Displaying publications 101 - 120 of 143 in total

Abstract:
Sort:
  1. Lim CJ, Basri M, Omar D, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RN
    Pest Manag Sci, 2013 Jan;69(1):104-11.
    PMID: 22865686 DOI: 10.1002/ps.3371
    Pesticides are developed with carriers to improve their physicochemical properties and, accordingly, the bioefficacy of the applied formulation. For foliar-applied herbicide, generally less than 0.1% of the active ingredient reaching the target site could reduce pesticide performance. Recently, a carrier of nanoemulsion consisting of oil, surfactant and water, with a particle size of less than 200 nm, has been shown to enhance drug permeability for skin penetration in pharmaceutical delivery systems. In the present work, the aim was to formulate a water-soluble herbicide, glyphosate isopropylamine (IPA), using a green nanoemulsion system for a biological activity study against the weeds creeping foxglove, slender button weed and buffalo grass.
  2. Samson S, Basri M, Fard Masoumi HR, Abdul Malek E, Abedi Karjiban R
    PLoS One, 2016;11(7):e0157737.
    PMID: 27383135 DOI: 10.1371/journal.pone.0157737
    A predictive model of a virgin coconut oil (VCO) nanoemulsion system for the topical delivery of copper peptide (an anti-aging compound) was developed using an artificial neural network (ANN) to investigate the factors that influence particle size. Four independent variables including the amount of VCO, Tween 80: Pluronic F68 (T80:PF68), xanthan gum and water were the inputs whereas particle size was taken as the response for the trained network. Genetic algorithms (GA) were used to model the data which were divided into training sets, testing sets and validation sets. The model obtained indicated the high quality performance of the neural network and its capability to identify the critical composition factors for the VCO nanoemulsion. The main factor controlling the particle size was found out to be xanthan gum (28.56%) followed by T80:PF68 (26.9%), VCO (22.8%) and water (21.74%). The formulation containing copper peptide was then successfully prepared using optimum conditions and particle sizes of 120.7 nm were obtained. The final formulation exhibited a zeta potential lower than -25 mV and showed good physical stability towards centrifugation test, freeze-thaw cycle test and storage at temperature 25°C and 45°C.
  3. Izadiyan Z, Basri M, Fard Masoumi HR, Abedi Karjiban R, Salim N, Shameli K
    Chem Cent J, 2017;11:21.
    PMID: 28293282 DOI: 10.1186/s13065-017-0248-6
    The aim of this study is the development of nanoemulsions for intravenous administration of Sorafenib, which is a poorly soluble drug with no parenteral treatment. The formulation was prepared by a high energy emulsification method and optimized by response surface methodology. The effects of overhead stirring time, high shear rate, high shear time, and cycles of high-pressure homogenizer were studied in the preparation of nanoemulsion loaded with Sorafenib. Most of the particles in nanoemulsion are spherical in shape, the smallest particle size being 82.14 nm. The results of the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole reveal that the optimum formulation does not affect normal cells significantly in low drug concentrations but could remove the cancer cells. Finally, a formulation containing Sorafenib retained its properties over a period of 90 days. With characterization, the study of the formulated nanoemulsion has the potential to be used as a parenteral nanoemulsion in the treatment of cancer. Graphical abstractSchematic figure of high pressure homogenizer device.
  4. Musa SH, Basri M, Fard Masoumi HR, Shamsudin N, Salim N
    Int J Nanomedicine, 2017;12:2427-2441.
    PMID: 28405165 DOI: 10.2147/IJN.S125302
    Psoriasis is a chronic autoimmune disease that cannot be cured. It can however be controlled by various forms of treatment, including topical, systemic agents, and phototherapy. Topical treatment is the first-line treatment and favored by most physicians, as this form of therapy has more patient compliance. Introducing a nanoemulsion for transporting cyclosporine as an anti-inflammatory drug to an itchy site of skin disease would enhance the effectiveness of topical treatment for psoriasis. The addition of nutmeg and virgin coconut-oil mixture, with their unique properties, could improve cyclosporine loading and solubility. A high-shear homogenizer was used in formulating a cyclosporine-loaded nanoemulsion. A D-optimal mixture experimental design was used in the optimization of nanoemulsion compositions, in order to understand the relationships behind the effect of independent variables (oil, surfactant, xanthan gum, and water content) on physicochemical response (particle size and polydispersity index) and rheological response (viscosity and k-value). Investigation of these variables suggests two optimized formulations with specific oil (15% and 20%), surfactant (15%), xanthan gum (0.75%), and water content (67.55% and 62.55%), which possessed intended responses and good stability against separation over 3 months' storage at different temperatures. Optimized nanoemulsions of pH 4.5 were further studied with all types of stability analysis: physical stability, coalescence-rate analysis, Ostwald ripening, and freeze-thaw cycles. In vitro release proved the efficacy of nanosize emulsions in carrying cyclosporine across rat skin and a synthetic membrane that best fit the Korsmeyer-Peppas kinetic model. In vivo skin analysis towards healthy volunteers showed a significant improvement in the stratum corneum in skin hydration.
  5. Harun SN, Nordin SA, Gani SSA, Shamsuddin AF, Basri M, Basri HB
    Int J Nanomedicine, 2018;13:2571-2584.
    PMID: 29731632 DOI: 10.2147/IJN.S151788
    Background and aim: Drugs that are effective against diseases in the central nervous system and reach the brain via blood must pass through the blood-brain barrier (BBB), a unique interface that protects against potential harmful molecules. This presents a major challenge in neuro-drug delivery. This study attempts to fabricate the cefuroxime-loaded nanoemulsion (CLN) to increase drug penetration into the brain when parenterally administered.

    Methods: The nanoemulsions were formulated using a high-pressure homogenization technique and were characterized for their physicochemical properties.

    Results: The characterizations revealed a particle size of 100.32±0.75 nm, polydispersity index of 0.18±0.01, zeta potential of -46.9±1.39 mV, viscosity of 1.24±0.34 cps, and osmolality of 285.33±0.58 mOsm/kg, indicating that the nanoemulsion has compatibility for parenteral application. CLN was physicochemically stable within 6 months of storage at 4°C, and the transmission electron microscopy revealed that the CLN droplets were almost spherical in shape. The in vitro release of CLN profile followed a sustained release pattern. The pharmacokinetic profile of CLN showed a significantly higher Cmax, area under the curve (AUC)0-
    t
    , prolonged half-life, and lower total plasma clearance, indicating that the systemic concentration of cefuroxime was higher in CLN-treated rats as compared to cefuroxime-free treated rats. A similar profile was obtained for the biodistribution of cefuroxime in the brain, in which CLN showed a significantly higher Cmax, AUC0-
    t
    , prolonged half-life, and lower clearance as compared to free cefuroxime solution.

    Conclusion: Overall, CLN showed excellent physicochemical properties, fulfilled the requirements for parenteral administration, and presented improved in vivo pharmacokinetic profile, which reflected its practical approach to enhance cefuroxime delivery to the brain.

  6. Arbain NH, Salim N, Wui WT, Basri M, Rahman MBA
    J Oleo Sci, 2018 Aug 01;67(8):933-940.
    PMID: 30012897 DOI: 10.5650/jos.ess17253
    In this research, the palm oil ester (POE)- based nanoemulsion formulation containing quercetin for pulmonary delivery was developed. The nanoemulsion formulation was prepared by high energy emulsification method and then further optimized using D-optimal mixture design. The concentration effects of the mixture of POE:ricinoleic acid (RC), ratio 1:1 (1.50-4.50 wt.%), lecithin (1.50-2.50 wt.%), Tween 80 (0.50-1.00 wt.%), glycerol (1.50-3.00 wt.%), and water (88.0-94.9 wt.%) towards the droplet size were investigated. The results showed that the optimum formulation with 1.50 wt.% POE:RC, 1.50 wt.% lecithin, 1.50 wt.% Tween 80, 1.50 wt.% glycerol and 93.90 % water was obtained. The droplet size, polydispersity index (PDI) and zeta potential of the optimized formulation were 110.3 nm, 0.290 and -37.7 mV, respectively. The formulation also exhibited good stability against storage at 4℃ for 90 days. In vitro aerosols delivery evaluation showed that the aerosols output, aerosols rate and median mass aerodynamic diameter of the optimized nanoemulsion were 99.31%, 0.19 g/min and 4.25 µm, respectively. The characterization of physical properties and efficiency for aerosols delivery results suggest that POE- based nanoemulsion containing quercetin has the potential to be used for pulmonary delivery specifically for lung cancer treatment.
  7. Izadiyan Z, Basri M, Fard Masoumi HR, Abedi Karjiban R, Salim N, Kalantari K
    Mater Sci Eng C Mater Biol Appl, 2019 Jan 01;94:841-849.
    PMID: 30423770 DOI: 10.1016/j.msec.2018.10.015
    Nanoemulsions have been used as a drug carrier system, particularly for poorly water-soluble drugs. Sorafenib is a poorly soluble drug and also there is no parenteral treatment. The aim of this study is the development of nanoemulsions for intravenous administration of Sorafenib. The formulations were prepared by high energy emulsification method and optimized by using Response Surface Methodology (RSM). Here, the effect of independent composition variables of lecithin (1.16-2.84%, w/w), Medium-Chain Triglycerides (2.32-5.68%, w/w) and polysorbate 80 (0.58-1.42%, w/w) amounts on the properties of Sorafenib-loaded nanoemulsion was investigated. The three responses variables were particle size, zeta potential, and polydispersity index. Optimization of the conditions according to the three dependent variables was performed for the preparation of the Sorafenib-loaded nanoemulsions with the minimum value of particle size, suitable rage of zeta potential, and polydispersity index. A formulation containing 0.05% of Sorafenib kept its properties in a satisfactory range over the evaluated period. The composition with 3% Medium-Chain Triglycerides, 2.5% lecithin and 1.22% polysorbate 80 exhibited the smallest particle size and polydispersity index (43.17 nm and 0.22, respectively) with the zeta potential of -38.8 mV was the optimized composition. The fabricated nanoemulsion was characterized by the transmission electron microscope (TEM), viscosity, and stability assessment study. Also, the cytotoxicity result showed that the optimum formulations had no significant effect on a normal cell in a low concentration of the drug but could eliminate the cancer cells. The dose-dependent toxicity made it a suitable candidate for parenteral applications in the treatment of breast cancer. Furthermore, the optimized formulation indicated good storage stability for 3 months at different temperatures (4 ± 2 °C, 25 ± 2 °C and 45 ± 2 °C).
  8. Basri M, Rahman NFA, Kassim MA, Shahruzzaman RMHR, Mokles MSN
    J Oleo Sci, 2019 Apr 01;68(4):329-337.
    PMID: 30867390 DOI: 10.5650/jos.ess18197
    Lipase-catalyzed production of palm esters was performed via alcoholysis of palm oil and oleyl alcohol in solvent and solvent-free systems using a 2 L stirred tank reactor (STR). Two immobilized lipases were tested and Lipozyme RM IM exhibited superior performance in both reaction systems. Reusability studies of the enzymes in a solvent-free system also demonstrated the high stability of Lipozyme RM IM as shown by its ability to yield more than 70% palm esters with up to 19 cycles of reusing the same enzymes. Modification of the enzyme washing process improved the stability of Lipozyme TL IM in a solvent system as demonstrated by maintaining 65% yield after 5 times of repeated enzyme use. The scale up process for both lipases was conducted in the presence of solvents by using the impeller tip speed approach. Lipozyme RM IM-catalyzed reaction in a 15 L STR produced 85.7% yield and there was a significant drop to 60.7% in the 300 L STR, whereas Lipozyme TL IM had a lower yield (65%) when the reaction volume was increased to 15 L. The low yields could be due to the accumulation of enzymes at the bottom of the vessel. Purification of palm esters via solvent-solvent extraction revealed that more than 90% of oleyl alcohol was extracted after the third extraction cycle at 150 rpm impeller speed with reduced palm esters: ethanol ratio (v/v) from 1:4 to 1:3.
  9. Che Sulaiman IS, Basri M, Fard Masoumi HR, Chee WJ, Ashari SE, Ismail M
    Chem Cent J, 2017 Jun 14;11(1):54.
    PMID: 29086900 DOI: 10.1186/s13065-017-0285-1
    BACKGROUND: Clinacanthus nutans Lindau is a well-known plant, native to tropical Asian countries. Reports on this plant that is rich in phenolic compounds have focused on its therapeutic anti-inflammatory, anti-herpes simplex, antioxidant, and anti-cancer characteristics. In this paper, the influence of the extraction parameters-temperatures (60-80 °C), times (80-120 min), and solvent ratios (70:30-90:10) of water:ethanol were investigated using response surface methodology in order to determine the optimum extraction conditions that could produce maximum extraction yields of the phenolic compounds and the highest anti-radical activity of the C. nutans extract.

    RESULTS: The optimum conditions suggested by the predicted model were: an extraction temperature of 60 °C, an extraction time of 120 min and a water:ethanol solvent ratio of 90:10 v/v%. The residual standard error of 0.2% indicated that there was no significant difference between the actual and predicted values and it proved that the models were adequate to predict the relevant responses. All the independent variables had a significant effect (p 

  10. Khong NMH, Yusoff FM, Jamilah B, Basri M, Maznah I, Chan KW, et al.
    Food Chem, 2018 Jun 15;251:41-50.
    PMID: 29426422 DOI: 10.1016/j.foodchem.2017.12.083
    Efficiency and effectiveness of collagen extraction process contribute to huge impacts to the quality, supply and cost of the collagen produced. Jellyfish is a potential sustainable source of collagen where their applications are not limited by religious constraints and threats of transmittable diseases. The present study compared the extraction yield, physico-chemical properties and toxicology in vitro of collagens obtained by the conventional acid-assisted and pepsin-assisted extraction to an improved physical-aided extraction process. By increasing physical intervention, the production yield increased significantly compared to the conventional extraction processes (p  .05) while retaining high molecular weight distributions and polypeptide profiles similar to those extracted using only acid. Moreover, they exhibited better appearance, instrumental colour and were found to be non-toxic in vitro and free of heavy metal contamination.
  11. Khairudin N, Basri M, Fard Masoumi HR, Samson S, Ashari SE
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438284 DOI: 10.3390/molecules23020397
    Azelaic acid (AzA) and its derivatives have been known to be effective in the treatment of acne and various cutaneous hyperpigmentary disorders. The esterification of azelaic acid with lauryl alcohol (LA) to produce dilaurylazelate using immobilized lipase B from Candida antarctica (Novozym 435) is reported. Response surface methodology was selected to optimize the reaction conditions. A well-fitting quadratic polynomial regression model for the acid conversion was established with regards to several parameters, including reaction time and temperature, enzyme amount, and substrate molar ratios. The regression equation obtained by the central composite design of RSM predicted that the optimal reaction conditions included a reaction time of 360 min, 0.14 g of enzyme, a reaction temperature of 46 °C, and a molar ratio of substrates of 1:4.1. The results from the model were in good agreement with the experimental data and were within the experimental range (R² of 0.9732).The inhibition zone can be seen at dilaurylazelate ester with diameter 9.0±0.1 mm activities against Staphylococcus epidermidis S273. The normal fibroblasts cell line (3T3) was used to assess the cytotoxicity activity of AzA and AzA derivative, which is dilaurylazelate ester. The comparison of the IC50 (50% inhibition of cell viability) value for AzA and AzA derivative was demonstrated. The IC50 value for AzA was 85.28 μg/mL, whereas the IC50 value for AzA derivative was more than 100 μg/mL. The 3T3 cell was still able to survive without any sign of toxicity from the AzA derivative; thus, it was proven to be non-toxic in this MTT assay when compared with AzA.
  12. Arbain NH, Salim N, Masoumi HRF, Wong TW, Basri M, Abdul Rahman MB
    Drug Deliv Transl Res, 2019 04;9(2):497-507.
    PMID: 29541999 DOI: 10.1007/s13346-018-0509-5
    Bioavailability of quercetin, a flavonoid potentially known to combat cancer, is challenging due to hydrophobic nature. Oil-in-water (O/W) nanoemulsion system could be used as nanocarrier for quercertin to be delivered to lung via pulmonary delivery. The novelty of this nanoformulation was introduced by using palm oil ester/ricinoleic acid as oil phase which formed spherical shape nanoemulsion as measured by transmission electron microscopy and Zetasizer analyses. High energy emulsification method and D-optimal mixture design were used to optimize the composition towards the volume median diameter. The droplet size, polydispersity index, and zeta potential of the optimized formulation were 131.4 nm, 0.257, and 51.1 mV, respectively. The formulation exhibited high drug entrapment efficiency and good stability against phase separation and storage at temperature 4 °C for 3 months. It was discovered that the system had an acceptable median mass aerodynamic diameter (3.09 ± 0.05 μm) and geometric standard deviation (1.77 ± 0.03) with high fine particle fraction (90.52 ± 0.10%), percent dispersed (83.12 ± 1.29%), and percent inhaled (81.26 ± 1.28%) for deposition in deep lung. The in vitro release study demonstrated that the sustained release pattern of quercetin from naneomulsion formulation up to 48 h of about 26.75% release and it was in adherence to Korsmeyer's Peppas mechanism. The cytotoxicity study demonstrated that the optimized nanoemulsion can potentially induce cyctotoxicity towards A549 lung cancer cells without affecting the normal cells. These results of the study suggest that nanoemulsion is a potential carrier system for pulmonary delivery of molecules with low water solubility like quercetin.
  13. Latiffi AA, Salleh AB, Rahman RN, Oslan SN, Basri M
    Genes Genet Syst, 2013;88(2):85-91.
    PMID: 23832300
    The thermostable alkaline protease from Bacillus stearothermophilus F1 has high potential for industrial applications, and attempt to produce the enzyme in yeast for higher yield was undertaken. Secretory expression of F1 protease through yeast system could improve enzyme's capability, thus simplifying the purification steps. Mature and full genes of F1 protease were cloned into Pichia pastoris expression vectors (pGAPZαB and pPICZαB) and transformed into P. pastoris strains (GS115 and SMD1168H) via electroporation method. Recombinant F1 protease under regulation constitutive GAP promoter revealed that the highest expression was achieved after 72 h cultivation. While inducible AOX promoter showed that 0.5% (v/v) methanol was the best to induce expression. It was proven that constitutive expression strategy was better than inducible system. The α-secretion signal from the plasmid demonstrated higher secretory expression level of F1 protease as compared to native Open Reading Frame (ORF) in GS115 strain (GE6GS). Production medium YPTD was found to be the best for F1 protease expression with the highest yield of 4.13 U/mL. The protein was expressed as His-tagged fusion protein with a size about 34 kDa.
  14. Abdul Rahman MB, Jumbri K, Basri M, Abdulmalek E, Sirat K, Salleh AB
    Molecules, 2010 Apr 05;15(4):2388-97.
    PMID: 20428050 DOI: 10.3390/molecules15042388
    This paper reports the synthesis of a series of new tetraethylammonium-based amino acid chiral ionic liquids (CILs). Their physico-chemical properties, including melting point, thermal stability, viscosity and ionic conductivity, have been comprehensively studied. The obtained results indicated that the decomposition for these salts proceeds in one step and the temperature of decomposition (T(onset)) is in the range of 168-210 degrees C. Several new CILs prepared in this work showed high ionic conductivity compared to the amino acid ionic liquids (AAILs) found in the literature.
  15. Shariff FM, Rahman RN, Ali MS, Chor AL, Basri M, Salleh AB
    PMID: 20516608 DOI: 10.1107/S174430911001482X
    Purified thermostable recombinant L2 lipase from Bacillus sp. L2 was crystallized by the counter-diffusion method using 20% PEG 6000, 50 mM MES pH 6.5 and 50 mM NaCl as precipitant. X-ray diffraction data were collected to 2.7 A resolution using an in-house Bruker X8 PROTEUM single-crystal diffractometer system. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 87.44, b = 94.90, c = 126.46 A. The asymmetric unit contained one single molecule of protein, with a Matthews coefficient (V(M)) of 2.85 A(3) Da(-1) and a solvent content of 57%.
  16. Ebrahimpour A, Abd Rahman RN, Ean Ch'ng DH, Basri M, Salleh AB
    BMC Biotechnol, 2008 Dec 23;8:96.
    PMID: 19105837 DOI: 10.1186/1472-6750-8-96
    BACKGROUND: Thermostable bacterial lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. The capability of lipases to catalyze a variety of novel reactions in both aqueous and nonaqueous media presents a fascinating field for research, creating interest to isolate novel lipase producers and optimize lipase production. The most important stages in a biological process are modeling and optimization to improve a system and increase the efficiency of the process without increasing the cost.

    RESULTS: Different production media were tested for lipase production by a newly isolated thermophilic Geobacillus sp. strain ARM (DSM 21496 = NCIMB 41583). The maximum production was obtained in the presence of peptone and yeast extract as organic nitrogen sources, olive oil as carbon source and lipase production inducer, sodium and calcium as metal ions, and gum arabic as emulsifier and lipase production inducer. The best models for optimization of culture parameters were achieved by multilayer full feedforward incremental back propagation network and modified response surface model using backward elimination, where the optimum condition was: growth temperature (52.3 degrees C), medium volume (50 ml), inoculum size (1%), agitation rate (static condition), incubation period (24 h) and initial pH (5.8). The experimental lipase activity was 0.47 Uml(-1) at optimum condition (4.7-fold increase), which compared well to the maximum predicted values by ANN (0.47 Uml(-1)) and RSM (0.476 Uml(-1)), whereas R2 and AAD were determined as 0.989 and 0.059% for ANN, and 0.95 and 0.078% for RSM respectively.

    CONCLUSION: Lipase production is the result of a synergistic combination of effective parameters interactions. These parameters are in equilibrium and the change of one parameter can be compensated by changes of other parameters to give the same results. Though both RSM and ANN models provided good quality predictions in this study, yet the ANN showed a clear superiority over RSM for both data fitting and estimation capabilities. On the other hand, ANN has the disadvantage of requiring large amounts of training data in comparison with RSM. This problem was solved by using statistical experimental design, to reduce the number of experiments.

  17. Abdul Rahman MZ, Salleh AB, Abdul Rahman RN, Abdul Rahman MB, Basri M, Leow TC
    Protein Sci, 2012 Aug;21(8):1210-21.
    PMID: 22692819 DOI: 10.1002/pro.2108
    The activation of lipases has been postulated to proceed by interfacial activation, temperature switch activation, or aqueous activation. Recently, based on molecular dynamics (MD) simulation experiments, the T1 lipase activation mechanism was proposed to involve aqueous activation in addition to a double-flap mechanism. Because the open conformation structure is still unavailable, it is difficult to validate the proposed theory unambiguously to understand the behavior of the enzyme. In this study, we try to validate the previous reports and uncover the mystery behind the activation process using structural analysis and MD simulations. To investigate the effects of temperature and environmental conditions on the activation process, MD simulations in different solvent environments (water and water-octane interface) and temperatures (20, 50, 70, 80, and 100°C) were performed. Based on the structural analysis of the lipases in the same family of T1 lipase (I.5 lipase family), we proposed that the lid domain comprises α6 and α7 helices connected by a loop, thus forming a helix-loop-helix motif involved in interfacial activation. Throughout the MD simulations experiments, lid displacements were only observed in the water-octane interface, not in the aqueous environment with respect to the temperature effect, suggesting that the activation process is governed by interfacial activation coupled with temperature switch activation. Examining the activation process in detail revealed that the large structural rearrangement of the lid domain was caused by the interaction between the hydrophobic residues of the lid with octane, a nonpolar solvent, and this conformation was found to be thermodynamically favorable.
  18. Sabri S, Rahman RN, Leow TC, Basri M, Salleh AB
    Protein Expr Purif, 2009 Dec;68(2):161-6.
    PMID: 19679187 DOI: 10.1016/j.pep.2009.08.002
    Thermostable lipases are important biocatalysts, showing many interesting properties with industrial applications. Previously, a thermophilic Bacillus sp. strain L2 that produces a thermostable lipase was isolated. In this study, the gene encoding for mature thermostable L2 lipase was cloned into a Pichia pastoris expression vector. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter, the recombinant L2 lipase was secreted into the culture medium driven by the Saccharomyces cerevisiae alpha-factor signal sequence. After optimization the maximum recombinant lipase activity achieved in shake flasks was 125 U/ml. The recombinant 44.5 kDa L2 lipase was purified 1.8-fold using affinity chromatography with 63.2% yield and a specific activity of 458.1 U/mg. Its activity was maximal at 70 degrees C and pH 8.0. Lipase activity increased 5-fold in the presence of Ca2+. L2 lipase showed a preference for medium to long chain triacylglycerols (C(10)-C(16)), corn oil, olive oil, soybean oil, and palm oil. Stabilization at high temperature and alkaline pH as well as its broad substrate specificity offer great potential for application in various industries that require high temperature operations.
  19. Sulong MR, Abdul Rahman RN, Salleh AB, Basri M
    Protein Expr Purif, 2006 Oct;49(2):190-5.
    PMID: 16769222
    An organic solvent tolerant (OST) lipase gene from Bacillus sphaericus 205y was successfully expressed extracellularly. The expressed lipase was purified using two steps purification; ultrafiltration and hydrophobic interaction chromatography (HIC) to 8-fold purity and 32% recovery. The purified 205y lipase revealed homogeneity on denaturing gel electrophoresis and the molecular mass was at approximately 30 kDa. The optimum pH for the purified 205y lipase was 7.0-8.0 and its stability showed a broad range of pH value between pH 5.0 to 13.0 at 37 degrees C. The purified 205y lipase exhibited an optimum temperature of 55 degrees C. The activity of the purified lipase was stimulated in the presence of Ca2+ and Mg2+. Ethylenediaminetetraacetic acid (EDTA) has no effect on its activity; however inhibition was observed with phenylmethane sulfonoyl fluoride (PMSF) a serine hydrolase inhibitor. Organic solvents such as dimethylsulfoxide (DMSO), methanol, p-xylene and n-decane enhanced the activity. Studies on the effect of oil showed that the lipase was most active in the presence of tricaprin (C10). The lipase exhibited 1,3 positional specificity.
  20. Fu Z, Hamid SB, Razak CN, Basri M, Salleh AB, Rahman RN
    Protein Expr Purif, 2003 Mar;28(1):63-8.
    PMID: 12651108
    Bacteriocin release proteins (BRPs) can be used for the release of heterologous proteins from the Escherichia coli cytoplasm into the culture medium. The gene for a highly thermostable alkaline protease was cloned from Bacillus stearothermophilus F1 by the polymerase chain reaction. The recombinant F1 protease was efficiently excreted into the culture medium using E. coli XL1-Blue harboring two vectors: pTrcHis bearing the protease gene and pJL3 containing the BRPs. Both vectors contain the E. coli lac promoter-operator system. In the presence of 40 microM IPTG, the recombinant F1 protease and the BRP were expressed and mature F1 protease was released into the culture medium. This opens the way for the large-scale production of this protease in E. coli. The recombinant enzyme was purified through a one-step heat treatment at 70 degrees C for 3h and this method purified the protease to near homogeneity. The purified enzyme showed a pH optimum of 9.0, temperature optimum of 80 degrees C, and was stable at 70 degrees C for 24h in the pH range from 8.0 to 10.0. The enzyme exhibited a high degree of thermostability with a half-life of 4 h at 85 degrees C, 25 min at 90 degrees C, and was inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF).
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links