Displaying publications 101 - 120 of 229 in total

Abstract:
Sort:
  1. Lim SR, Gooi BH, Gam LH
    Cancer Biomark, 2012;12(4):185-98.
    PMID: 23568009 DOI: 10.3233/CBM-130307
    Detection of low abundance proteins always possesses challenges even with the currently available proteomics technologies.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  2. Auwal SM, Zainal Abidin N, Zarei M, Tan CP, Saari N
    PLoS One, 2019;14(5):e0197644.
    PMID: 31145747 DOI: 10.1371/journal.pone.0197644
    Stone fish is an under-utilized sea cucumber with many health benefits. Hydrolysates with strong ACE-inhibitory effects were generated from stone fish protein under the optimum conditions of hydrolysis using bromelain and fractionated based on hydrophobicity and isoelectric properties of the constituent peptides. Five novel peptide sequences with molecular weight (mw) < 1000 daltons (Da) were identified using LC-MS/MS. The peptides including Ala-Leu-Gly-Pro-Gln-Phe-Tyr (794.44 Da), Lys-Val-Pro-Pro-Lys-Ala (638.88 Da), Leu-Ala-Pro-Pro-Thr-Met (628.85 Da), Glu-Val-Leu-Ile-Gln (600.77 Da) and Glu-His-Pro-Val-Leu (593.74 Da) were evaluated for ACE-inhibitory activity and showed IC50 values of 0.012 mM, 0.980 mM, 1.310 mM, 1.440 mM and 1.680 mM, respectively. The ACE-inhibitory effects of the peptides were further verified using molecular docking study. The docking results demonstrated that the peptides exhibit their effect mainly via hydrogen and electrostatic bond interactions with ACE. These findings provide evidence about stone fish as a valuable source of raw materials for the manufacture of antihypertensive peptides that can be incorporated to enhance therapeutic relevance and commercial significance of formulated functional foods.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  3. Nurul Mujahidah Ahmad Khairuddin, Amalina Muhammad Afifi, Katayoon Kalantari, Nur Awanis Hashim, Shaza Eva Mohamad
    Sains Malaysiana, 2018;47:1311-1318.
    Chitosan/polyvinyl alcohol (Chitosan/PVA) blended film was prepared by direct blend process and solution casting methods.
    In order to reduce the swelling ratio and enhance the chemical and mechanical stability, Chitosan/PVA film was crosslinked
    with glutaraldehyde in order to produce Chitosan-g-PVA. Bovine serum albumin (BSA) was used as a model protein
    to incorporate into the Chitosan-g-PVA. The chemical structure and morphological characteristics of films were studied
    by FT-IR and scanning electron microscopy (SEM). Mechanical and physical properties of blended films such as tensile
    properties in the dry and wet states, water uptake and water contact angle measurement were characterized. Blending
    PVA and chitosan improved strength and flexibility of the films. Crosslinking with glutaraldehyde further improves the
    tensile strength and decrease the hydrophilicity of films. BSA immobilized on the Chitosan-g-PVA film was calculated as
    BSA encapsulation efficiency.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  4. Pramanik BK, Pramanik SK, Suja F
    Environ Technol, 2016 Aug;37(15):1857-64.
    PMID: 26695189 DOI: 10.1080/09593330.2015.1134677
    The impact of biological activated carbon (BAC), sand filtration (SF) and biological aerated filter (BAF) for removal of the selected organic micropollutants and polyfluoroalkyl substances (PFASs) from secondary effluent was studied. BAC led to greater removal of dissolved organic carbon (43%) than BAF (30%) which in turn was greater than SF (24%). All biological filtration systems could effectively remove most of the selected organic micropollutants, and there was a greater removal of these micropollutants by BAC (76-98%) than BAF (70-92%) or SF (68-90%). It was found that all treatment was effective for removal of the hydrophobic (log D > 3.2) and readily biodegradable organic micropollutants. The major mechanism for the removal of these molecules was biodegradation by the micro-organism and sorption by the biofilm. Compared to organic micropollutants removal, there was a lower removal of PFASs by all treatments, and BAF and SF had a considerably lower removal than BAC treatment. The better removal for all molecule types by BAC was due to additional adsorption capacity by the activated carbon. This study demonstrated that the BAC process was most effective in removing organic micropollutants present in the secondary effluent.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  5. Abd Halim NS, Wirzal MDH, Bilad MR, Md Nordin NAH, Adi Putra Z, Sambudi NS, et al.
    Polymers (Basel), 2019 Dec 17;11(12).
    PMID: 31861059 DOI: 10.3390/polym11122117
    Electrospun nanofiber membrane (NFM) has a high potential to be applied as a filter for produced water treatment due to its highly porous structure and great permeability. However, it faces fouling issues and has low mechanical properties, which reduces the performance and lifespan of the membrane. NFM has a low integrity and the fine mat easily detaches from the sheet. In this study, nylon 6,6 was selected as the polymer since it offers great hydrophilicity. In order to increase mechanical strength and separation performance of NFM, solvent vapor treatment was implemented where the vapor induces the fusion of fibers. The fabricated nylon 6,6 NFMs were treated with different exposure times of formic acid vapor. Results show that solvent vapor treatment helps to induce the fusion of overlapping fibers. The optimum exposure time for solvent vapor is 5 h to offer full retention of dispersed oil (100% of oil rejection), has 62% higher in tensile strength (1950 MPa) compared to untreated nylon 6,6 NFM (738 MPa), and has the final permeability closest to the untreated nylon 6,6 NFM (733 L/m2.h.bar). It also took more time to get fouled (220 min) compared to untreated NFM (160 min).
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  6. Arahman N, Mulyati S, Fahrina A, Muchtar S, Yusuf M, Takagi R, et al.
    Molecules, 2019 Nov 13;24(22).
    PMID: 31766222 DOI: 10.3390/molecules24224099
    The removal of impurities from water or wastewater by the membrane filtration process has become more reliable due to good hydraulic performance and high permeate quality. The filterability of the membrane can be improved by having a material with a specific pore structure and good hydrophilic properties. This work aims at preparing a polyvinylidene fluoride (PVDF) membrane incorporated with phospholipid in the form of a 2-methacryloyloxyethyl phosphorylcholine, polymeric additive in the form of polyvinylpyrrolidone, and its combination with inorganic nanosilica from a renewable source derived from bagasse. The resulting membrane morphologies were analyzed by using scanning electron microscopy. Furthermore, atomic force microscopy was performed to analyze the membrane surface roughness. The chemical compositions of the resulting membranes were identified using Fourier transform infrared. A lab-scale cross-flow filtration system module was used to evaluate the membrane's hydraulic and separation performance by the filtration of humic acid (HA) solution as the model contaminant. Results showed that the additives improved the membrane surface hydrophilicity. All modified membranes also showed up to five times higher water permeability than the pristine PVDF, thanks to the improved structure. Additionally, all membrane samples showed HA rejections of 75-90%.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  7. Zulkipli NN, Zakaria R, Long I, Abdullah SF, Muhammad EF, Wahab HA, et al.
    Molecules, 2020 Sep 02;25(17).
    PMID: 32887218 DOI: 10.3390/molecules25173991
    Natural products remain a popular alternative treatment for many ailments in various countries. This study aimed to screen for potential mammalian target of rapamycin (mTOR) inhibitors from Malaysian natural substance, using the Natural Product Discovery database, and to determine the IC50 of the selected mTOR inhibitors against UMB1949 cell line. The crystallographic structure of the molecular target (mTOR) was obtained from Protein Data Bank, with Protein Data Bank (PDB) ID: 4DRI. Everolimus, an mTOR inhibitor, was used as a standard compound for the comparative analysis. Computational docking approach was performed, using AutoDock Vina (screening) and AutoDock 4.2.6 (analysis). Based on our analysis, asiaticoside and its derivative, asiatic acid, both from Centella asiatica, revealed optimum-binding affinities with mTOR that were comparable to our standard compound. The effect of asiaticoside and asiatic acid on mTOR inhibition was validated with UMB1949 cell line, and their IC50 values were 300 and 60 µM, respectively, compared to everolimus (29.5 µM). Interestingly, this is the first study of asiaticoside and asiatic acid against tuberous sclerosis complex (TSC) disease model by targeting mTOR. These results, coupled with our in silico findings, should prompt further studies, to clarify the mode of action, safety, and efficacy of these compounds as mTOR inhibitors.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  8. Mohamed Tap F, Abd Majid FA, Ismail HF, Wong TS, Shameli K, Miyake M, et al.
    Molecules, 2018 Jan 19;23(1).
    PMID: 29351216 DOI: 10.3390/molecules23010073
    Phospholipase A2 (Pla2) is an enzyme that induces inflammation, making Pla2 activity an effective approach to reduce inflammation. Therefore, investigating natural compounds for this Pla2 inhibitory activity has important therapeutic potential. The objective of this study was to investigate the potential in bromelain-phytochemical complex inhibitors via a combination of in silico and in vitro methods. Bromelain-amenthoflavone displays antagonistic effects on Pla2. Bromelian-asiaticoside and bromelain-diosgenin displayed synergistic effects at high concentrations of the combined compounds, with inhibition percentages of more than 70% and 90%, respectively, and antagonistic effects at low concentrations. The synergistic effect of the bromelain-asiaticoside and bromelain-diosgenin combinations represents a new application in treating inflammation. These findings not only provide significant quantitative data, but also provide an insight on valuable implications for the combined use of bromelain with asiaticoside and diosgenin in treating inflammation, and may help researchers develop more natural bioactive compounds in daily foods as anti-inflammatory agent.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  9. Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM
    Int J Pharm, 2021 Mar 01;596:120213.
    PMID: 33493599 DOI: 10.1016/j.ijpharm.2021.120213
    Wound healing is a complicated process that takes a long time to complete. The three-layer nanofiber wound dressing containing melatonin is highly expected to show remarkable wound repair by reducing the wound healing time. In this study, chitosan (Cs)-polycaprolactone (PCL)/ polyvinylalcohol (PVA)-melatonin (MEL)/ chitosan-polycaprolactone three-layer nanofiber wound dressing was prepared by electrospinning for melatonin sustained release. The characteristics of the wound dressing were further evaluated. The wound dressing had a high water uptake after 24 h (401%), and the water contact angle results showed that it had hydrophilicity effect that supported the cell attachment. The wound healing effect of wound dressing was examined using a full-thickness excisional model of rat skin by the local administration of MEL. The gene expressions of transforming growth factor-beta (TGF-β1), alpha-smooth muscle actin (α-SMA), collagen type I (COL1A1), and collagen type III (COL3A1) were further studied. The histopathological evaluation showed the complete regeneration of the epithelial layer, remodeling of wounds, collagen synthesis, and reduction in inflammatory cells. The NF + 20% MEL significantly increased TGF-β1, COL1A1, COL3A1, and α-SMA mRNA expressions. This wound dressing may have a considerable potential as a wound dressing to accelerate the wound healing.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  10. Tamilvanan S, Venkatesh Babu R, Nappinai A, Sivaramakrishnan G
    Drug Dev Ind Pharm, 2011 Apr;37(4):436-45.
    PMID: 20923389 DOI: 10.3109/03639045.2010.521161
    Hydrophilic and hydrophobic polymer-based nicorandil (10 mg)-loaded peroral tablets were prepared using the wet granulation technique. The influence of varying amounts of hydroxypropyl methylcellulose (HPMC) (30-50 mg), ethylcellulose (2-4 mg), microcrystalline cellulose (5-20 mg) and Aerosil® (5-12 mg) in conjunction with the constant amounts (3 mg) of glidant and lubricant (magnesium stearate and talc) on the in vitro performances of the tablets (hardness, friability, weight variation, thickness uniformity, drug content, and drug release behavior) were investigated.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  11. Kuen CY, Fakurazi S, Othman SS, Masarudin MJ
    Nanomaterials (Basel), 2017 Nov 08;7(11).
    PMID: 29117121 DOI: 10.3390/nano7110379
    Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB), a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP) system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS) and Field Emission-Scanning Electron Microscopy (FESEM) results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT) cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  12. Gull N, Khan SM, Butt OM, Islam A, Shah A, Jabeen S, et al.
    Int J Biol Macromol, 2020 Nov 01;162:175-187.
    PMID: 32562726 DOI: 10.1016/j.ijbiomac.2020.06.133
    Inflammation is a key challenge in the treatment of chronic diseases. Spurred by topical advancement in polymer chemistry and drug delivery, hydrogels that release a drug in temporal, spatial and dosage controlled fashion have been trendy. This research focused on the fabrication of hydrogels with controlled drug release properties to control inflammation. Chitosan and polyvinyl pyrrolidone were used as base polymers and crosslinked with epichlorohydrin to form hydrogel films by solution casting technique. Prepared hydrogels were analyzed by swelling analysis in deionized water, buffer and electrolyte solutions and gel fraction. Functional groups confirmation and development of new covalent and hydrogen bonds, thermal stability (28.49%) and crystallinity were evaluated by FTIR, TGA and WAXRD, respectively. Rheological properties including gel strength and yield stress, elasticity (2309 MPa), porosity (75%) and hydrophilicity (73°) of prepared hydrogels were also evaluated. In vitro studies confirmed that prepared hydrogels have good biodegradability, excellent antimicrobial property and admirable cytotoxicity. Drug release profile (87.56% in 130 min) along with the drug encapsulation efficiency (84%) of prepared hydrogels was also studied. These results paved the path towards the development of hydrogels that can release the drugs with desired temporal patterns.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  13. Abdul Azam F', Razak Z, Md Radzi MKF, Muhamad N, Che Haron CH, Sulong AB
    Polymers (Basel), 2020 Sep 13;12(9).
    PMID: 32933225 DOI: 10.3390/polym12092083
    The incorporation of kenaf fiber fillers into a polymer matrix has been pronounced in the past few decades. In this study, the effect of multiwalled carbon nanotubes (MWCNTs) with a short kenaf fiber (20 mesh) with polypropylene (PP) added was investigated. The melt blending process was performed using an internal mixer to produce polymer composites with different filler contents, while the suitability of this melt composite for the injection molding process was evaluated. Thermogravimetric analysis (TGA) was carried out to investigate the thermal stability of the raw materials. Rheological analyses were conducted by varying the temperature, load factor, and filler content. The results demonstrate a non-Newtonian pseudoplastic behavior in all samples with changed kenaf fillers (10 to 40 wt %) and MWCNT contents (1 to 4 wt %), which confirm the suitability of the feedstock for the injection molding process. The addition of MWCNTs had an immense effect on the viscosity and an enormous reduction in the feedstock flow behavior. The main contribution of this work is the comprehensive observation of the rheological characteristics of newly produced short PP/kenaf composites that were altered after MWCNT additions. This study also presented an adverse effect on the composites containing MWCNTs, indicating a hydrophilic property with improved water absorption stability and the low flammability effect of PP/kenaf/MWCNT composites. This PP/kenaf/MWCNT green composite produced through the injection molding technique has great potential to be used as car components in the automotive industry.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  14. Kiran SA, Arthanareeswaran G, Thuyavan YL, Ismail AF
    Ecotoxicol Environ Saf, 2015 Nov;121:186-92.
    PMID: 25869419 DOI: 10.1016/j.ecoenv.2015.04.001
    In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  15. Mirhosseini H, Amid BT
    Molecules, 2012 May 29;17(6):6465-80.
    PMID: 22643356 DOI: 10.3390/molecules17066465
    Durian seed is an agricultural biomass waste of durian fruit. It can be a natural plant source of non-starch polysaccharide gum with potential functional properties. The main goal of the present study was to investigate the effect of chemical extraction variables (i.e., the decolouring time, soaking temperature and soaking time) on the physicochemical properties of durian seed gum. The physicochemical and functional properties of chemically-extracted durian seed gum were assessed by determining the particle size and distribution, solubility and the water- and oil-holding capacity (WHC and OHC). The present work revealed that the soaking time should be considered as the most critical extraction variable affecting the physicochemical properties of crude durian seed gum.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  16. Wahid MNA, Abd Razak SI, Abdul Kadir MR, Hassan R, Nayan NHM, Mat Amin KA
    J Biomater Appl, 2018 07;33(1):94-102.
    PMID: 29716417 DOI: 10.1177/0885328218771195
    This work reports the modification of freeze/thaw poly(vinyl alcohol) hydrogel using citric acid as the bioactive molecule for hydroxyapatite formation in simulated body fluid. Inclusion of 1.3 mM citric acid into the poly(vinyl alcohol) hydrogel showed that the mechanical strength, crystalline phase, functional groups and swelling ability were still intact. Adding citric acid at higher concentrations (1.8 and 2.3 mM), however, resulted in physically poor hydrogels. Presence of 1.3 mM of citric acid showed the growth of porous hydroxyapatite crystals on the poly(vinyl alcohol) surface just after one day of immersion in simulated body fluid. Meanwhile, a fully covered apatite layer on the poly(vinyl alcohol) surface plus the evidence of apatite forming within the hydrogel were observed after soaking for seven days. Gel strength of the soaked poly(vinyl alcohol)/citric acid-1.3 mM hydrogel revealed that the load resistance was enhanced compared to that of the neat poly(vinyl alcohol) hydrogel. This facile method of inducing rapid growth of hydroxyapatite on the hydrogel surface as well as within the hydrogel network can be useful for guided bone regenerative materials.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  17. Usman J, Salami BA, Gbadamosi A, Adamu H, Usman AG, Benaafi M, et al.
    Chemosphere, 2023 Aug;331:138726.
    PMID: 37116721 DOI: 10.1016/j.chemosphere.2023.138726
    Due to the significant energy and economic losses brought on by the global oil spill, there has been an increased interest in oil-water separation. This study presents strong non-linear machine learning models (support vector regression (SVR) and Gaussian process regression (GPR)) with the Response surface method (RSM) to predict the oil flux and oil-water separation efficiency of wastewater using ceramic membrane technology. For the model development and prediction of oil flux (OF) and oil-water separation efficiency (OSE), oil concentration (mg/L), feed flow rate (mL/min), and pH were considered as input variables. The input variables are combined in three combinations to study the most contributing input features to the models' performance. Mean square error (MSE) and Nash-Sutcliffe coefficient efficiency (NSE) were used to assess the prediction performances of the developed models with the different number of input combinations considered in the study. For the two target variables (OF and OSE), GPR and SVR models were used to separately predict them. For OF, the SVR-2 [Combo-2] model (MSE = 0.9255 and NSE = 2.7976) performed better with higher prediction accuracy compared to GPR-2 [Combo-2] model (MSE = 0.763 and NSE = 6.437). In addition, for OSE, the GPR-3 [Combo-3] model (MSE = 0.995 and NSE = 0.5544) performed slightly better than SVR-3 [Combo-3] model (MSE = 0.992 and NSE = 0.8066). The results showed that the SVR model with the combo-2 and GPR-3 models for OF and OSE variables are the proposed models with the best performance and accuracy. This machine learning study will aid in better evaluating the function of materials such as ceramic in membrane performance features such as oil flux and rejection prediction, separation efficiency, water recovery, membrane fouling, and so on. As for academics and manufacturers, this machine learning (ML) strategy will boost performance and allow a better understanding of system governance.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  18. Mohamad Yusoff MA, Abdul Hamid AA, Mohammad Bunori N, Abd Halim KB
    J Mol Graph Model, 2018 Jun;82:137-144.
    PMID: 29730487 DOI: 10.1016/j.jmgm.2018.04.010
    Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  19. Rizal S, Ikramullah, Gopakumar DA, Thalib S, Huzni S, Abdul Khalil HPS
    Polymers (Basel), 2018 Nov 28;10(12).
    PMID: 30961241 DOI: 10.3390/polym10121316
    Natural fiber composites have been widely used for various applications such as automotive components, aircraft components and sports equipment. Among the natural fibers Typha spp have gained considerable attention to replace synthetic fibers due to their unique nature. The untreated and alkali-treated fibers treated in different durations were dried under the sun for 4 h prior to the fabrication of Typha fiber reinforced epoxy composites. The chemical structure and crystallinity index of composites were examined via FT-IR and XRD respectively. The tensile, flexural and impact tests were conducted to investigate the effect of the alkali treated Typha fibers on the epoxy composite. From the microscopy analysis, it was observed that the fracture mechanism of the composite was due to the fiber and matrix debonding, fiber pull out from the matrix, and fiber damage. The tensile, flexural and impact strength of the Typha fiber reinforced epoxy composite were increased after 5% alkaline immersion compared to untreated Typha fiber composite. From these results, it can be concluded that the alkali treatment on Typha fiber could improve the interfacial compatibility between epoxy resin and Typha fiber, which resulted in the better mechanical properties and made the composite more hydrophobic. So far there is no comprehensive report about Typha fiber reinforcing epoxy composite, investigating the effect of the alkali treatment duration on the interfacial compatibility, and their effect on chemical and mechanical of Typha fiber reinforced composite, which plays a vital role to provide the overall mechanical performance to the composite.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
  20. Chow YH, Yap YJ, Anuar MS, Tejo BA, Ariff A, Show PL, et al.
    PMID: 23911538 DOI: 10.1016/j.jchromb.2013.06.034
    A relationship is proposed for the interfacial partitioning of protein in poly(ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS). The relationship relates the natural logarithm of interfacial partition coefficient, ln G to the PEG concentration difference between the top and bottom phases, Δ[PEG], with the equation ln G=AΔ[PEG]+B. Results showed that this relationship provides good fits to the partition of bovine serum albumin (BSA) in ATPS which is comprised of phosphate and PEG of four different molecular weight 1450g/mol, 2000g/mol, 3350g/mol and 4000g/mol, with the tie-line length (TLL) in the range of 44-60% (w/w) at pH 7.0. The decrease of A values with the increase of PEG molecular weight indicates that the correlation between ln G and Δ[PEG] decreases with the increase in PEG molecular weight and the presence of protein-polymer hydrophobic interaction. When temperature was increased, a non-linear relationship of ln G inversely proportional to temperature was observed. The amount of proteins adsorbed at the interface increased proportionally with the amount of BSA loaded whereas the partition coefficient, K remained relatively constant. The relationship proposed could be applied to elucidate interfacial partitioning behaviour of other biomolecules in polymer-salt ATPS.
    Matched MeSH terms: Hydrophobic and Hydrophilic Interactions
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links