METHODS: The effects of LPS-induced NLRP3 activation in the presence or absence of MCC950, NLRP3-specific inhibitor, was tested on a panel of three pancreatic cancer cell lines (SW1990, PANC1 and Panc10.05). Western blotting, cell viability kits and ELISA kits were used to examine the effects of LPS-induced NLRP3 activation and inhibition by MCC950 on NLRP3 expression, cell viability, caspase-1 activity and cytokine IL-1β, respectively.
RESULTS: LPS-induced inflammation in the presence of ATP activates NLRP3 that subsequently increases pancreatic cancer cell proliferation by increasing caspase-1 activity leading to overall production of IL-1β. The inhibition of the NLRP3 inflammasome activation via the specific NLRP3 antagonist MCC950 was able to reduce the cell viability of pancreatic cancer cells. However, the efficacy of MCC950 varies between cell types which is most probably due to the difference in ASC expressions which have a different role in inflammasome activation.
CONCLUSION: There is a dynamic interaction between inflammasome that regulates inflammasome-mediated inflammation in pancreatic adenocarcinoma cells.
PATIENTS AND METHODS: APEC was a nonrandomized phase 2 trial conducted in the Asia-Pacific region. Patients (n = 289) received once-every-2-weeks cetuximab with investigator's choice of chemotherapy (FOLFOX or FOLFIRI). The primary end point was best confirmed overall response rate (BORR); progression-free survival (PFS) and overall survival (OS) were secondary end points. Early tumor shrinkage (ETS) and depth of response (DpR) were also evaluated.
RESULTS: In the KRAS wt population, BORR was 58.8%, median PFS 11.1 months, and median OS 26.8 months. Expanded RAS mutational analysis revealed that patients with RAS wt mCRC had better outcomes (BORR = 64.7%; median PFS = 13.0 months; median OS = 28.4 months). The data suggest that ETS and DpR may be associated with survival outcomes in the RAS wt population. Although this study was not designed to formally assess differences in outcome between treatment subgroups, efficacy results appeared similar for patients treated with FOLFOX and FOLFIRI. There were no new safety findings; in particular, grade 3/4 skin reactions were within clinical expectations.
CONCLUSION: The observed activity and safety profile is similar to that reported in prior first-line pivotal studies involving weekly cetuximab, suggesting once-every-2-weeks cetuximab is effective and tolerable as first-line therapy and may represent an alternative to weekly administration.
Materials and methods: In the present study, we evaluated the in vitro cytotoxicity of double and triple combinations consisting of 1'S-1'-acetoxychavicol acetate (ACA), Mycobacterium indicus pranii (MIP) and cisplatin (CDDP) against 14 various human cancer cell lines to address the need for more effective therapy. Our data show synergistic effects in MCF-7 cells treated with MIP:ACA, MIP:CDDP and MIP:ACA:CDDP combinations. The type of interaction between MIP, ACA and CDDP was evaluated based on combination index being <0.8 for synergistic effect. Identifying the mechanism of cell death based on previous studies involved intrinsic apoptosis and nuclear factor kappa B (NF-κB) and tested in Western blot analysis. Inactivation of NF-κB was confirmed by p65 and IκBα, while intrinsic apoptosis pathway activation was confirmed by caspase-9 and Apaf-1 expression.
Results: All combinations confirmed intrinsic apoptosis activation and NF-κB inactivation.
Conclusion: Double and triple combination regimens that target induction of the same death mechanism with reduced dosage of each drug could potentially be clinically beneficial in reducing dose-related toxicities.
Materials and methods: The antiproliferative activity of koenimbin was examined using MTT, and the apoptotic detection was carried out by acridine orange/propidium iodide (AO/PI) double-staining and multiparametric high-content screening (HCS) assays. Caspase bioluminescence assay, reverse transcription polymerase chain reaction (RT-PCR), and immunoblotting were conducted to confirm the expression of apoptotic-associated proteins. Cell cycle analysis was investigated using flow cytometry. Involvement of nuclear factor-kappa B (NF-κB) was analyzed using HCS assay. Aldefluor™ and prostasphere formation examinations were used to evaluate the impact of koenimbin on PC-3 CSCs in vitro.
Results: Koenimbin remarkably inhibited cell proliferation in a dose-dependent manner. Koenimbin induced nuclear condensation, formation of apoptotic bodies, and G0/G1 phase arrest of PC-3 cells. Koenimbin triggered the activation of caspase-3/7 and caspase-9 and the release of cytochrome c, decreased anti-apoptotic Bcl-2 and HSP70 proteins, increased pro-apoptotic Bax proteins, and inhibited NF-κB translocation from the cytoplasm to the nucleus, leading to the activation of the intrinsic apoptotic pathway. Koenimbin significantly (P<0.05) reduced the aldehyde dehydrogenase-positive cell population of PC-3 CSCs and the size and number of PC-3 CSCs in primary, secondary, and tertiary prostaspheres in vitro.
Conclusion: Koenimbin has chemotherapeutic potential that may be employed for future treatment through decreasing the recurrence of cancer, resulting in the improvement of cancer management strategies and patient survival.
HYPOTHESIS: Intracellular copper levels have been reported to correlate with tumor pathogenesis and affect the sensitivity of cancer cells to cytotoxic chemotherapy. We hypothesized that intracellular copper levels may affect the sensitivity of oral cancer cells to curcumin.
METHODS: We analysed the correlation between intracellular copper levels and response to curcumin treatment in a panel of OSCC cell lines derived from oral cancer patients. Exogenous copper was supplemented in curcumin insensitive cell lines to observe the effect of copper on curcumin-mediated inhibition of cell viability and migration, as well as induction of oxidative stress and apoptosis. Protein markers of cell migration and oxidative stress were also analysed using Western blotting.
RESULTS: Concentrations of curcumin which inhibited 50% OSCC cell viability (IC50) was reduced up to 5 times in the presence of 250 µM copper. Increased copper level in curcumin-treated OSCC cells was accompanied by the induction of intracellular ROS and increased level of Nrf2 which regulates oxidative stress responses in cells. Supplemental copper also inhibited migration of curcumin-treated cells with enhanced level of E-cadherin and decreased vimentin, indications of suppressed epithelial-mesenchymal transition. Early apoptosis was observed in combined treatment but not in treatment with curcumin or copper alone.
CONCLUSION: Supplement of copper significantly enhanced the inhibitory effect of curcumin treatment on migration and viability of oral cancer cells. Together, these findings provide molecular insight into the role of copper in overcoming insensitivity of oral cancer cells to curcumin treatment, suggesting a new strategy for cancer therapy.
MATERIALS AND METHODS: K. odoratissima methanol extract (KME) was prepared, and MTT assay was used to evaluate the cytotoxicity. To identify the cytotoxic compound, a bioassay-guided investigation was performed on methanol extract. 8-Hydroxy-ar-turmerone was isolated as a bioactive compound. In vivo study was performed in the breast cancer rat model. LA7 cell line was used to induce the breast tumor. Histopathological and expression changes of PCNA, Bcl-2, Bax, p27 and p21 and caspase-3 were examined. The induction of apoptosis was tested using Annexin V-fluorescein isothiocyanate (FITC) assay. To confirm the intrinsic pathway of apoptosis, caspase-7 and caspase-9 assays were utilized. In addition, cell cycle arrest was evaluated.
RESULTS: Our results demonstrated that K. odoratissima has an obvious effect on the arrest of proliferation of cancer cells. It induced apoptosis, transduced the cell death signals, decreased the threshold of mitochondrial membrane potential (MMP), upregulated Bax and downregulated Bcl-2.
CONCLUSION: This study demonstrated that K. odoratissima exhibits antitumor activity against breast cancer cells via cell death and cell cycle arrest.