Displaying publications 101 - 120 of 121 in total

Abstract:
Sort:
  1. Zain SM, Tan HL, Mohamed Z, Chan WK, Mahadeva S, Basu RC, et al.
    JGH Open, 2020 Dec;4(6):1155-1161.
    PMID: 33319051 DOI: 10.1002/jgh3.12414
    Background and Aim: Advanced fibrosis is the most important predictor of liver-related mortality in non-alcoholic fatty liver disease (NAFLD). The aim of this study was to compare the diagnostic performance of noninvasive scoring systems in identifying advanced fibrosis in a Malaysian NAFLD cohort and propose a simplified strategy for the management of NAFLD in a primary care setting.

    Methods: We enrolled and reviewed 122 biopsy-proven NAFLD patients. Advanced fibrosis was defined as fibrosis stages 3-4. Noninvasive assessments included aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio, AST-to-platelet ratio index (APRI), AST/ALT ratio, diabetes (BARD) score, fibrosis-4 (FIB-4) score, and NAFLD fibrosis score.

    Results: FIB-4 score had the highest area under the receiver operating characteristic curve (AUROC) and negative predictive value (NPV) of 0.86 and 94.3%, respectively, for the diagnosis of advanced fibrosis. FIB-4 score 

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  2. Tan PO, Mustaffa N, Tan SS, Lee YY
    J R Coll Physicians Edinb, 2020 Sep;50(3):256-261.
    PMID: 32936098 DOI: 10.4997/JRCPE.2020.308
    Globally, the prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing rapidly and constitutes a significant healthcare burden due to associated complications including hepatic (cirrhosis and hepatocellular cancer) and non-hepatic (cardiovascular deaths) disorders. It is closely linked to insulin resistance and metabolic syndrome but moderate alcohol consumption frequently coexists. Recently, genetic polymorphisms were implicated in the development of non-obese NAFLD. Apart from liver biopsy, in order to assess for steatosis, fibrosis and non-alcoholic steatohepatitis (NASH), advances in non-invasive serum tests and elastography have provided similarly accurate, more accessible and safer alternatives for risk stratification. As for treatment in 2020, weight loss and lifestyle modification remain the central strategy. Unfortunately, no pharmacological agents have been approved thus far, but there are a number of potential therapies in the pipeline for fibrosis and NASH. Treatment of underlying metabolic disorders is important. While the term NAFLD was coined in the 1980s, more recent understanding may support a change in nomenclature highlighting its strong metabolic roots.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  3. Tan EC, Tai MS, Chan WK, Mahadeva S
    JGH Open, 2019 Apr;3(2):117-125.
    PMID: 31061886 DOI: 10.1002/jgh3.12114
    Background and Aim: There is not much data on the association between non-alcoholic fatty liver disease (NAFLD) and advanced fibrosis assessed using Fibroscan with carotid intima-media thickness (CIMT) in the general population. The objective of this study was to evaluate the association between NAFLD and advanced fibrosis, as diagnosed by Fibroscan, with an increased CIMT in the Malaysian population.

    Methods: A cross-sectional study of government officers and their family members attending a health screening at a public healthcare facility was conducted. All subjects underwent clinical evaluation, biochemical testing, anthropometry, ultrasound carotid Doppler, and Fibroscan examination.

    Results: Data for 251 subjects were analyzed (mean age 47.1 ± 12.4 years, 74.1% male). Prevalence of NAFLD and advanced fibrosis were 57.4 and 17.5%, respectively. Independent factors associated with NAFLD were waist circumference (odds ratio [OR] = 1.077, 95% confidence interval [CI] 1.038-1.118, P < 0.001) and serum alanine aminotransferase (ALT) (OR = 1.039, 95% CI 1.005-1.074, P = 0.024). Independent factors associated with advanced fibrosis were male gender (OR = 4.847, 95% CI 1.369-17.155, P = 0.014) and serum aspartate aminotransferase (AST) (OR = 1.057, 95% CI 1.003-1.113, P = 0.036). Prevalence of increased CIMT was 29.0%. Independent factor associated with increased CIMT was older age (OR = 1.146, 95% CI 1.067-1.231, P < 0.001). Of the subjects, 34.5% with NAFLD had increased CIMT compared to 19.1% of the subjects without NAFLD (P = 0.063). Advanced fibrosis was not associated with increased CIMT.

    Conclusions: Prevalence of NAFLD, advanced liver fibrosis, and increased CIMT were high. NAFLD and advanced liver fibrosis appeared not to be associated with increased CIMT. However, a larger sample size is needed to demonstrate whether there is any association.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  4. Khammas ASA, Mahmud R
    J Med Ultrasound, 2020 10 01;29(1):26-31.
    PMID: 34084713 DOI: 10.4103/JMU.JMU_53_20
    Background: Ultrasonographic (USG) measurements of the liver length, gallbladder wall thickness (GBWT), diameters of the inferior vena cava (IVC), portal vein (PV), and pancreas are valuable and reliable in diagnosis hepatobiliary and pancreas conditions. This study is aimed to determine the normal values of liver length, GBWT, AP diameters of the IVC and PV, AP diameter of the head and body of the pancreas.

    Methods: A prospective cross-sectional study was carried out in this study. A total of the 408 participants were randomly recruited using a systematic method. According to the USG reports, the subjects who had normal USG report for liver, biliary system, and pancreas were described as normals, whereas the subjects who had hepatobiliary diseases such as fatty liver, liver cysts, hemangioma, cirrhosis, gallbladder wall thickening, acute cholecystitis, gallstones, and polyps were recorded as abnormal subjects.

    Results: Of the 408 participants with a mean of 52.6 ± 8.4 years old. Of those, 294 (72.1%) participants were normal and 114 (27.9%) subjects were reported as abnormal. More than half of the study population was males, 52.9% versus 47.1% of females. There was a significant difference of liver length, head, and body of the pancreas between genders (P = 0.004, 0.002, and P < 0.001, respectively). Moreover, the pancreatic body only was significantly correlated with age (P = 0.026). There also was a significant difference of the liver length, head, and body of the pancreas between normal and abnormal subjects (P < 0.001, P = 0.007, and P < 0.001).

    Conclusion: Liver length, diameter of the head, and body of the pancreas were significantly associated with gender and hepatobiliary diseases. In addition, only the diameter of the body of the pancreas was significantly correlated with age.

    Matched MeSH terms: Fatty Liver
  5. Toulah FH, El-Aswad BEW, Harba NM, Naguib YM
    Trop Biomed, 2018 Dec 01;35(4):893-907.
    PMID: 33601839
    High-fat diet (HFD) can cause hyperlipidemia, fatty liver and cardiovascular disorders. Herein, we evaluated therapeutic effects and possible underlying mechanisms of actions of Schistosoma mansoni soluble egg antigen (SEA) against experimental HFD induced dyslipidemia, hepatic and cardiovascular pathology. Forty Swiss albino mice were divided into four groups (10 each); mice fed standard diet (SD), mice fed HFD, mice fed HFD for 8 weeks then infected by S. mansoni cercaria (HFD+I) and mice fed HFD for 8 weeks then treated with SEA (HFD+SEA), all mice were euthanized 16 weeks after starting the experiment. HFD+SEA mice showed significantly (p<0.001) reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG), and significantly (p<0.05) increased high-density lipoprotein cholesterol (HDL-C) comparing to HFD mice with non-significant difference with HFD+I mice group. Doppler flowmetry showed significantly (p<0.01) lower arterial resistance and significantly (p<0.05) higher blood flow velocity in HFD+SEA and HFD+I mice groups than HFD mice. HFD+SEA mice revealed improving in liver and aortic pathology and these were better than HFD+I mice group. HFD+SEA and HFD+I mice groups had less myocardium lipid deposits, but still showing some congested blood vessels. HFD myocardium revealed strong CD34+ expression on immunohistochemistry study, while that of HFD+SEA showed weak and HFD+I mice had moderate expressions. HFD+SEA mice had significantly (p<0.01) lower serum IL-1β and vascular endothelial growth factor (VEGF) and significantly (p<0.001) higher serum transforming growth factor beta 1 (TGF-β1) and IL-10 than HFD mice with non-significant difference with HFD+I mice. In conclusion, SEA lowered serum lipids, improved aortic function, decreased liver and cardiovascular pathology in HFD mice, so, it is recommended to purify active molecules from SEA to develop anti-dyslipidemic treatment.
    Matched MeSH terms: Fatty Liver
  6. Subapriya Suppiah, Lee, Roy-Ming Chow, Nor Sharmin Sazali, Hasyma Abu Hassan
    MyJurnal
    Introduction: Non-alcoholic Fatty Liver Disease (NAFLD) is one of the end organ damage detected
    in patients having metabolic syndrome X and it can lead to chronic liver failure. Therefore, it is
    important to be able to assess the condition in a quantifiable manner to help clinicians recognize
    and treat this disease. Objective: We aimed to determine the prevalence of NAFLD in patients with
    metabolic syndrome in Serdang Hospital, Malaysia using contrast-enhanced multidetector computed
    tomography (CECT) abdominal scan. The study also aimed to calculate the quantification of NAFLD
    using liver to spleen density CT Hounsfield Unit ratio, CTL/S or CTL/S measurement using abdominal
    CECT scans. Furthermore, we aimed to verify the correlation of dyslipidemia with NAFLD based on
    the CTL/S parameter. Materials and Method: We conducted a cross-sectional retrospective study in
    Hospital Serdang, Malaysia using data from January 2012 to December 2013. The sample size was 279
    patients with metabolic syndrome who had undergone CECT abdominal scan. Patient demographics
    were descriptively analysed. Spearman’s correlation test was used to look for association among lipid
    profile, blood sugar level and CTL/S ratio. Results: The prevalence of NAFLD in metabolic syndrome
    patients in our population was 82.8%. Prevalence of NAFLD was high among the elderly population (≥
    57 years old). Additionally, Indian ethnics with metabolic syndrome had the highest risk of developing
    NAFLD (90.9%). There was a significant association between elevated LDL levels and CTL/S ratio
    (p
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  7. Wah Kheong C, Nik Mustapha NR, Mahadeva S
    Clin Gastroenterol Hepatol, 2017 Dec;15(12):1940-1949.e8.
    PMID: 28419855 DOI: 10.1016/j.cgh.2017.04.016
    BACKGROUND & AIMS: Silymarin is a complex mixture of 6 major flavonolignans and other minor polyphenolic compounds derived from the milk thistle plant Silybum marianum; it has shown antioxidant, anti-inflammatory and antifibrotic effects, and may be useful in patients with nonalcoholic fatty liver disease (NAFLD). We aimed to study the efficacy of silymarin in patients with nonalcoholic steatohepatitis (NASH)-the more severe form of NAFLD.

    METHODS: We performed a randomized, double-blind, placebo-controlled trial of consecutive adults with biopsy-proven NASH and a NAFLD activity score (NAS) of 4 or more at a tertiary care hospital in Kuala Lumpur, Malaysia, from November 2012 through August 2014. Patients were randomly assigned to groups given silymarin (700 mg; n = 49 patients) or placebo (n = 50 patients) 3 times daily for 48 weeks. After this 48-week period, liver biopsies were repeated. The primary efficacy outcome was a decrease of 30% or more in NAS; findings from 48-week liver biopsies were compared with those from the baseline biopsy. Secondary outcomes included changes in steatosis, lobular inflammation, hepatocyte ballooning, NAS and fibrosis score, and anthropometric measurements, as well as glycemic, lipid, and liver profiles and liver stiffness measurements.

    RESULTS: The percentage of patients achieving the primary efficacy outcome did not differ significantly between the groups (32.7% in the silymarin group vs 26.0% in the placebo group; P = .467). A significantly higher proportion of patients in the silymarin group had reductions in fibrosis based on histology (reductions of 1 point or more; 22.4%) than did the placebo group (6.0%; P = .023), and based on liver stiffness measurements (decrease of 30% or more; 24.2%) than did the placebo group (2.3%; P = .002). The silymarin group also had significant reductions in mean aspartate aminotransferase to platelet ratio index (reduction of 0.14, P = .011 compared with baseline), fibrosis-4 score (reduction of 0.20, P = .041 compared with baseline), and NAFLD fibrosis score (reduction of 0.30, P < .001 compared with baseline); these changes were not observed in the placebo group (reduction of 0.07, P = .154; increase of 0.18, P = .389; and reduction of 0.05, P = .845, respectively). There was no significant difference between groups in number of adverse events; adverse events that occurred were not attributed to silymarin.

    CONCLUSIONS: In a randomized trial of 99 patients, we found that silymarin (700 mg, given 3 times daily for 48 weeks) did not reduce NAS scores by 30% or more in a significantly larger proportion of patients with NASH than placebo. Silymarin may reduce liver fibrosis but this remains to be confirmed in a larger trial. It appears to be safe and well tolerated. ClinicalTrials.gov: NCT02006498.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  8. Raihan R, Azzeri A, H Shabaruddin F, Mohamed R
    Euroasian J Hepatogastroenterol, 2018 05 01;8(1):54-56.
    PMID: 29963463 DOI: 10.5005/jp-journals-10018-1259
    Hepatocellular carcinoma (HCC) is one of the leading causes of death globally. In Malaysia liver cancer is the eighth most common cause of cancer for both gender and fifth most common cause of cancer for males. Liver cancer is a cause of premature death in Malaysia: The trend from 1990 to 2010 was observed upward. Since 1990, the annual years of life lost (YLLs) from liver cancer have increased by 31.5%. Older persons are at higher risk and there is male predominance observed. Curative surgical resection, liver transplantation, and supportive symptomatic care, including percutaneous ethanol injection and radiofrequency ablation (RFA), and noncurative transarterial chemoembolization (TACE) are among available treatment facilities. Yet the survival rate is very poor as majority of patients present at very advanced stage. Hepatitis B virus (HBV) remained the leading cause of HCC in Malaysia. Several studies showed cryptogenic causes, which are mainly nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) among the predominant causes of HCC in Malaysia than hepatitis C virus (HCV), alcohol, or any other reason. This mainly correlates with the increasing incidence of diabetes and obesity in Malaysia. How to cite this article: Raihan R, Azzeri A, Shabaruddin FH, Mohamed R. Hepatocellular Carcinoma in Malaysia and Its Changing Trend. Euroasian J Hepato-Gastroenterol 2018;8(1):54-56.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  9. Chongmelaxme B, Phisalprapa P, Sawangjit R, Dilokthornsakul P, Chaiyakunapruk N
    Pharmacoeconomics, 2019 02;37(2):267-278.
    PMID: 30430467 DOI: 10.1007/s40273-018-0736-0
    INTRODUCTION: This study evaluated lifetime liver-related clinical outcomes, costs of treatment, and the cost-effectiveness of treatment options for non-alcoholic fatty liver disease (NAFLD) in Thailand.

    METHODS: A cost-utility analysis using a lifetime Markov model was conducted among Thai patients with NAFLD, from a societal perspective. Pioglitazone, vitamin E, a weight reduction program, and usual care were investigated, with the outcomes of interest being the number of cirrhosis and hepatocellular carcinoma (HCC) cases, life expectancy, quality-adjusted life-years (QALYs), lifetime costs, and the incremental cost-effectiveness ratios (ICERs). One-way and probabilistic sensitivity analyses were performed.

    RESULTS: When compared with usual care, a weight reduction program can prevent cirrhosis and HCC cases by 13.91% (95% credible interval [CrI] 0.97, 20.59) and 2.12% (95% CrI 0.43, 4.56), respectively; pioglitazone can prevent cirrhosis and HCC cases by 9.30% (95% CrI -2.52, 15.24) and 1.42% (95% CrI -0.18, 3.74), respectively; and vitamin E can prevent cirrhosis and HCC cases by 7.32% (95% CrI -4.64, 15.56) and 1.12% (95% CrI -0.81, 3.44), respectively. Estimated incremental life expectancy and incremental QALYs for all treatment options compared with usual care were approximately 0.06 years and 0.07 QALYs, respectively. The lifetime costs of both a weight reduction program and pioglitazone were less than usual care, while vitamin E was $3050 (95% CrI 2354, 3650). The weight reduction program dominated all other treatment options. The probability of being cost-effective in Thailand's willingness-to-pay threshold ($4546/QALY gained) was 76% for the weight reduction program, 22% for pioglitazone, 2% for usual care, and 0% for vitamin E.

    CONCLUSIONS: A weight reduction program can prevent cirrhosis and HCC occurrences, and dominates all other treatment options. Pioglitazone and vitamin E demonstrated a trend towards decreasing the number of cirrhosis and HCC cases.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  10. Arivalagan P, Husain MS, Subramaniam K, Kaslan MRM
    Med J Malaysia, 2019 Oct;74(5):454-455.
    PMID: 31649231
    Neonatal death due to inborn error of metabolism (IEM) is rare in Malaysia. We report a sudden neonate death just a few hours after being discharged from the hospital. The deceased was a two-day-old baby boy and was asymptomatic until his demise. He was fed with expressed breast milk and formula milk. Autopsy revealed fatty changes of the liver and an enlarged heart. Laboratory investigation confirmed very long chain Acyl-CoA dehydrogenase deficiency which resulted in his death. Autopsy of sudden unexpected death in neonate should include investigation for inborn error of metabolism. Fatty liver and enlarged heart could give a clue for the diagnosis.
    Matched MeSH terms: Fatty Liver
  11. Pitisuttithum P, Chan WK, Piyachaturawat P, Imajo K, Nakajima A, Seki Y, et al.
    BMC Gastroenterol, 2020 Apr 06;20(1):88.
    PMID: 32252638 DOI: 10.1186/s12876-020-01240-z
    BACKGROUND: The Gut and Obesity in Asia (GOASIA) Workgroup was formed to study obesity and gastrointestinal diseases in the Asia Pacific region. We aimed to 1) compare the characteristics of elderly (i.e. age ≥ 60) vs. non-elderly patients with biopsy-proven nonalcoholic fatty liver disease (NAFLD); 2) identify predictors of advanced fibrosis in elderly patients with NAFLD; and 3) assess the performance of non-invasive fibrosis scores in the prediction of advance fibrosis in the elderly population.

    METHODS: We abstracted the data of 1008 patients with NAFLD from nine centers across eight countries. Characteristics of elderly and non-elderly patients with NAFLD were compared using 1:3 sex-matched analysis.

    RESULTS: Of the 1008 patients, 175 were elderly [age 64 (62-67) years], who were matched with 525 non-elderly patients [46 (36-54) years]. Elderly patients were more likely to have advanced fibrosis (35.4% vs. 13.3%; p 

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  12. Tan HL, Zain SM, Eng HS, Mohamed Z, Mahadeva S, Chan WK, et al.
    PMID: 32410320 DOI: 10.1111/hepr.13525
    AIM: Human leukocyte antigen (HLA) regions were highlighted as important genetic markers for various liver diseases by hepatology-related genome-wide association studies. Replication studies in non-alcoholic fatty liver disease (NAFLD) are limited and none has investigated the association of HLA alleles with non-alcoholic steatohepatitis (NASH) and other histological characteristics. In the current study, we examined the association of HLA-DQA1 and HLA-DQB1 alleles with NAFLD spectrum and its histological characteristics.

    METHODS: Consecutive biopsy-proven NAFLD patients (n = 191) and healthy controls (n = 188) were enrolled and genotyped for HLA-DQA1 and HLA-DQB1 alleles using the sequence-specific oligonucleotide-polymerase chain reaction method.

    RESULTS: No association was found between the HLA alleles and NAFLD or NASH in a case-control setting. Nevertheless, among NAFLD patients, the frequency of HLA-DQB1*06 allele was significantly the lowest in NASH with significant fibrosis (10.4%) and approximately similar for NASH without significant fibrosis (22.9%) and NAFL (22.5%) (P = 0.004). It is noteworthy that the association remains significant after correction for multiple comparisons (Pc  = 0.04). Multivariate analysis revealed that HLA-DQB1*06 allele is also associated with fibrosis score (P = 0.001); the result remains significant after correction for multiple comparisons.

    CONCLUSION: These findings suggest that HLA-DQB1*06 is associated with lower fibrosis score in NAFLD patients.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  13. Omar N, Koshy M, Hanafiah M, Hatta SFWM, Shah FZM, Johari B, et al.
    J Res Med Sci, 2020;25:64.
    PMID: 33088301 DOI: 10.4103/jrms.JRMS_560_17
    Background: Nonalcoholic fatty liver disease (NAFLD) has become one of the major diseases plaguing worldwide. Several studies reported its association with ischemic heart disease (IHD). This study aims to determine the relationships between severity of steatosis with glycemic control and carotid intima-media thickness (CIMT) among a high-risk population of type 2 diabetes mellitus (T2DM) with proven IHD.

    Materials and Methods: This was a cross-sectional study involving patients aged between 18 and 65 years diagnosed with T2DM with IHD (n = 150). Ultrasonography of the abdomen to determine NAFLD severity category and CIMT measurements was performed by two independent radiologists. NAFLD was graded according to the severity of steatosis (NAFLD-3, NAFLD-2, NAFLD-1, and NAFLD-0). Comparison between different stages of NAFLD (NAFLD-3, NAFLD-2, NAFLD-1, and NAFLD-0) was analyzed using Chi-square and analysis of variance tests for categorical and continuous variables, respectively.

    Results: The prevalence of NAFLD was 71% (n = 107). NAFLD-1 was detected in 39% of the patients, 32% had NAFLD-2, no patients with NAFLD-3, and 29% had non-NAFLD. There were no patients with NAFLD-2 having higher systolic and diastolic blood pressure, weight, body mass index, waist circumference, total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol. Glycated hemoglobin (HbA1c) concentration was highest within the NAFLD-2. NAFLD-2 showed higher mean CIMT. Every 1% rise in HbA1c for patients with NAFLD significantly increases the CIMT by 0.03 mm (95% CI: 0.009, 0.052, P = 0.006).

    Conclusion: These findings suggest additional atherosclerotic risks within the NAFLD-2 group with significantly higher HbA1c and CIMT compared to the NAFLD-1 and NAFLD-0 groups. It is, therefore, vital to incorporate stricter glycemic control among patients with T2DM and IHD with moderate NAFLD as part of atherosclerotic risk management strategy.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  14. Arifah SN, Atho'illah MF, Lukiati B, Lestari SR
    Malays J Med Sci, 2020 Feb;27(1):46-56.
    PMID: 32158344 DOI: 10.21315/mjms2020.27.1.5
    Introduction: High fat diet (HFD) can cause lipid accumulation and contribute to various metabolic disorders. Single clove garlic oil (SCGO) has advantages over regular garlic due to its higher amounts of organosulfide compounds in particular. This study aimed to determine the ability of SCGO extract to ameliorate hepatic steatosis and improve oxidative status by modulating expression of tumour necrosis factor α and superoxide dismutase in mice fed a HFD.

    Methods: Twenty-four adult male Balb/C mice were divided into six groups: i) normal diet; ii) positive control diet; iii) negative control diet; and iv) HFD with SCGO at 12.5 mg/kg body weight (mg/kg BW); v) HFD with SCGO at 25 mg/kg BW, vi) HFD with SCGO at 50 mg/kg BW. Liver weight and morphology, spleen weight, serum levels of superoxide dismutase (SOD) and tumour necrosis factor α (TNF-α), TNF-α expression in the aorta and lipid profiles were assessed at the end of the experimental period.

    Results: SCGO treatment was associated with significant decreases in liver and spleen weight as well as amelioration of hepatic steatosis. SCGO treatment also decreased TNF-α levels and expression. Serum levels of SOD in the SCGO groups were significantly increased compared with the negative control group. Lipid profiles were improved in the SCGO treatment groups compared with the negative control group.

    Conclusion: SCGO as an herbal medicine could be an effective treatment for degenerative disorders caused by HFD.

    Matched MeSH terms: Fatty Liver
  15. Goh KL
    Malays J Med Sci, 2019 Mar;26(2):18-29.
    PMID: 31447605 DOI: 10.21315/mjms2019.26.2.3
    The landscape of liver diseases in Malaysia has changed dramatically since the time of Professor Balasegaram Manickavasagar-an eminent surgeon in the 1960s. The most significant discoveries in hepatology have been that of hepatitis B virus in 1963 and hepatitis C virus in 1989, which have both been shown to be predominantly blood borne diseases. Hepatitis B and C infections result in long term carrier state and a high propensity to develop liver cirrhosis and cancer. Hepatitis B is the most common cause of liver cirrhosis and cancer in Malaysia. Blood bank screening and public health preventive measures have reduced the disease burden significantly and an effective vaccination for hepatitis B is now incorporated in our National Immunisation Programme. Although no vaccine is available for hepatitis C, highly effective eradication therapies were introduced in 2011. These agents will significantly change the disease scenario across the world. A "new" disease was described in 1980, by Ludwig et al.-non-alcoholic fatty liver (NAFLD) disease. With the global epidemic of obesity and diabetes mellitus, NAFLD is set to increase exponentially across the world including in Malaysia. It will be the most important liver disease in the future, replacing hepatitis B and C infections.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  16. Moslehi A, Farahabadi M, Chavoshzadeh SA, Barati A, Ababzadeh S, Mohammadbeigi A
    Malays J Med Sci, 2018 Feb;25(1):16-23.
    PMID: 29599631 DOI: 10.21315/mjms2018.25.1.3
    Background: Endoplasmic reticulum (ER) stress creates abnormalities in the insulin action, inflammatory responses, lipoprotein B100 degradation, and hepatic lipogenesis. Hepatic steatosis leads to a broad spectrum of hepatic disorders such as nonalcoholic fatty liver disease (NAFLD) and NASH. Amygdalin has beneficial effects on asthma, bronchitis, diabetes, and atherosclerosis. We designed this study to evaluate the effect of amygdalin on the ER stress induced hepatic steatosis.

    Methods: Inbred mice received saline, DMSO and amygdalin, as control groups. ER stress was induced by tunicamycin (TM) injection. Amygdalin was administered 1 h before the TM challenge (Amy + TM group). Mice body and liver weights were measured. Hematoxylin and eosin (H&E) and oil red O staining from liver tissue, were performed. Alanin aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride and cholesterol levels were measured.

    Results: Histological evaluation revealed that amygdalin was unable to decrease the TM induced liver steatosis; however, ALT and AST levels decreased [ALT: 35.33(2.15) U/L versus 92.33(6.66) U/L; (57.000, (50.63, 63.36),P< 0.001) and AST: 93(5.09) U/L versus 345(97.3) U/L, (252, (163.37, 340.62),P< 0.001)]. Amygdalin also decreased triglyceride and cholesterol plasma levels in the Amy + TM group [TG: 42.66(2.15) versus 53.33(7.24) mg/dL; (10.67, (3.80, 17.54),P= 0.006) and TC: 9.33(3.55) versus 112.66(4.31) mg/dL, (103.33, (98.25, 108.40)P< 0.001)].

    Conclusion: Amygdalin improved the ALT, AST, and lipid serum levels after the TM challenge; however, it could not attenuate hepatic steatosis.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
  17. Saokaew S, Kanchanasuwan S, Apisarnthanarak P, Charoensak A, Charatcharoenwitthaya P, Phisalprapa P, et al.
    Liver Int, 2017 Oct;37(10):1535-1543.
    PMID: 28294515 DOI: 10.1111/liv.13413
    BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) can progress from simple steatosis to hepatocellular carcinoma. None of tools have been developed specifically for high-risk patients. This study aimed to develop a simple risk scoring to predict NAFLD in patients with metabolic syndrome (MetS).

    METHODS: A total of 509 patients with MetS were recruited. All were diagnosed by clinicians with ultrasonography-confirmed whether they were patients with NAFLD. Patients were randomly divided into derivation (n=400) and validation (n=109) cohort. To develop the risk score, clinical risk indicators measured at the time of recruitment were built by logistic regression. Regression coefficients were transformed into item scores and added up to a total score. A risk scoring scheme was developed from clinical predictors: BMI ≥25, AST/ALT ≥1, ALT ≥40, type 2 diabetes mellitus and central obesity. The scoring scheme was applied in validation cohort to test the performance.

    RESULTS: The scheme explained, by area under the receiver operating characteristic curve (AuROC), 76.8% of being NAFLD with good calibration (Hosmer-Lemeshow χ2 =4.35; P=.629). The positive likelihood ratio of NAFLD in patients with low risk (scores below 3) and high risk (scores 5 and over) were 2.32 (95% CI: 1.90-2.82) and 7.77 (95% CI: 2.47-24.47) respectively. When applied in validation cohort, the score showed good performance with AuROC 76.7%, and illustrated 84%, and 100% certainty in low- and high-risk groups respectively.

    CONCLUSIONS: A simple and non-invasive scoring scheme of five predictors provides good prediction indices for NAFLD in MetS patients. This scheme may help clinicians in order to take further appropriate action.

    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/etiology*
  18. Sarin SK, Choudhury A, Sharma MK, Maiwall R, Al Mahtab M, Rahman S, et al.
    Hepatol Int, 2019 Jul;13(4):353-390.
    PMID: 31172417 DOI: 10.1007/s12072-019-09946-3
    The first consensus report of the working party of the Asian Pacific Association for the Study of the Liver (APASL) set up in 2004 on acute-on-chronic liver failure (ACLF) was published in 2009. With international groups volunteering to join, the "APASL ACLF Research Consortium (AARC)" was formed in 2012, which continued to collect prospective ACLF patient data. Based on the prospective data analysis of nearly 1400 patients, the AARC consensus was published in 2014. In the past nearly four-and-a-half years, the AARC database has been enriched to about 5200 cases by major hepatology centers across Asia. The data published during the interim period were carefully analyzed and areas of contention and new developments in the field of ACLF were prioritized in a systematic manner. The AARC database was also approached for answering some of the issues where published data were limited, such as liver failure grading, its impact on the 'Golden Therapeutic Window', extrahepatic organ dysfunction and failure, development of sepsis, distinctive features of acute decompensation from ACLF and pediatric ACLF and the issues were analyzed. These initiatives concluded in a two-day meeting in October 2018 at New Delhi with finalization of the new AARC consensus. Only those statements, which were based on evidence using the Grade System and were unanimously recommended, were accepted. Finalized statements were again circulated to all the experts and subsequently presented at the AARC investigators meeting at the AASLD in November 2018. The suggestions from the experts were used to revise and finalize the consensus. After detailed deliberations and data analysis, the original definition of ACLF was found to withstand the test of time and be able to identify a homogenous group of patients presenting with liver failure. New management options including the algorithms for the management of coagulation disorders, renal replacement therapy, sepsis, variceal bleed, antivirals and criteria for liver transplantation for ACLF patients were proposed. The final consensus statements along with the relevant background information and areas requiring future studies are presented here.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease/etiology
  19. Sucedaram Y, Johns EJ, Husain R, Abdul Sattar M, H Abdulla M, Nelli G, et al.
    J Inflamm Res, 2021;14:689-710.
    PMID: 33716510 DOI: 10.2147/JIR.S299083
    Purpose: We hypothesized that low estrogen levels aggravate obesity-related complications. Diet-induced obesity can cause distinct pathologies, including impaired glucose tolerance, inflammation, and organ injury that leads to fatty liver and chronic kidney diseases. To test this hypothesis, ovariectomized (OVX) rats were fed a high-fat style diet (HFSD), and we examined structural changes and inflammatory response in the kidney and liver.

    Methods: Sprague-Dawley female rats were ovariectomized or sham-operated and divided into four groups: sham-operated rats fed a normal diet (ND); ovariectomized rats fed a normal diet (OVX-ND); sham-operated rats fed a HFSD; ovariectomized rats fed a high-fat style diet (OVX-HFSD). Mean blood pressure and fasting blood glucose were measured on weeks 0 and 10. The rats were sacrificed 10 weeks after initiation of ND or HFSD, the kidney and liver were harvested for histological, immunohistochemical and immunofluorescence studies.

    Results: HFSD-fed rats presented a significantly greater adiposity index compared to their ND counterparts. Liver index, fasting blood glucose and mean blood pressure was increased in OVX-HFSD rats compared to HFSD rats at study terminal. Histological and morphometric studies showed focal interstitial mononuclear cell infiltration in the kidney of HFSD rats with mesangial expansion being greater in the OVX-HFSD rats. Both HFSD fed groups showed increased expressions of renal inflammatory markers, namely TNF-alpha, IL-6 and MCP-1, and infiltrating M1 macrophages with some influence of ovarian hormonal status. HFSD-feeding also caused hepatocellular steatosis which was aggravated in ovariectomized rats fed the same diet. Furthermore, hepatocellular ballooning was observed only in the OVX-HFSD rats. Similarly, HFSD-fed rats showed increased expressions of the inflammatory markers and M1 macrophage infiltration in the liver; however, only IL-6 expression was magnified in the OVX-HFSD.

    Conclusion: Our data suggest that some of the structural changes and inflammatory response in the kidney and liver of rats fed a HFSD are exacerbated by ovariectomy.

    Matched MeSH terms: Fatty Liver
  20. Tan CX, Chong GH, Hamzah H, Ghazali HM
    Phytother Res, 2018 Nov;32(11):2264-2274.
    PMID: 30051518 DOI: 10.1002/ptr.6164
    Hypercholesterolemia is a major risk factor for the initiation and development of nonalcoholic fatty liver disease and atherosclerosis. The present study evaluated the hypocholesterolemic effect of virgin avocado oil (VAO) using urinary metabolomic method. Male Sprague-Dawley rats were fed high-cholesterol diet for four weeks to induce hypercholesterolemia. After confirming the establishment of hypercholesterolemia model, the VAO (450 and 900 mg·kg-1 ·day-1 ) and simvastatin (10 mg·kg-1 ·day-1 ) were given orally while maintaining the high-cholesterol diet for another four weeks. Assessment of urinary metabolomics using NMR revealed that VAO treatment could partially recover the metabolism dysfunction induced by hypercholesterolemia mainly via lipid, energy, amino acid, and gut microbiota metabolism.
    Matched MeSH terms: Non-alcoholic Fatty Liver Disease
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links