used to measure the musculoskeletal symptoms and coping strategies of the respondents, respectively. Data were analyzed using IBM SPSS version 22.0.

    Results: Dental auxiliaries consisted of dental staff nurses (30.5%), dental surgery assistants (40.2%), dental technologists (18.3%), and healthcare assistants (11.0%). Their mean [standard deviation (SD)] age was 33.4 (7.60) years. Most of the respondents had been troubled with ache, pain, and discomfort at the neck, 54.9% (95% confidence interval 44.0%, 66.0%]. In addition, they were troubled mainly with distress at the low back (34.1%) and the ankle or feet (34.1%) which had prevented the respondents from doing their regular job over the past 12 months. The most common areas that had troubled the respondents over the past 7 days were the neck (36.6%), low back (36.6%), and ankle or feet (36.6%). The coping strategy most commonly practiced by the respondents was religion with a mean (SD) score of 3.70 (2.15), followed by active coping [3.13 (0.68)] and acceptance [3.13 (0.69)].

    Conclusion: The prevalence of WMSS was high in the dental auxiliaries particularly in the neck region. The most common coping strategy used was religion. Awareness programs on the prevention of WMSS among the dental auxiliaries should be increased.

  20. Abdul Wahab P, Mohd Yusoff D, Abdul Kadir A, Ali SH, Lee YY, Kueh YC
    PeerJ, 2020;8:e8581.
    PMID: 32175185 DOI: 10.7717/peerj.8581
    Background: Chronic constipation is a common symptom among the elderly, and it may affect their quality of life (QoL). A lack of available research focused on the elderly means that this effect is not well understood. This study aimed to develop and validate a new scale (Elderly-Constipation Impact Scale (E-CIS)) to measure the impact of chronic constipation on QoL among the elderly.

    Methods: A pool of items was generated from a qualitative study, literature reviews, and expert reviews. Exploratory factor analysis (EFA) was performed on the original 40 items of the E-CIS and followed by 27 items for confirmatory factor analysis (CFA). A total of 470 elderly people with chronic constipation were involved.

    Results: The mean age of the participants was 68.64 ± 6.57. Finally, only 22 items were indicated as appropriately representing the E-CIS, which were grouped into seven subscales: 'daily activities', 'treatment satisfaction', 'lack of control of bodily function', 'diet restriction', 'symptom intensity', 'anxiety' and 'preventive actions'. The scale was confirmed as valid (root mean square error of approximation (RMSEA) = 0.04, comparative fit index (CFI) = 0.961, Tucker-Lewis index (TLI) = 0.952 and chi-square/degree of freedom (chiSq/df) = 1.44) and reliable (Cronbach's alpha: 0.66-0.85, composite reliability (CR) = 0.699-0.851) to assess the impact of chronic constipation on the elderly's QoL.

    Conclusions: The E-CIS is useful to measure the impact of chronic constipation on the elderly's QoL. A further test is needed to determine the validity and reliability of this scale in other elderly population.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links