Displaying publications 1121 - 1140 of 1534 in total

Abstract:
Sort:
  1. Kamarudin MN, Mohd Raflee NA, Hussein SS, Lo JY, Supriady H, Abdul Kadir H
    Drug Des Devel Ther, 2014;8:1765-80.
    PMID: 25336920 DOI: 10.2147/DDDT.S67980
    Alpha-lipoic acid, a potent antioxidant with multifarious pharmacological benefits has been reported to be neuroprotective in several neuronal models and used to treat neurological disorders such as Alzheimer's disease. Nonetheless, conclusive mechanisms of alpha-lipoic acid for its protective effects particularly in NG108-15 cells have never been investigated. In this study, the intricate neuroprotective molecular mechanisms by (R)-(+)-alpha-lipoic acid (R-LA) against H2O2-induced cell death in an in vitro model of neurodegeneration were elucidated. Pretreatment with R-LA (2 hours) significantly increased NG108-15 cell viability as compared to H2O2-treated cells and mitigated the induction of apoptosis as evidenced by Hoechst 33342/propidium iodide staining. R-LA (12.5-50 μM) aggrandized the reduced glutathione over glutathione disulfide ratio followed by a reduction in the intracellular reactive oxygen species level and an increase in mitochondrial membrane potential following H2O2 exposure. Moreover, pretreatment with R-LA stimulated the activation of PI3K-Akt through mTORC1 and mTORC2 components (mTOR, rictor and raptor) and production of antiinflammatory cytokine, IL-10 which led to the inactivation of glycogen synthase kinase-3β (GSK-3β) and reduction of both Bax/Bcl2 and Bax/Bcl-xL ratios, accompanied by inhibition of the cleaved caspase-3. Additionally, this observation was preceded by the suppression of NF-κβ p65 translocation and production of proinflammatory cytokines (IL-6 and TNF-α). The current findings accentuate new mechanistic insight of R-LA against apoptogenic and brain inflammatory factors in a neuronal model. These results further advocate the therapeutic potential of R-LA for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Cell Survival/drug effects
  2. Arshad R, Sohail MF, Sarwar HS, Saeed H, Ali I, Akhtar S, et al.
    PLoS One, 2019;14(6):e0217079.
    PMID: 31170179 DOI: 10.1371/journal.pone.0217079
    Post-operative surgical site infections (SSI) present a serious threat and may lead to complications. Currently available dressings for SSI lack mucoadhesion, safety, efficacy and most importantly patient compliance. We aimed to address these concerns by developing a bioactive thiolated chitosan-alginate bandage embedded with zinc oxide nanoparticles (ZnO-NPs) for localized topical treatment of SSI. The FTIR, XRD, DSC and TGA of bandage confirmed the compatibility of ingredients and modifications made. The porosity, swelling index and lysozyme degradation showed good properties for wound healing and biodegradation. Moreover, in-vitro antibacterial activity showed higher bactericidal effect as compared to ZnO-NPs free bandage. In-vivo wound healing in murine model showed significant improved tissue generation and speedy wound healing as compared to positive and negative controls. Over all, thiolated bandage showed potential as an advanced therapeutic agent for treating surgical site infections, meeting the required features of an ideal surgical dressing.
    Matched MeSH terms: Cell Survival/drug effects
  3. Buskaran K, Hussein MZ, Moklas MAM, Masarudin MJ, Fakurazi S
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071389 DOI: 10.3390/ijms22115786
    Hepatocellular carcinoma or hepatoma is a primary malignant neoplasm that responsible for 75-90% of all liver cancer in humans. Nanotechnology introduced the dual drug nanodelivery method as one of the initiatives in nanomedicine for cancer therapy. Graphene oxide (GO) loaded with protocatechuic acid (PCA) and chlorogenic acid (CA) have shown some anticancer activities in both passive and active targeting. The physicochemical characterizations for nanocomposites were conducted. Cell cytotoxicity assay and lactate dehydrogenase were conducted to estimate cell cytotoxicity and the severity of cell damage. Next, nanocomposite intracellular drug uptake was analyzed using a transmission electron microscope. The accumulation and localization of fluorescent-labelled nanocomposite in the human hepatocellular carcinoma (HepG2) cells were analyzed using a fluorescent microscope. Subsequently, Annexin V- fluorescein isothiocyanate (FITC)/propidium iodide analysis showed that nanocomposites induced late apoptosis in HepG2 cells. Cell cycle arrest was ascertained at the G2/M phase. There was the depolarization of mitochondrial membrane potential and an upregulation of reactive oxygen species when HepG2 cells were induced by nanocomposites. In conclusion, HepG2 cells treated with a graphene oxide-polyethylene glycol (GOP)-PCA/CA-FA dual drug nanocomposite exhibited significant anticancer activities with less toxicity compared to pristine protocatechuic acid, chlorogenic acid and GOP-PCA/CA nanocomposite, may be due to the utilization of a folic acid-targeting nanodrug delivery system.
    Matched MeSH terms: Cell Survival/drug effects
  4. Chen YB, Lan YW, Chen LG, Huang TT, Choo KB, Cheng WT, et al.
    Cell Stress Chaperones, 2015 Nov;20(6):979-89.
    PMID: 26243699 DOI: 10.1007/s12192-015-0627-7
    Chronic obstructive pulmonary disease (COPD) is a sustained blockage of the airways due to lung inflammation occurring with chronic bronchitis and/or emphysema. Progression of emphysema may be slowed by vascular endothelial growth factor A (VEGFA), which reduces apoptotic tissue depletion. Previously, authors of the present report demonstrated that cis-resveratrol (c-RSV)-induced heat-shock protein 70 (HSP70) promoter-regulated VEGFA expression promoted neovascularization of genetically modified mesenchymal stem cells (HSP-VEGFA-MSC) in a mouse model of ischemic disease. Here, this same stem cell line was evaluated for its protective capacity to alleviate elastase-induced pulmonary emphysema in mice. Results of this study showed that c-RSV-treatment of HSP-VEGFA-MSC exhibited synergy between HSP70 transcription activity and induced expression of anti-oxidant-related genes when challenged by cigarette smoke extracts. Eight weeks after jugular vein injection of HSP-VEGFA-MSC into mice with elastase-induced pulmonary emphysema followed by c-RSV treatment to induce transgene expression, significant improvement was observed in respiratory functions. Expression of VEGFA, endogenous nuclear factor erythroid 2-related factor (Nrf 2), and manganese superoxide dismutase (MnSOD) was significantly increased in the lung tissues of the c-RSV-treated mice. Histopathologic examination of treated mice revealed gradual but significant abatement of emphysema and restoration of airspace volume. In conclusion, the present investigation demonstrates that c-RSV-regulated VEGFA expression in HSP-VEGFA-MSC significantly improved the therapeutic effects on the treatment of COPD in the mouse, possibly avoiding side effects associated with constitutive VEGFA expression.
    Matched MeSH terms: Cell Survival/drug effects
  5. Seifaddinipour M, Farghadani R, Namvar F, Mohamad J, Abdul Kadir H
    Molecules, 2018 Jan 05;23(1).
    PMID: 29303970 DOI: 10.3390/molecules23010110
    Pistachio (Pistacia vera L.) hulls (PVLH) represents a significant by-product of industrial pistachio processing that contains high amounta of phenolic and flavonoid compounds known to act as antioxidants. The current study was designed to evaluate the anti-tumor and anti-angiogenic potentials of PVLH extracts. The cytotoxic effects of hexane, ethyl acetate, methanol, and water PVLH extracts toward human colon cancer (HT-29 and HCT-116), breast adenocarcinoma (MCF-7), lung adenocarcinoma (H23), liver hepatocellular carcinoma (HepG2), cervical cancer (Ca Ski), and normal fibroblast (BJ-5ta) cells were assessed using a MTT cell viability assay. Apoptosis induction was evaluated through the different nuclear staining assays and confirmed by flow cytometry analysis. Anti-angiogenic activities were also determined using chorioallantoic membrane (CAM) assay. PVLH ethyl acetate extracts (PVLH-EAE) demonstrated a suppressive effect with an IC50 value of 21.20 ± 1.35, 23.00 ± 1.2 and 25.15 ± 1.85 µg/mL against MCF-7, HT-29 and HCT-116, respectively, after 72 h of treatment. Morphological assessment and flow cytometry analysis showed the potential of PVLH-EAE to induce apoptosis. PVLH-EAE at the highest concentration demonstrated significant inhibition of angiogenesis as comparing with control group. Also the expression of Bax increased and the expression of Bcl-2 decreased in treated MCF-7 cells. Thus, the apoptosis induction and angiogenesis potential of PVLH-EAE make it to be the most suitable for further cancer research study to deal with selective antitumor active substances to human cancers especially breast cancer.
    Matched MeSH terms: Cell Survival/drug effects
  6. Moghadamtousi SZ, Kadir HA, Paydar M, Rouhollahi E, Karimian H
    PMID: 25127718 DOI: 10.1186/1472-6882-14-299
    Annona muricata leaves have been reported to have antiproliferative effects against various cancer cell lines. However, the detailed mechanism has yet to be defined. The current study was designed to evaluate the molecular mechanisms of A. muricata leaves ethyl acetate extract (AMEAE) against lung cancer A549 cells.
    Matched MeSH terms: Cell Survival/drug effects
  7. Nordin N, Kanagesan S, Zamberi NR, Yeap SK, Abu N, Tamilselvan S, et al.
    IET Nanobiotechnol, 2017 Apr;11(3):343-348.
    PMID: 28476993 DOI: 10.1049/iet-nbt.2016.0007
    In this study, nanocrystalline magnesium zinc ferrite nanoparticles were successfully prepared by a simple sol-gel method using copper nitrate and ferric nitrate as raw materials. The calcined samples were characterised by differential thermal analysis/thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction. Transmission electron microscopy revealed that the average particle size of the calcined sample was in a range of 17-41 nm with an average of 29 nm and has spherical size. A cytotoxicity test was performed on human breast cancer cells (MDA MB-231) and (MCF-7) at various concentrations starting from (0 µg/ml) to (800 µg/ml). The sample possessed a mild toxic effect toward MDA MB-231 and MCF-7 after being examined with MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide) assay for up to 72 h of incubation. Higher reduction of cells viability was observed as the concentration of sample was increased in MDA MB-231 cell line than in MCF-7. Therefore, further cytotoxicity tests were performed on MDA MB-231 cell line.
    Matched MeSH terms: Cell Survival/drug effects
  8. Lai SL, Cheah SC, Wong PF, Noor SM, Mustafa MR
    PLoS One, 2012;7(5):e38103.
    PMID: 22666456 DOI: 10.1371/journal.pone.0038103
    BACKGROUND: Targeting angiogenesis has emerged as an attractive and promising strategy in anti-cancer therapeutic development. The present study investigates the anti-angiogenic potential of Panduratin A (PA), a natural chalcone isolated from Boesenbergia rotunda by using both in vitro and in vivo assays.

    METHODOLOGY/PRINCIPAL FINDINGS: PA exerted selective cytotoxicity on human umbilical vein endothelial cells (HUVECs) with IC(50) value of 6.91 ± 0.85 µM when compared to human normal fibroblast and normal liver epithelial cells. Assessment of the growth kinetics by cell impedance-based Real-Time Cell Analyzer showed that PA induced both cytotoxic and cytostatic effects on HUVECs, depending on the concentration used. Results also showed that PA suppressed VEGF-induced survival and proliferation of HUVECs. Furthermore, endothelial cell migration, invasion, and morphogenesis or tube formation demonstrated significant time- and dose-dependent inhibition by PA. PA also suppressed matrix metalloproteinase-2 (MMP-2) secretion and attenuated its activation to intermediate and active MMP-2. In addition, PA suppressed F-actin stress fiber formation to prevent migration of the endothelial cells. More importantly, anti-angiogenic potential of PA was also evidenced in two in vivo models. PA inhibited neo-vessels formation in murine Matrigel plugs, and angiogenesis in zebrafish embryos.

    CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrated the distinctive anti-angiogenic properties of PA, both in vitro and in vivo. This report thus reveals another biological activity of PA in addition to its reported anti-inflammatory and anti-cancer activities, suggestive of PA's potential for development as an anti-angiogenic agent for cancer therapy.

    Matched MeSH terms: Cell Survival/drug effects
  9. Nagoor NH, Shah Jehan Muttiah N, Lim CS, In LL, Mohamad K, Awang K
    PLoS One, 2011;6(8):e23661.
    PMID: 21858194 DOI: 10.1371/journal.pone.0023661
    The aim of this study was to determine the cytotoxic and apoptotic effects of erythrocarpine E (CEB4), a limonoid extracted from Chisocheton erythrocarpus on human oral squamous cell carcinoma. Based on preliminary dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, CEB4 treated HSC-4 cells demonstrated a cytotoxic effect and inhibited cell proliferation in a time and dose dependent manner with an IC(50) value of 4.0±1.9 µM within 24 h of treatment. CEB4 was also found to have minimal cytotoxic effects on the normal cell line, NHBE with cell viability levels maintained above 80% upon treatment. Annexin V-fluorescein isothiocyanate (FITC), poly-ADP ribose polymerase (PARP) cleavage and DNA fragmentation assay results showed that CEB4 induces apoptosis mediated cell death. Western blotting results demonstrated that the induction of apoptosis by CEB4 appeared to be mediated through regulation of the p53 signalling pathway as there was an increase in p53 phosphorylation levels. CEB4 was also found to up-regulate the pro-apoptotic protein, Bax, while down-regulating the anti-apoptotic protein, Bcl-2, suggesting the involvement of the intrinsic mitochondrial pathway. Reduced levels of initiator procaspase-9 and executioner caspase-3 zymogen were also observed following CEB4 exposure, hence indicating the involvement of cytochrome c mediated apoptosis. These results demonstrate the cytotoxic and apoptotic ability of erythrocarpine E, and suggest its potential development as a cancer chemopreventive agent.
    Matched MeSH terms: Cell Survival/drug effects
  10. Jada SR, Matthews C, Saad MS, Hamzah AS, Lajis NH, Stevens MF, et al.
    Br J Pharmacol, 2008 Nov;155(5):641-54.
    PMID: 18806812 DOI: 10.1038/bjp.2008.368
    BACKGROUND AND PURPOSE: Andrographolide, the major phytoconstituent of Andrographis paniculata, was previously shown by us to have activity against breast cancer. This led to synthesis of new andrographolide analogues to find compounds with better activity than the parent compound. Selected benzylidene derivatives were investigated for their mechanisms of action by studying their effects on the cell cycle progression and cell death.
    EXPERIMENTAL APPROACH: Microculture tetrazolium, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and sulphorhodamine B (SRB) assays were utilized in assessing the in vitro growth inhibition and cytotoxicity of compounds. Flow cytometry was used to analyse the cell cycle distribution of control and treated cells. CDK1 and CDK4 levels were determined by western blotting. Apoptotic cell death was assessed by fluorescence microscopy and flow cytometry.
    KEY RESULTS: Compounds, in nanomolar to micromolar concentrations, exhibited growth inhibition and cytotoxicity in MCF-7 (breast) and HCT-116 (colon) cancer cells. In the NCI screen, 3,19-(2-bromobenzylidene) andrographolide (SRJ09) and 3,19-(3-chloro-4-fluorobenzylidene) andrographolide (SRJ23) showed greater cytotoxic potency and selectivity than andrographolide. SRJ09 and SRJ23 induced G(1) arrest and apoptosis in MCF-7 and HCT-116 cells, respectively. SRJ09 downregulated CDK4 but not CDK1 level in MCF-7 cells. Apoptosis induced by SRJ09 and SRJ23 in HCT-116 cells was confirmed by annexin V-FITC/PI flow cytometry analysis.
    CONCLUSION AND IMPLICATIONS: The new benzylidene derivatives of andrographolide are potential anticancer agents. SRJ09 emerged as the lead compound in this study, exhibiting anticancer activity by downregulating CDK4 to promote a G(1) phase cell cycle arrest, coupled with induction of apoptosis.
    Matched MeSH terms: Cell Survival/drug effects
  11. Futra D, Heng LY, Surif S, Ahmad A, Ling TL
    Sensors (Basel), 2014 Dec 05;14(12):23248-68.
    PMID: 25490588 DOI: 10.3390/s141223248
    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.
    Matched MeSH terms: Cell Survival/drug effects
  12. Nalairndran G, Hassan Abdul Razack A, Mai CW, Fei-Lei Chung F, Chan KK, Hii LW, et al.
    J Cell Mol Med, 2020 Oct;24(20):12188-12198.
    PMID: 32926495 DOI: 10.1111/jcmm.15876
    Prostate cancer (PCa) is the most common malignancy and is the second leading cause of cancer among men globally. Using a kinome-wide lentiviral small-hairpin RNA (shRNA) library screen, we identified phosphoinositide-dependent kinase-1 (PDPK1) as a potential mediator of cell survival in PCa cells. We showed that knock-down of endogenous human PDPK1 induced significant tumour-specific cell death in PCa cells (DU145 and PC3) but not in the normal prostate epithelial cells (RWPE-1). Further analyses revealed that PDPK1 mediates cancer cell survival predominantly via activation of serum/glucocorticoid-regulated kinase 3 (SGK3). Knock-down of endogenous PDPK1 in DU145 and PC3 cells significantly reduced SGK3 phosphorylation while ectopic expression of a constitutively active SGK3 completely abrogated the apoptosis induced by PDPK1. In contrast, no such effect was observed in SGK1 and AKT phosphorylation following PDPK1 knock-down. Importantly, PDPK1 inhibitors (GSK2334470 and BX-795) significantly reduced tumour-specific cell growth and synergized docetaxel sensitivity in PCa cells. In summary, our results demonstrated that PDPK1 mediates PCa cells' survival through SGK3 signalling and suggest that inactivation of this PDPK1-SGK3 axis may potentially serve as a novel therapeutic intervention for future treatment of PCa.
    Matched MeSH terms: Cell Survival/drug effects
  13. Baharuddin P, Satar N, Fakiruddin KS, Zakaria N, Lim MN, Yusoff NM, et al.
    Oncol Rep, 2016 Jan;35(1):13-25.
    PMID: 26531053 DOI: 10.3892/or.2015.4371
    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10-40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC.
    Matched MeSH terms: Cell Survival/drug effects
  14. Wan Hasan WN, Abd Ghafar N, Chin KY, Ima-Nirwana S
    Drug Des Devel Ther, 2018;12:1715-1726.
    PMID: 29942115 DOI: 10.2147/DDDT.S168935
    PURPOSE: Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis. However, detailed studies of the effects of AnTT on preosteoblastic cells were limited. This study was conducted to investigate the osteogenic effect of AnTT on preosteoblast MC3T3-E1 cells in a time-dependent manner.

    MATERIALS AND METHODS: Murine MC3T3-E1 preosteoblastic cells were cultured in the different concentrations of AnTT (0.001-1 µg/mL) up to 24 days. Expression of osteoblastic differentiation markers was measured by qPCR (osterix [OSX], collagen 1 alpha 1 [COL1α1], alkaline phosphatase [ALP], and osteocalcin [OCN]) and by fluorometric assay for ALP activity. Detection of collagen and mineralized nodules was done via Direct Red staining and Alizarin Red staining, respectively.

    RESULTS: The results showed that osteoblastic differentiation-related genes, such as OSX, COL1α1, ALP, and OCN, were significantly increased in the AnTT-treated groups compared to the vehicle group in a time-dependent manner (P<0.05). Type 1 collagen level was increased from day 3 to day 15 in the AnTT-treated groups, while ALP activity was increased from day 9 to day 21 in the AnTT-treated groups (P<0.05). Enhanced mineralization was observed in the AnTT-treated groups via increasing Alizarin Red staining from day 3 to day 21 (P<0.05).

    CONCLUSION: Our results suggest that AnTT enhances the osteogenic activity by promoting the bone formation-related genes and proteins in a temporal and sequential manner.

    Matched MeSH terms: Cell Survival/drug effects
  15. Chan YY, Kim KH, Cheah SH
    J Ethnopharmacol, 2011 Oct 11;137(3):1183-8.
    PMID: 21810462 DOI: 10.1016/j.jep.2011.07.050
    ETHNOPHARMACOLOGICAL RELEVANCE: Sargassum polycystum, a type of brown seaweed, has been used for the treatment of skin-related disorders in traditional medicine.

    AIM OF THE STUDY: The aim of the present study is to investigate the antimelanogenesis effect of Sargassum polycystum extracts by cell-free mushroom tyrosinase assay followed by cell viability assay, cellular tyrosinase assay and melanin content assay using B16F10 murine melanoma cells.

    MATERIALS AND METHODS: Sargassum polycystum was extracted with 95% ethanol and further fractionated with hexane, ethyl acetate and water. The ethanolic crude extract and its fractionated extracts were tested for their potential to act as antimelanogenesis or skin-whitening agents by their abilities to inhibit tyrosinase activity in the cell-free mushroom tyrosinase assay and cellular tyrosinase derived from melanin-forming B16F10 murine melanoma cells. The tyrosinase inhibitory activity was correlated to the inhibition of melanin production in α-MSH-stimulated and unstimulated B16F10 cells.

    RESULTS: Sargassum polycystum ethanolic extract and its fractions had little or no inhibitory effect on mushroom tyrosinase activity. However, when tested on cellular tyrosinase, the ethanolic extract and its non-polar fraction, hexane fraction (SPHF), showed significant inhibition of cellular tyrosinase activity. In parallel to its cellular tyrosinase inhibitory activity, SPHF was also able to inhibit basal and α-MSH-stimulated melanin production in B16F10 cells.

    CONCLUSIONS: Our findings showed that (i) cellular tyrosinase assay is more reliable than mushroom tyrosinase assay in the initial testing of potential antimelanogenesis agents and, (ii) SPHF inhibited melanogenesis by inhibiting cellular tyrosinase activity. SPHF may be useful for treating hyperpigmentation and as a skin-whitening agent in cosmetics industry.

    Matched MeSH terms: Cell Survival/drug effects
  16. Ghasemzadeh A, Jaafar HZ, Karimi E
    Int J Mol Sci, 2012 Nov 13;13(11):14828-44.
    PMID: 23203096 DOI: 10.3390/ijms131114828
    The effect of foliar application of salicylic acid (SA) at different concentrations (10-3 M and 10-5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10-5 M SA treatment. As the SA concentration was decreased from 10-3 M to 10-5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL-1, the DPPH antioxidant activity recorded the highest value of 58.30%-72.90% with the 10-5 M SA treatment followed by the 10-3 M SA (52.14%-63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%-46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10-5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased by foliar application of SA in a controlled environment and that the anticancer activity in young ginger extracts could be improved.
    Matched MeSH terms: Cell Survival/drug effects
  17. Ramadas A, Qureshi AM, Dominic NA, Botross NP, Riad A, Thirunavuk Arasoo VJ, et al.
    Asian Pac J Cancer Prev, 2015;16(4):1479-85.
    PMID: 25743818
    BACKGROUND: Even after completion of conventional treatment, breast cancer survivors continue to exhibit a variety of psychological and physical symptoms, affecting their quality of life. The study aimed to investigate the relationship between socio-demography, medical characteristics and health-related quality of life (HR-QOL) of a sample of breast cancer survivors in Malaysia.

    MATERIALS AND METHODS: This pilot cross-sectional survey was conducted among breast cancer survivors (n=40) who were members of Breast Cancer Support Group Centre Johor Bahru. A validated self-administered questionnaire was used to identify the relationships between socio-demography, medical characteristics and HR-QOL of the participants.

    RESULTS: Living with family and completion of treatment were significant predictive factors of self-rated QOL, while living with family and ever giving birth significantly predicted satisfaction with health and physical health. Psychological health had moderate correlations with number of children and early cancer stage. Survivors' higher personal income (>MYR4,500) was the only significant predictor of social relationship, while age, income more than MYR4,500 and giving birth significantly predicted environment domain score.

    CONCLUSIONS: The findings suggested the survivors coped better in all four HR-QOL domains if they were married, lived with family, had children and were employed.

    Matched MeSH terms: Survival Rate
  18. Subramaniam S, Rahmat J, Rahman NA, Ramasamy S, Bhoo-Pathy N, Pin GP, et al.
    Asian Pac J Cancer Prev, 2014;15(18):7863-7.
    PMID: 25292078
    BACKGROUND: Retinoblastoma is a rare type of cancer that usually develops in early childhood. If left untreated it can cause blindness and even death. The aim of this study is to determine sociodemographic and clinical features of retinoblastoma patients and also to determine the treatment pattern and outcome in Malaysia.

    MATERIALS AND METHODS: Data for this study were retrieved from the Retinoblastoma Registry of the National Eye Database (NED) in Malaysia. Hospital Kuala Lumpur, Hospital Umum Kuching, Sarawak and Hospital Queen Elizabeth, Kota Kinabalu were the major source data providers for this study. Data collected in the registry cover demography, clinical presentation, modes of treatment, outcomes and complications.

    RESULTS: The study group consisted of 119 patients (162 eyes) diagnosed with retinoblastoma between 2004 and 2012. There were 68 male (57.1%) and 51 (42.9%) female. The median age at presentation was 22 months. A majority of patients were Malays (54.6%), followed by Chinese (18, 5%), Indians (8.4%), and indigenous races (15.9%). Seventy six (63.8%) patients had unilateral involvement whereas 43 patients had bilateral disease (36.1%). It was found that most children presented with leukocoria (110 patients), followed by strabismus (19), and protopsis (12). Among the 76 with unilateral involvement (76 eyes), enucleation was performed for a majority (79%). More than half of these patients had extraocular extension. Of the 40 who received chemotherapy, 95% were given drugs systemically. Furthermore, in 43 patients with bilateral involvement (86 eyes), 35 (41%) eyes were enucleated and 17 (49%) showed extraocular extension. Seventy-two percent of these patients received systemic chemotherapy. The patients were followed up 1 year after diagnosis, whereby 66 were found to be alive and 4 dead. Sixteen patients defaulted treatment and were lost to follow-up, whereas follow-up data were not available in 33 patients.

    CONCLUSIONS: Patients with retinoblastoma in this middle-income Asian setting are presenting at late stages. As a result, a high proportion of patients warrant aggressive management such as enucleation. We also showed that a high number of patients default follow-up. Therefore, reduction in refusal or delay to initial treatment, and follow-up should be emphasized in order to improve the survival rates of retinoblastoma in this part of the world.
    Matched MeSH terms: Survival Rate
  19. Abdul Wahid SF, Ismail NA, Mohd-Idris MR, Jamaluddin FW, Tumian N, Sze-Wei EY, et al.
    Stem Cells Dev, 2014 Nov 1;23(21):2535-52.
    PMID: 25072307 DOI: 10.1089/scd.2014.0123
    Currently, the indications to perform reduced-intensity conditioning allogeneic hematopoietic stem cell transplant (RIC-HCT) are based on data derived mainly from large registry and single-centre retrospective studies. Thus, at the present time, there is limited direct evidence supporting the current practice in selecting patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) for RIC versus myeloablative conditioning (MAC) transplants. To determine the relationship between dose intensity of conditioning regimen and survival outcomes after allografting in AML/ALL patients, we performed a meta-analysis of 23 clinical trials reported between 1990 and 2013 involving 15,258 adult patients that compare survival outcomes after RIC-HCT versus MAC-HCT. RIC-HCT resulted in comparable <2-year and 2-6 year overall survival (OS) rates post-transplantation even though the RIC-HCT recipients were older and had more active disease than MAC-HCT recipients. The 2-6 year progression-free survival (PFS), nonrelapse mortality, acute graft-versus-host disease (GvHD) and chronic GvHD rates were reduced after RIC-HCT, but relapse rate was increased. Similar outcomes were observed regardless of disease type and status at transplantation. Odds ratio for all outcomes remained comparable with or without performing separate analyses for the year of HCT and for retrospective versus prospective studies. Among RIC-HCT recipients, survival rates were superior if patients were in CR at transplantation. Significant inter-study heterogeneity for aGvHD data and publication bias for PFS data were observed. This meta-analysis showed no OS benefit of MAC-HCT over RIC-HCT across the entire cohort of patients suggesting that RIC-HCT could be an effective therapeutic option for AML/ALL patients who are ineligible for MAC-HCT and CR status is preferred before RIC-HCT.
    Matched MeSH terms: Disease-Free Survival
  20. Siti-Azrin AH, Norsa'adah B, Naing NN
    Asian Pac J Cancer Prev, 2014;15(15):6455-9.
    PMID: 25124642
    BACKGROUND: Nasopharyngeal carcinoma (NPC) is the fourth most common cancer in Malaysia. The objective of this study was to determine the five-year survival rate and median survival time of NPC patients in Hospital Universiti Sains Malaysia (USM).

    METHODS: One hundred and thirty four NPC cases confirmed by histopathology in Hospital USM between 1st January 1998 and 31st December 2007 that fulfilled the inclusion and exclusion criteria were retrospectively reviewed. Survival time of NPC patients were estimated by Kaplan-Meier survival analysis. Log-rank tests were performed to compare survival of cases among presenting symptoms, WHO type, TNM classification and treatment modalities.

    RESULTS: The overall five-year survival rate of NPC patients was 38.0% (95% confidence interval (CI): 29.1, 46.9). The overall median survival time of NPC patients was 31.30 months (95%CI: 23.76, 38.84). The significant factors that altered the survival rate and time were age (p=0.041), cranial nerve involvement (p=0.012), stage (p=0.002), metastases (p=0.008) and treatment (p<0.001).

    CONCLUSION: The median survival of NPC patients is significantly longer for age≤50 years, no cranial nerve involvement, and early stage and is dependent on treatment modalities.

    Matched MeSH terms: Survival Rate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links