OBJECTIVE: This meta-analysis aimed to assess the updated pooled effects of these polymorphisms with DN among Asian populations with type 2 diabetes mellitus.
METHODS: The PubMed electronic database was searched without duration filter until August 2017 and the reference list of eligible studies was screened. The association of each polymorphism with DN was examined using odds ratio and its 95% confidence interval based on dominant, recessive and allele models. Subgroup analyses were conducted based on region, DN definition and DM duration.
RESULTS: In the main analysis, the ACE I/D (all models) and AGTR1 A1166C (dominant model) showed a significant association with DN. The main analysis of the AGT M235T polymorphism did not yield significant findings. There were significant subgroup differences and indication of significantly higher odds for DN in terms of DM duration (≥10 years) for ACE I/D (all models), AGT M235T (recessive and allele models) and AGTR1 A1166C (recessive model). Significant subgroup differences were also observed for DN definition (advanced DN group) and region (South Asia) for AGTR1 A1166C (recessive model).
CONCLUSION: In the Asian populations, ACE I/D and AGTR1 A1166C may contribute to DN susceptibility in patients with T2DM by different genetic models. However, the role of AGT M235T needs to be further evaluated.
MATERIALS AND METHODS: MicroRNA software predicted that miR21 targets VCL while miR29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalinfixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels.
RESULTS: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down regulated while CX3CL1 was upregulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly up regulated while CX3CL1 mRNA was significantly downregulated compared to the RWPE1 case.
CONCLUSIONS: The downregulation of VCL in FFPE specimens is most likely regulated by miR21 based on the in vitro evidence but the exact mechanism of how miR21 can regulate VCL is unclear. Upregulated in CaP, CX3CL1 was found not regulated by miR29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNAmRNA interactions may provide additional knowledge for individualized study of cancers.
METHODS AND RESULTS: One-hundred and thirteen microfungi isolates were obtained from fruit rot infected banana in Peninsular Malaysia. However, this study was focused on the dominant number of the discovered microfungi that belongs to the genus Fusarium; 48 isolates of the microfungi have been identified belonging to 11 species of Fusarium, namely Fusarium incarnatum, Fusarium equiseti, Fusarium camptoceras, Fusarium solani, Fusarium concolor, Fusarium oxysporum, Fusarium proliferatum, Fusarium verticillioides, Fusarium sacchari, Fusarium concentricum and Fusarium fujikuroi. All Fusarium isolates were grouped into their respective clades indicating their similarities and differences in genetic diversity among isolates. Out of 48 Fusarium isolates tested, 42 isolates caused the fruit rot symptom at different levels of severity based on Disease Severity Index (DSI). The most virulent isolate was F. proliferatum B2433B with DSI of 100%.
CONCLUSIONS: All the isolated Fusarium species were successfully identified and some of them were confirmed as the causal agents of pre- and postharvest fruit rot in banana across Peninsular Malaysia.
SIGNIFICANCE AND IMPACT OF THE STUDY: Our results will provide additional information regarding new report of Fusarium species in causing banana fruit rot and in the search of potential biocontrol agent of the disease.