Displaying publications 101 - 120 of 135 in total

Abstract:
Sort:
  1. Ramesh S, Yaghoubi A, Lee KY, Chin KM, Purbolaksono J, Hamdi M, et al.
    J Mech Behav Biomed Mater, 2013 Sep;25:63-9.
    PMID: 23726923 DOI: 10.1016/j.jmbbm.2013.05.008
    Forsterite (Mg2SiO4) because of its exceptionally high fracture toughness which is close to that of cortical bones has been nominated as a possible successor to calcium phosphate bioceramics. Recent in vitro studies also suggest that forsterite possesses good bioactivity and promotes osteoblast proliferation as well as adhesion. However studies on preparation and sinterability of nanocrystalline forsterite remain scarce. In this work, we use a solid-state reaction with magnesium oxide (MgO) and talc (Mg3Si4(OH)2) as the starting precursors to synthesize forsterite. A systematic investigation was carried out to elucidate the effect of preparatory procedures including heat treatment, mixing methods and sintering temperature on development of microstructures as well as the mechanical properties of the sintered forsterite body.
    Matched MeSH terms: Elastic Modulus
  2. Alizadeh M, Kadir MR, Fadhli MM, Fallahiarezoodar A, Azmi B, Murali MR, et al.
    J Orthop Res, 2013 Sep;31(9):1447-54.
    PMID: 23640802 DOI: 10.1002/jor.22376
    Posterior instrumentation is a common fixation method used to treat thoracolumbar burst fractures. However, the role of different cross-link configurations in improving fixation stability in these fractures has not been established. A 3D finite element model of T11-L3 was used to investigate the biomechanical behavior of short (2 level) and long (4 level) segmental spine pedicle screw fixation with various cross-links to treat a hypothetical L1 vertebra burst fracture. Three types of cross-link configurations with an applied moment of 7.5 Nm and 200 N axial force were evaluated. The long construct was stiffer than the short construct irrespective of whether the cross-links were used (p < 0.05). The short constructs showed no significant differences between the cross-link configurations. The XL cross-link provided the highest stiffness and was 14.9% stiffer than the one without a cross-link. The long construct resulted in reduced stress to the adjacent vertebral bodies and screw necks, with 66.7% reduction in bending stress on L2 when the XL cross-link was used. Thus, the stability for L1 burst fracture fixation was best achieved by using long segmental posterior instrumentation constructs and an XL cross-link configuration. Cross-links did not improved stability when a short structure was used.
    Matched MeSH terms: Elastic Modulus
  3. Soheilmoghaddam M, Wahit MU
    Int J Biol Macromol, 2013 Jul;58:133-9.
    PMID: 23567285 DOI: 10.1016/j.ijbiomac.2013.03.066
    In this study, novel nanocomposite films based on regenerated cellulose/halloysite nanotube (RC/HNT) have been prepared using an environmentally friendly ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) through a simple green method. The structural, morphological, thermal and mechanical properties of the RC/HNT nanocomposites were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermal analysis and tensile strength measurements. The results obtained revealed interactions between the halloysite nanotubes and regenerated cellulose matrix. The thermal stability and mechanical properties of the nanocomposite films, compared with pure regenerated cellulose film, were significantly improved When the halloysite nanotube (HNT) loading was only 2 wt.%, the 20% weight loss temperature (T20) increased 20°C. The Young's modulus increased from 1.8 to 4.1 GPa, while tensile strength increased from 35.30 to 60.50 MPa when 8 wt.% halloysite nanotube (HNT) was incorporated, interestingly without loss of ductility. The nanocomposite films exhibited improved oxygen barrier properties and water absorption resistance compared to regenerated cellulose.
    Matched MeSH terms: Elastic Modulus
  4. Yang HZ, Lim KS, Qiao XG, Chong WY, Cheong YK, Lim WH, et al.
    Opt Express, 2013 Jun 17;21(12):14808-15.
    PMID: 23787668 DOI: 10.1364/OE.21.014808
    We present a new theoretical model for the broadband reflection spectra of etched FBGs which includes the effects of axial contraction and stress-induced index change. The reflection spectra of the etched FBGs with several different taper profiles are simulated based on the proposed model. In our observation, decaying exponential profile produces a broadband reflection spectrum with good uniformity over the range of 1540-1560 nm. An etched FBG with similar taper profile is fabricated and the experimental result shows good agreement with the theoretical model.
    Matched MeSH terms: Elastic Modulus
  5. Baradaran S, Basirun WJ, Zalnezhad E, Hamdi M, Sarhan AA, Alias Y
    J Mech Behav Biomed Mater, 2013 Apr;20:272-82.
    PMID: 23453827 DOI: 10.1016/j.jmbbm.2013.01.020
    In this study, titanium thin films were deposited on alumina substrates by radio frequency (RF) magnetron sputtering. The mechanical properties of the Ti coatings were evaluated in terms of adhesion strength at various RF powers, temperatures, and substrate bias voltages. The coating conditions of 400W of RF power, 250°C, and a 75V substrate bias voltage produced the strongest coating adhesion, as obtained by the Taguchi optimisation method. TiO2 nanotube arrays were grown as a second layer on the Ti substrates using electrochemical anodisation at a constant potential of 20V and anodisation times of 15min, 45min, and 75min in a NH4F electrolyte solution (75 ethylene glycol: 25 water). The anodised titanium was annealed at 450°C and 650°C in a N2 gas furnace to obtain different phases of titania, anatase and rutile, respectively. The mechanical properties of the anodised layer were investigated by nanoindentation. The results indicate that Young's modulus and hardness increased with annealing temperature to 650°C.
    Matched MeSH terms: Elastic Modulus
  6. Lim KS, Yang HZ, Chong WY, Cheong YK, Lim CH, Ali NM, et al.
    Opt Express, 2013 Feb 11;21(3):2551-62.
    PMID: 23481713 DOI: 10.1364/OE.21.002551
    When an optical fiber is dipped in an etching solution, the internal stress profile in the fiber varies with the fiber diameter. We observed a physical contraction as much as 0.2% in the fiber axial dimension when the fiber was reduced from its original diameter to ~6 µm through analysis using high resolution microscope images of the grating period of an etched FBG at different fiber diameters. This axial contraction is related to the varying axial stress profile in the fiber when the fiber diameter is reduced. On top of that, the refractive index of fiber core increases with reducing fiber diameter due to stress-optic effect. The calculated index increment is as much as 1.8 × 10(-3) at the center of fiber core after the diameter is reduced down to ~6 µm. In comparison with the conventional model that assumes constant grating period and neglects the variation in stress-induced index change in fiber core, our proposed model indicates a discrepancy as much as 3nm in Bragg wavelength at a fiber diameter of ~6 µm.
    Matched MeSH terms: Elastic Modulus
  7. Bajuri MN, Abdul Kadir MR, Murali MR, Kamarul T
    Med Biol Eng Comput, 2013 Feb;51(1-2):175-86.
    PMID: 23124814 DOI: 10.1007/s11517-012-0982-9
    The total replacement of wrists affected by rheumatoid arthritis (RA) has had mixed outcomes in terms of failure rates. This study was therefore conducted to analyse the biomechanics of wrist arthroplasty using recently reported implants that have shown encouraging results with the aim of providing some insights for the future development of wrist implants. A model of a healthy wrist was developed using computed tomography images from a healthy volunteer. An RA model was simulated based on all ten general characteristics of the disease. The ReMotion ™ total wrist system was then modelled to simulate total wrist arthroplasty (TWA). Finite element analysis was performed with loads simulating the static hand grip action. The results show that the RA model produced distorted patterns of stress distribution with tenfold higher contact pressure than the healthy model. For the TWA model, contact pressure was found to be approximately fivefold lower than the RA model. Compared to the healthy model, significant improvements were observed for the TWA model with minor variations in the stress distribution. In conclusion, the modelled TWA reduced contact pressure between bones but did not restore the stress distribution to the normal healthy condition.
    Matched MeSH terms: Elastic Modulus
  8. Oshkour AA, Abu Osman NA, Yau YH, Tarlochan F, Abas WA
    Proc Inst Mech Eng H, 2013 Jan;227(1):3-17.
    PMID: 23516951
    This study aimed to develop a three-dimensional finite element model of a functionally graded femoral prosthesis. The model consisted of a femoral prosthesis created from functionally graded materials (FGMs), cement, and femur. The hip prosthesis was composed of FGMs made of titanium alloy, chrome-cobalt, and hydroxyapatite at volume fraction gradient exponents of 0, 1, and 5, respectively. The stress was measured on the femoral prosthesis, cement, and femur. Stress on the neck of the femoral prosthesis was not sensitive to the properties of the constituent material. However, stress on the stem and cement decreased proportionally as the volume fraction gradient exponent of the FGM increased. Meanwhile, stress became uniform on the cement mantle layer. In addition, stress on the femur in the proximal part increased and a high surface area of the femoral part was involved in absorbing the stress. As such, the stress-shielding area decreased. The results obtained in this study are significant in the design and longevity of new prosthetic devices because FGMs offer the potential to achieve stress distribution that more closely resembles that of the natural bone in the femur.
    Matched MeSH terms: Elastic Modulus/physiology
  9. Kam CZ, Kueh AB
    ScientificWorldJournal, 2013;2013:350890.
    PMID: 24319360 DOI: 10.1155/2013/350890
    A laminated composite plate element with an interface description is developed using the finite element approach to investigate the bending performance of two-layer cross-ply laminated composite plates in presence of a diagonally perturbed localized interfacial degeneration between laminae. The stiffness of the laminate is expressed through the assembly of the stiffnesses of lamina sub-elements and interface element, the latter of which is formulated adopting the well-defined virtually zero-thickness concept. To account for the extent of both shear and axial weak bonding, a degeneration ratio is introduced in the interface formulation. The model has the advantage of simulating a localized weak bonding at arbitrary locations, with various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. Numerical results show that the bending behavior of laminate is significantly affected by the aforementioned parameters, the greatest effect of which is experienced by those with a localized total interface degeneration, representing the case of local delamination.
    Matched MeSH terms: Elastic Modulus
  10. M.N.M. Nawi, A.A. Manaf, M.R. Arshad
    ASM Science Journal, 2013;7(2):144-151.
    MyJurnal
    This article uses finite volume and finite element methods for optimization of the artificial hair cell sensor. The performance of the sensor was investigated for different materials such as sicon and polysilicon and by varying hair cell dimensions including width and length. The silicon material which has low young modulus was proposed based on the simulation performance. The performance of the hair cell sensor was achieved by increasing the hair cell length while increasing the width did not significantly influence the performance. The
    performance of the sensor was studied for its viscous force, deflection, von mises stress and sensitivity. From the simulation, the hair cell with a length of 1600 µm and 80 µm width was suggested for the subsequent analysis. Another way to improve the performance was by modifying the hair cell geometry and it was proved that the modified hair cell was more sensitive, based on the deflection. The angle of flow that hit the hair cell also affected the deflection of the sensor where the zero angle flow which was parallel to the substrate was the most effective angle. The limitations of the performance of hair cell for various fluid velocity were also discussed in this paper.
    Matched MeSH terms: Elastic Modulus
  11. AHMAD SHAHIR BIN JAMALUDIN, ABDULLAH BIN YASSIN
    Sains Malaysiana, 2013;42:1727-1733.
    Invention of milling combined laser sintering system (MLSS) is able to reduce the mould manufacturing time and improve the mould accuracy. Thus, more study is needed to increase the understanding for the laser sintered material machining characteristic to gain benefit from the invention of MLSS. This paper clarified the analysis of laser sintered material machinability with the application of Finite Element Method (FEM). Mild steel AISI1055 was applied in developing the Finite Element model in this study due to its popularity in machinability test and adequate level of data availability. 2D orthogonal cutting was employed on edge design tools with updated Lagrangian coupled thermo mechanical plane strain model. Adaptive meshing, tool edge radius and various types of friction models were assigned to obtain efficient simulations and precise cutting results. Cutting force and cutting-edge temperature estimated by Finite Element Method are validated against corresponding experimental values by previous researchers. In the study, cutting force increases when radial depth increases and lowest error acquired when the shear friction factor of 0.8 was applied. Machining simulation for laser sintered materials estimated lower cutting force compared with mild steel AISI1055 due to lower Young modulus. Higher cutting temperature estimated for machining simulation laser sintered material compared with machining simulation mild steel AISI1055 due to its low thermal conductivity.
    Matched MeSH terms: Elastic Modulus
  12. Nor Faadila, M.I., Harivaindaran, K.V., Tajul, A. Yang
    MyJurnal
    Texture and biochemical changes, specifically in moisture, protein content and amino acid profile were studied throughout the molt cycle of Panaeus monodon. This study was initiated to investigate changes that may occur in mass and tissue composition during different molting stages. Molting of Penaeus monodon are classified into 3 main stages; postmolt, intermolt and premolt. Result of biochemical analysis, shows that moisture varies from 78.02-80.88%, indicating a maximum value during postmolt and minimum value during premolt. Total protein content was found to be higher during intermolt (23.48%) and postmolt (22.27%) compared to premolt (23.10%). The result of SDS-PAGE electrophoresis shows a higher intensity of protein band during intermolt which corresponds to higher protein content. Thus, this electrophoresis method is useful as an alternative to determine different stages of shrimp molting. This is based on intensity of the protein band which is referring to protein content of the shrimp at its different stages. The amino acid profile showed that arginine, alanine, glutamic acid, glycine, lycine, and thronine increased during premolt whilst isoleucine and phenylalanine higher during postmolt. Aspartic acid and histidine was higher in intermolt than in premolt and postmolt. Texture analysis carried out give an elastic modulus value that is high during premolt compared to postmolt and intermolt. There are significant changes in texture and biochemical composition through elastic modules value and protein composition of Penaeus monodon during each stages of moltcycle.
    Matched MeSH terms: Elastic Modulus
  13. Amid BT, Mirhosseini H
    Int J Mol Sci, 2012 Nov 13;13(11):14871-88.
    PMID: 23203099 DOI: 10.3390/ijms131114871
    In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed.
    Matched MeSH terms: Elastic Modulus
  14. Rahmandoust M, Ochsner A
    J Nanosci Nanotechnol, 2012 Oct;12(10):8129-36.
    PMID: 23421189
    In this study, Single-Walled and Multi-Walled Carbon Nanotubes in their perfect forms were investigated by the Finite Element Method. Details on the modeling of the structure are provided in this paper, including the appropriate elements, the element properties that should be defined based on the atomic structure of Carbon Nanotubes and the corresponding chemical bonds. Non-covalent van der Waals interactions between two neighbor atoms as well as the required approximations for the modeling of the structures with this kind of interaction are also presented. Specific attention was dedicated to the necessity of using some time- and energy-consuming steps in the simulation process. First, the effect of simulating only a single ring of the whole structure is studied to find out if it would represent the same mechanical behavior as the long structure. Results show that by applying an appropriate set of boundary conditions, the stiffness of the shortened structure is practically equal to the long perfect structure. Furthermore, Multi-Walled Carbon Nanotube structures with and without defining the van der Waals force are studied. Based on the observations, applying the van der Waals force does not significantly influence the obtained Young's modulus of the structure in the case of a uniaxial tensile test.
    Matched MeSH terms: Elastic Modulus
  15. Abd Latif MJ, Jin Z, Wilcox RK
    J Biomech, 2012 May 11;45(8):1346-52.
    PMID: 22483055 DOI: 10.1016/j.jbiomech.2012.03.015
    The spinal facet joints are known to be an important component in the kinematics and the load transmission of the spine. The articular cartilage in the facet joint is prone to degenerative changes which lead to back pain and treatments for the condition have had limited long term success. There is currently a lack of information on the basic biomechanical properties of the facet joint cartilage which is needed to develop tissue substitution or regenerative interventions. In the present study, the thickness and biphasic properties of ovine facet cartilage were determined using a combination of indentation tests and computational modelling. The equilibrium biphasic Young's modulus and permeability were derived to be 0.76±0.35 MPa and 1.61±1.10×10⁻¹⁵ m⁴/(Ns) respectively, which were within the range of cartilage properties characterised from the human synovial joints. The average thickness of the ovine facet cartilage was 0.52±0.10 mm, which was measured using a needle indentation test. These properties could potentially be used for the development of substitution or tissue engineering interventions and for computational modelling of the facet joint. Furthermore, the developed method to characterise the facet cartilage could be used for other animals or human donors.
    Matched MeSH terms: Elastic Modulus/physiology
  16. Sidek HA, Bahari HR, Halimah MK, Yunus WM
    Int J Mol Sci, 2012;13(4):4632-41.
    PMID: 22606000 DOI: 10.3390/ijms13044632
    This paper reports the rapid melt quenching technique preparation for the new family of bismuth-lead germanate glass (BPG) systems in the form of (GeO(2))(60)-(PbO)(40-) (x)-(½Bi(2)O(3))(x) where x = 0 to 40 mol%. Their densities with respect of Bi(2)O(3) concentration were determined using Archimedes' method with acetone as a floatation medium. The current experimental data are compared with those of bismuth lead borate (B(2)O(3))(20)-(PbO)(80-) (x)-(Bi(2)O(3))(x). The elastic properties of BPG were studied using the ultrasonic pulse-echo technique where both longitudinal and transverse sound wave velocities have been measured in each glass samples at a frequency of 15 MHz and at room temperature. Experimental data shows that all the physical parameters of BPG including density and molar volume, both longitudinal and transverse velocities increase linearly with increasing of Bi(2)O(3) content in the germanate glass network. Their elastic moduli such as longitudinal, shear and Young's also increase linearly with addition of Bi(2)O(3) but the bulk modulus did not. The Poisson's ratio and fractal dimensionality are also found to vary linearly with the Bi(2)O(3) concentration.
    Matched MeSH terms: Elastic Modulus/physiology*
  17. Sugandi, G., Majlis, B.Y.
    ASM Science Journal, 2012;6(2):122-127.
    MyJurnal
    Since its invention, polyimide (PI) has been widely used in micro-electro-mechanical system (MEMS) devices. For fabrication, the PI membrane, PI-2723 HD-Microsystems was used as the membrane material due to its Young's modulus of 2.7 GPa and its film thickness could easily be controlled by changing the speed of the spin coater system. The application PI as membrane structure on silicon wafers therefore gave a much better mechanical performance then conventional membranes made of silicon dioxide (SiO2) or silicon nitride (Si3N4) layers. The fabrication of PI membrane was the same as for SiO2 and Si3N4 membranes; the basic step was to etch a side of the silicon wafer using wet anisotropic etching. This paper proposes an effective process for fabrication of PI membrane with f ast and little supervision. In this process, a dual step process was wet anisotropic etching of single crystal silicon using pottasium hydroxyl (KOH) with different concentrations and temperature processes. For the first process, 45% KOH under boiling temperature was used to etch at least 90%–95% of the silicon. In the second process, the silicon was submerged in 45% KOH with temperature at 70ºC–80ºC to etch away the residual silicon until a clean and transparent PI membrane was achieved. Using this method, the fabrication of PI membrane could be generated fast.
    Matched MeSH terms: Elastic Modulus
  18. Shahril Anuar Bahari, Kamrie Kamlon, Masitah Abu Kassim
    MyJurnal
    In this study, the rice husk flour-plastic waste composites (RPC) was produced from polypropylene (PP) and high density polyethylene (HDPE) wastes with 30 and 50% rice husk flour (RHF) contents. RPC was made by melt compounding and compression moulding processes. The electrical resistivity, thermal stability and tensile strength of RPC were determined. The RPC was tested in electrical resistivity and tensile strength according to the ASTM D-257 and ASTM D-638 respectively, while thermal stability was tested using thermogravimetric analysis (TGA) method. From the results, high content of RHF reduces all properties, except for tensile modulus of elasticity (TMOE) in tensile strength test. The ability of moisture absorption and the presence of hemicelluloses, cellulose and silica in RHF reduce the electrical resistivity and thermal stability behaviour of RPC from 50% RHF. The good binding elements and filler agglomeration in RPC from 50% RHF improve only TMOE. Insufficient stress transfer and rigid interphase occurred between RHF and plastics during tensile maximum load and elongation at break (Eb) in tensile strength test. In general, RPC from HDPE indicates better thermal stability, tensile modulus of rupture and Eb (in tensile strength test) compared to PP, based on the good behaviour of thermal conductivity, low water absorption, high molecular weight and good elongation properties of HDPE. However, RPC from PP shows good electrical resistance due to the low thermal expansion coefficient of PP.
    Matched MeSH terms: Elastic Modulus
  19. Mohd Cairul Iqbal Mohd Amin, Abadi Gumah Abadi, Naveed Ahmad, Haliza Katas, Jamia Azdina Jamal
    Sains Malaysiana, 2012;41:561-568.
    There has been an increasing interest in the use of natural materials as drug delivery vehicles due to their biodegradability, biocompatibility and ready availability. These properties make bacterial cellulose (BC), from nata de coco, a promising biopolymer for drug delivery applications. The aim of this study was to investigate the film-coating and drug release properties of this biopolymer. Physicochemical, morphological and thermal properties of BC films were studied. Model tablets were film coated with BC, using a spray coating technique, and in vitro drug release studies of these tablets were investigated. It was found that BC exhibited excellent ability to form soft, flexible and foldable films without the addition
    of any plasticizer. They were comparable to Aquacoat ECD (with plasticizer) in tensile strength, percentage elongation and elasticity modulus. Differential scanning calorimetry (DSC) BC showed a high Tg value indicating thermally stability of films. These results suggest that BC can be used as novel aqueous film-coating agent with lower cost and better film forming properties than existing film-coating agents.
    Matched MeSH terms: Elastic Modulus
  20. Mohamad S, Shuid AN, Mokhtar SA, Abdullah S, Soelaiman IN
    PMID: 22829855 DOI: 10.1155/2012/372878
    This study investigated the effects of α-tocopherol and palm oil tocotrienol supplementations on bone fracture healing in postmenopausal osteoporosis rats. 32 female Sprague-Dawley rats were divided into four groups. The first group was sham operated (SO), while the others were ovariectomised. After 2 months, the right femora were fractured under anesthesia and fixed with K-wire. The SO and ovariectomised-control rats (OVXC) were given olive oil (vehicle), while both the alpha-tocopherol (ATF) and tocotrienol-enriched fraction (TEF) groups were given alpha-tocopherol and tocotrienol-enriched fraction, respectively, at the dose of 60 mg/kg via oral gavages 6 days per week for 8 weeks. The rats were then euthanized and the femora dissected out for bone biomechanical testing to assess their strength. The callous of the TEF group had significantly higher stress parameter than the SO and OVXC groups. Only the SO group showed significantly higher strain parameter compared to the other treatment groups. The load parameter of the OVXC and ATF groups was significantly lower than the SO group. There was no significant difference in the Young's modulus between the groups. In conclusion, tocotrienol is better than α-tocopherol in improving the biomechanical properties of the fracture callous in postmenopausal osteoporosis rat model.
    Matched MeSH terms: Elastic Modulus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links