Displaying publications 101 - 120 of 437 in total

Abstract:
Sort:
  1. Tan XW, Bhave M, Fong AY, Matsuura E, Kobayashi K, Shen LH, et al.
    Oxid Med Cell Longev, 2016;2016:6943053.
    PMID: 27239253 DOI: 10.1155/2016/6943053
    This study was aimed at preliminarily assessing the cytoprotective and antioxidative effects of rice bran extracts (RBEs) from a Sarawak local rice variety (local name: "BJLN") and a commercial rice variety, "MR219," on oxidative stress in rat H9c2(2-1) cardiomyocytes. The cardiomyocytes were incubated with different concentrations of RBE and hydrogen peroxide (H2O2), respectively, to identify their respective IC50 values and safe dose ranges. Two nonlethal and close-to-IC50 doses of RBE were selected to evaluate their respective effects on H2O2 induced oxidative stress in cardiomyocytes. Both RBEs showed dose-dependent cytotoxicity effects on cardiomyocytes. H2O2 induction of cardiomyocytes pretreated with RBE further revealed the dose-dependent cytoprotective and antioxidative effects of RBE via an increase in IC50 values of H2O2. Preliminary analyses of induction effects of RBE and H2O2 on cellular antioxidant enzyme, catalase (CAT), also revealed their potential in regulating these activities and expression profile of related gene on oxidative stress in cardiomyocytes. Pretreated cardiomyocytes significantly upregulated the enzymatic activity and expression level of CAT under the exposure of H2O2 induced oxidative stress. This preliminary study has demonstrated the potential antioxidant effects of RBE in alleviating H2O2-mediated oxidative injuries via upregulation in enzymatic activities and expression levels of CAT.
    Matched MeSH terms: Inhibitory Concentration 50
  2. Shanmugapriya, Chen Y, Kanwar JR, Sasidharan S
    Nutr Cancer, 2017 10 25;69(8):1308-1324.
    PMID: 29068745 DOI: 10.1080/01635581.2017.1367944
    This study was conducted to investigate the anticancer effects and mechanism of Calophyllum inophyllum fruit extract against MCF-7 cells. C. inophyllum fruit extract was found to have markedly cytotoxic effect against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 23.59 µg/mL. Flow cytometry analysis revealed that C. inophyllum fruit extract mediated cell cycle at G0/G1 and G2/M phases, and MCF-7 cells entered the early phase of apoptosis. The expression of anti-apoptotic proteins Bcl-2 was decreased whereas the expression of the pro-apoptotic protein Bax, cytochrome C and p53 were increased after treatment. C. inophyllum fruit extract led to apoptosis in MCF-7 cells via the mitochondrial pathway in a dose dependent manner. This is evidenced by the elevation of intracellular ROS, the loss of mitochondria membrane potential (Δψm), and activation of caspase-3. Meanwhile, dose-dependent genomic DNA fragmentation was observed after C. inophyllum fruits extract treatment by comet assay. This study shows that C. inophyllum fruits extract-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3. C. inophyllum fruit extract could be an excellent source of chemopreventive agent in the treatment of breast cancer and has potential to be explored as green anticancer agent.
    Matched MeSH terms: Inhibitory Concentration 50
  3. Badroon NA, Abdul Majid N, Alshawsh MA
    Nutrients, 2020 Jun 12;12(6).
    PMID: 32545423 DOI: 10.3390/nu12061757
    Liver cancer is the sixth most common cancer in terms of incidence and the fourth in terms of mortality. Hepatocellular carcinoma (HCC) represents almost 90% of primary liver cancer and has become a major health problem globally. Cardamonin (CADMN) is a natural bioactive chalcone found in several edible plants such as cardamom and Alpinia species. Previous studies have shown that CADMN possesses anticancer activities against breast, lung, prostate and colorectal cancer. In the present study, the mechanisms underlying the anti-hepatocellular carcinoma effects of CADMN were investigated against HepG2 cells. The results demonstrated that CADMN has anti-proliferative effects and apoptotic action on HepG2 cells. CADMN showed potent cytotoxicity against HepG2 cells with an IC50 of 17.1 ± 0.592 μM at 72 h. Flow cytometry analysis demonstrated that CADMN arrests HepG2 cells in G1 phase and induces a significant increase in early and late apoptosis in a time-dependent manner. The mechanism by which CADMN induces apoptotic action was via activation of both extrinsic and intrinsic pathways. Moreover, the findings of this study showed the involvement of reactive oxygen species (ROS), which inhibit the NF-κB pathway and further enhance the apoptotic process. Together, our findings further support the potential anticancer activity of CADMN as an alternative therapeutic agent against HCC.
    Matched MeSH terms: Inhibitory Concentration 50
  4. Perez-Fernandez D, Shcherbakov D, Matt T, Leong NC, Kudyba I, Duscha S, et al.
    Nat Commun, 2014;5:3112.
    PMID: 24473108 DOI: 10.1038/ncomms4112
    Clinical use of 2-deoxystreptamine aminoglycoside antibiotics, which target the bacterial ribosome, is compromised by adverse effects related to limited drug selectivity. Here we present a series of 4',6'-O-acetal and 4'-O-ether modifications on glucopyranosyl ring I of aminoglycosides. Chemical modifications were guided by measuring interactions between the compounds synthesized and ribosomes harbouring single point mutations in the drug-binding site, resulting in aminoglycosides that interact poorly with the drug-binding pocket of eukaryotic mitochondrial or cytosolic ribosomes. Yet, these compounds largely retain their inhibitory activity for bacterial ribosomes and show antibacterial activity. Our data indicate that 4'-O-substituted aminoglycosides possess increased selectivity towards bacterial ribosomes and little activity for any of the human drug-binding pockets.
    Matched MeSH terms: Inhibitory Concentration 50
  5. Yap AC, Teoh WY, Chan KG, Sim KS, Choo YM
    Nat Prod Res, 2015;29(8):722-6.
    PMID: 25427277 DOI: 10.1080/14786419.2014.983507
    Enterobacter cloacae is a versatile bacterial species inhabiting a wide variety of niches and is capable of metabolising a wide variety of substances as energy resources. The fermentation culture of this bacterial species has successfully yielded one new compound, Rimboxa (1) and three known compounds, i.e. indole-3-carboxaldehyde (2), indole-3-acetic acid (3) and 3,4-di-t-butylaniline (4). Rimboxa (1) is shown to possess the 1,2-oxathiolane core structure. 3,4-Di-t-butylaniline (4) is isolated for the first time from a natural resource. These compounds were isolated and characterised using extensive chromatographic and spectroscopic methods, and were subjected to cytotoxicity evaluations.
    Matched MeSH terms: Inhibitory Concentration 50
  6. Jamila N, Yeong KK, Murugaiyah V, Atlas A, Khan I, Khan N, et al.
    Nat Prod Res, 2015;29(1):86-90.
    PMID: 25219673 DOI: 10.1080/14786419.2014.952228
    Garcinia species are reported to possess antimicrobial, anti-inflammatory, anticancer, anti-HIV and anti-Alzheimer's activities. This study aimed to investigate the in vitro cholinesterase enzyme inhibitory activities of garcihombronane C (1), garcihombronane F (2), garcihombronane I (3), garcihombronane N (4), friedelin (5), clerosterol (6), spinasterol glucoside (7) and 3β-hydroxy lup-12,20(29)-diene (8) isolated from Garcinia hombroniana, and to perform molecular docking simulation to get insight into the binding interactions of the ligands and enzymes. The cholinesterase inhibitory activities were evaluated using acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. In this study, compound 4 displayed the highest concentration-dependent inhibition of both AChE and BChE. Docking studies exhibited that compound 4 binds through hydrogen bonds to amino acid residues of AChE and BChE. The calculated docking and binding energies also supported the in vitro inhibitory profiles of IC50. In conclusion, garcihombronanes C, F, I and N (1-4) exhibited dual and moderate inhibitory activities against AChE and BChE.
    Matched MeSH terms: Inhibitory Concentration 50
  7. Ee GC, Teo SH, Rahmani M, Lim CK, Lim YM, Go R
    Nat Prod Res, 2011 Jun;25(10):995-1003.
    PMID: 21644180 DOI: 10.1080/14786419.2010.534471
    A new furanodihydrobenzoxanthone, artomandin (1), together with three other flavonoid derivatives, artoindonesianin C, artonol B, and artochamin A, as well as β-sitosterol were isolated from the stem bark of Artocarpus kemando. The structures of these compounds were determined on the basis of spectral evidence. All of these compounds displayed inhibition effects to a very susceptible degree in cancer cell line tests. Compound 1 also exhibited significant antioxidant capacity in the free radical 1,1-diphenyl-2-picrylhydrazyl tests.
    Matched MeSH terms: Inhibitory Concentration 50
  8. Murtihapsari M, Salam S, Kurnia D, Darwati D, Kadarusman K, Abdullah FF, et al.
    Nat Prod Res, 2021 Mar;35(6):937-944.
    PMID: 31210054 DOI: 10.1080/14786419.2019.1611815
    A new antimalarial sterol, kaimanol (1), along with a known sterol, saringosterol (2) was isolated from the Indonesian Marine sponge, Xestospongia sp. The chemical structure of the new compound was determined on the basis of spectroscopic evidences and by comparison to those related compounds previously reported. Isolated compounds, 1 and 2 were evaluated for their antiplasmodial effect against Plasmodium falciparum 3D7 strains. Compounds 1 and 2 exhibited antiplasmodial activity with IC50 values of 359 and 0.250 nM, respectively.
    Matched MeSH terms: Inhibitory Concentration 50
  9. Lim PC, Ali Z, Khan IA, Khan SI, Kassim NK, Awang K, et al.
    Nat Prod Res, 2021 Feb 12.
    PMID: 33576269 DOI: 10.1080/14786419.2021.1885031
    An undescribed conjugated sesquiterpene, amelicarin (1), together with nine known compounds (2-10) were isolated for the first time from Melicope latifolia. Their structures were elucidated by extensive NMR spectroscopic and mass spectrometric methods. The conjugated sesquiterpene possesses a unique 6/6/9/4-ring fused tetracyclic skeleton. The proposed biosynthesis pathway of 1 consist of three reactions steps: (1) polyketide formation, (2) cyclisation and (3) addition to form the conjugated sesquiterpenoid as final metabolite. Out of the ten isolated metabolites, amelicarin (1) showed activity against 4 cancerous cell lines namely SK-MEL skin cancer, KB oral cancer, BT-549 breast cancer, and SK-OV-3 ovarian cancer with IC50 values between 15 and 25 µg/mL.
    Matched MeSH terms: Inhibitory Concentration 50
  10. See I, Ee GCL, Jong VYM, Teh SS, Acuña CLC, Mah SH
    Nat Prod Res, 2020 Oct 23.
    PMID: 33094642 DOI: 10.1080/14786419.2020.1836629
    Four xanthones, α-mangostin (1), β-mangostin (2), mangostenol (3), mangaxanthone B (4), three benzophenones, mangaphenone (5), benthamianone (6), congestiflorone (7) and one sterol, stigmasterol (8) were isolated from the stem barks of Garcinia mangostana L. and G. benthamiana (Planch. & Triana) Pipoly. Compounds 1, 2, 4 and 5 exhibited significant cytotoxicity through MTT assay towards MCF-7 and MDA-MB-231 cells with the IC50 values range from 4.4 to 12.0 µM. Remarkably, mangaphenone (5) showed non-cytotoxicity against normal Vero cells, revealing its potential as lead compound for anti-breast cancer drug. Structure-activity relationship postulated that the prenyl and hydroxyl groups present in xanthones are important in promoting anti-proliferative effects. Molecular docking simulation study of 1, 2, 4 and 5 with 2OCF and 4PIV implied that the induction of apoptosis for both cancer cells involve ER and FAS signaling pathways. Future study on the lead optimization of 5 is highly recommended.
    Matched MeSH terms: Inhibitory Concentration 50
  11. Daud S, Karunakaran T, Santhanam R, Nagaratnam SR, Jong VYM, Ee GCL
    Nat Prod Res, 2020 Sep 09.
    PMID: 32901512 DOI: 10.1080/14786419.2020.1819273
    Previous studies on Calophyllum species have shown the existence of a wide variety of bioactive xanthones and coumarins. Phytochemical investigations carried out on the plant, Calophyllum hosei led to the isolation of eleven known xanthones, ananixanthone (1), 9-hydroxycalabaxanthone (2), dombakinaxanthone (3), thwaitesixanthone (4), caloxanthone B (5), trapezifolixanthone (6), β-mangostin (7), osajaxanthone (8), caloxanthone A (9), calozeyloxanthone (10) and rubraxanthone (11). The structures of these compounds were identified and elucidated using spectroscopic techniques such as NMR and MS. The cytotoxicity and nitric oxide production inhibitory activities of selected xanthones as well as the extracts were tested against HL-60 cells and RAW 264.7 murine macrophages, respectively. Among all tested compounds, β-mangostin exhibited appreciable cytotoxicity against HL-60 cells with the IC50 value of 7.16 ± 0.70 µg/mL and rubraxanthone exhibited significant nitric oxide inhibitory activity against LPS induced RAW 264.7 murine macrophages with the IC50 value of 6.45 ± 0.15 µg/mL.
    Matched MeSH terms: Inhibitory Concentration 50
  12. Sivasothy Y, Leong KH, Loo KY, Adbul Wahab SM, Othman MA, Awang K
    Nat Prod Res, 2021 Feb 16.
    PMID: 33593208 DOI: 10.1080/14786419.2021.1885405
    The use of antidiabetic agents which control glycemic levels in the blood and simultaneously inhibit oxidative stress is an important strategy in the prevention of Diabetes Mellitus and its complications. In our previous study, malabaricone C (3) and its dimer, giganteone A (5) exhibited significant DPPH free radical scavenging activities which were lower than the activity of the positive control, ascorbic acid. These compounds were evaluated for their α-glucosidase inhibitory activities at different concentrations (0.02-2.5 mM) in the present study. Compounds 3 (IC50 59.61 µM) and 5 (IC50 39.52 µM) were identified as active alpha-glucosidase inhibitors, each respectively being 24 and 37 folds more potent than the standard inhibitor, acarbose. Based on the molecular docking studies, compounds 3 and 5 docked into the active site of the α-glucosidase enzyme, forming mainly hydrogen bonds in the active site.
    Matched MeSH terms: Inhibitory Concentration 50
  13. Salleh WMNHW, Anuar MZA, Khamis S, Nafiah MA, Sul'ain MD
    Nat Prod Res, 2021 Jul;35(13):2279-2284.
    PMID: 31544509 DOI: 10.1080/14786419.2019.1669027
    The chemical composition of the essential oil of Knema kunstleri Warb. (Myristicaceae) was investigated for the first time. The essential oil was obtained by hydrodistillation and fully characterized by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 36 components were identified in the essential oil, which made up 91.7% of the total oil. The essential oil is composed mainly of β-caryophyllene (23.2%), bicyclogermacrene (9.6%), δ-cadinene (7.3%), α-humulene (5.7%), and germacrene D (4.3%). The essential oil showed moderate activity towards DPPH free-radical scavenging and lipoxygenase inhibition. To the best of our knowledge, this is the first study of the composition and bioactivities of the essential oil report concerning the genus Knema.
    Matched MeSH terms: Inhibitory Concentration 50
  14. Abdullah SA, Jamil S, Basar N, Abdul Lathiff SM, Mohd Arriffin N
    Nat Prod Res, 2017 May;31(10):1113-1120.
    PMID: 27564208 DOI: 10.1080/14786419.2016.1222387
    A new dihydrochalcone, 2',4'-dihydroxy-3,4-(2″,2″-dimethylchromeno)-3'-prenyldihydrochalcone (1) together with 4-hydroxyonchocarpin (2), isobavachalcone (3), 4',5-dihydroxy-6,7-(2,2-dimethylpyrano)-2'-methoxy-8-γ,γ-dimethylallyflavone (4), artocarpin (5) and cycloheterophyllin (6) were successfully isolated from the leaves and heartwoods of Artocarpus lowii King (Moraceae). The structures of these compounds were fully characterised using spectroscopic methods and by direct comparison with published data. These compounds were tested for their antioxidant and tyrosinase inhibitory activities. Compound (1) displayed moderate antioxidant activity towards DPPH and tyrosinase inhibitory activities with SC50 value of 223.8 μM and IC50 value of 722.5 μM, respectively. Among the isolated compounds, cycloheterophyllin (6) showed the most potential antioxidant activity with SC50 value of 320.0 and 102.8 μM for ABTS and DPPH radicals scavenging activities, respectively, and also exhibited highest FRAP equivalent value of 4.7 ± 0.09 mM. Compound (6) showed tyrosinase inhibitory activity with the IC50 value of 104.6 μM.
    Matched MeSH terms: Inhibitory Concentration 50
  15. Tan WN, Lim JQ, Afiqah F, Nik Mohamed Kamal NNS, Abdul Aziz FA, Tong WY, et al.
    Nat Prod Res, 2018 Apr;32(7):854-858.
    PMID: 28782393 DOI: 10.1080/14786419.2017.1361951
    Garcinia atroviridis Griff. ex T. Anders. is used as a medication agent in folkloric medicine. The present study was to examine the chemical composition of the stem bark and leaf of G. atroviridis as well as their cytotoxic effects against MCF-7 cells. The constituents obtained by hydrodistillation were identified using GC-MS. The stem bark oil (EO-SB) composed mainly the palmitoleic acid (51.9%) and palmitic acid (21.9%), while the leaf oil (EO-L) was dominated by (E)-β-farnesene (58.5%) and β-caryophyllene (16.9%). Treatment of MCF-7 cells using EO-L (100 μg/mL) caused more than 50% cell death while EO-SB did not induce cytotoxic effect. EO-L has stimulated the growth of BEAS-2B normal cells, but not in MCF-7 cancerous cells. The IC50 of EO-L in MCF-7 and BEAS-2B cells were 71 and 95 μg/mL, respectively. A combination treatment of EO-L and tamoxifen induced more cell death than the treatment with drug alone at lower doses.
    Matched MeSH terms: Inhibitory Concentration 50
  16. Kuen CY, Fakurazi S, Othman SS, Masarudin MJ
    Nanomaterials (Basel), 2017 Nov 08;7(11).
    PMID: 29117121 DOI: 10.3390/nano7110379
    Conventional delivery of anticancer drugs is less effective due to pharmacological drawbacks such as lack of aqueous solubility and poor cellular accumulation. This study reports the increased drug loading, therapeutic delivery, and cellular accumulation of silibinin (SLB), a poorly water-soluble phenolic compound using a hydrophobically-modified chitosan nanoparticle (pCNP) system. In this study, chitosan nanoparticles were hydrophobically-modified to confer a palmitoyl group as confirmed by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) assay. Physicochemical features of the nanoparticles were studied using the TNBS assay, and Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analyses. The FTIR profile and electron microscopy correlated the successful formation of pCNP and pCNP-SLB as nano-sized particles, while Dynamic Light Scattering (DLS) and Field Emission-Scanning Electron Microscopy (FESEM) results exhibited an expansion in size between pCNP and pCNP-SLB to accommodate the drug within its particle core. To evaluate the cytotoxicity of the nanoparticles, a Methylthiazolyldiphenyl-tetrazolium bromide (MTT) cytotoxicity assay was subsequently performed using the A549 lung cancer cell line. Cytotoxicity assays exhibited an enhanced efficacy of SLB when delivered by CNP and pCNP. Interestingly, controlled release delivery of SLB was achieved using the pCNP-SLB system, conferring higher cytotoxic effects and lower IC50 values in 72-h treatments compared to CNP-SLB, which was attributed to the hydrophobic modification of the CNP system.
    Matched MeSH terms: Inhibitory Concentration 50
  17. Ng CH, Rullah K, Aluwi MF, Abas F, Lam KW, Ismail IS, et al.
    Molecules, 2014;19(8):11645-59.
    PMID: 25100256 DOI: 10.3390/molecules190811645
    The natural product molecule 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) isolated from the medicinal plant Melicope ptelefolia was shown to exhibit potent lipoxygenase (LOX) inhibitory activity. It is known that LOX plays an important role in inflammatory response as it catalyzes the oxidation of unsaturated fatty acids, such as linoleic acid to form hydroperoxides. The search for selective LOX inhibitors may provide new therapeutic approach for inflammatory diseases. Herein, we report the synthesis of tHGA analogs using simple Friedel-Craft acylation and alkylation reactions with the aim of obtaining a better insight into the structure-activity relationships of the compounds. All the synthesized analogs showed potent soybean 15-LOX inhibitory activity in a dose-dependent manner (IC50 = 10.31-27.61 μM) where compound 3e was two-fold more active than tHGA. Molecular docking was then applied to reveal the important binding interactions of compound 3e in soybean 15-LOX binding site. The findings suggest that the presence of longer acyl bearing aliphatic chain (5Cs) and aromatic groups could significantly affect the enzymatic activity.
    Matched MeSH terms: Inhibitory Concentration 50
  18. Ahmed S, Gul S, Idris F, Hussain A, Zia-Ul-Haq M, Jaafar HZ, et al.
    Molecules, 2014;19(8):11385-94.
    PMID: 25090125 DOI: 10.3390/molecules190811385
    Human plasma inhibits arachidonic acid metabolism and platelet aggregation. This helps human form a haemostatic control system that prevents the progress of certain aggregatory or inflammatory reactions. Whether this property of plasma is unique to human or extends to other species is not well known. It is speculated that this protective ability of plasma remains evolutionarily conserved in different mammals. In order to confirm this, the effect of plasma from 12 different mammalian species was investigated for its inhibitory potential against arachidonic acid metabolism and platelet aggregation. Metabolism of arachidonic acid by cyclooxygenase and lipoxygenase pathways was studies using radio-immuno assay and thin layer chromatography while platelet aggregation in the plasma of various mammals was monitored following turbedmetric method in a dual channel aggregometer. Results indicate that inhibition of AA metabolism and platelet aggregation is a common feature of plasma obtained from different mammalian species, although there exists large interspecies variation. This shows that besides human, other mammals also possess general protective mechanisms against various aggregatory and inflammatory conditions and this anti-inflammatory property of the plasma is evolutionarily conserved in mammalian species. The most likely candidates responsible for these properties of plasma include haptoglobin, albumin and lipoproteins.
    Matched MeSH terms: Inhibitory Concentration 50
  19. Karimian H, Mohan S, Moghadamtousi SZ, Fadaeinasab M, Razavi M, Arya A, et al.
    Molecules, 2014 Jul 03;19(7):9478-501.
    PMID: 24995928 DOI: 10.3390/molecules19079478
    Tanacetum polycephalum (L.) Schultz-Bip (Mokhaleseh) has been traditionally used in the treatment of headaches, migraines, hyperlipidemia and diabetes. The present study aimed to evaluate its anticancer properties and possible mechanism of action using MCF7 as an in vitro model. T. polycephalum leaves were extracted using hexane, chloroform and methanol solvents and the cytotoxicity was evaluated using the MTT assay. Detection of the early apoptotic cells was investigated using acridine orange/propidium iodide staining. An Annexin-V-FITC assay was carried out to observe the phosphatidylserine externalization as a marker for apoptotic cells. High content screening was applied to analyze the cell membrane permeability, nuclear condensation, mitochondrial membrane potential (MMP) and cytochrome c release. Apoptosis was confirmed by using caspase-8, caspase-9 and DNA laddering assays. In addition, Bax/Bcl-2 expressions and cell cycle arrest also have been investigated. MTT assay revealed significant cytotoxicity of T. Polycephalum hexane extract (TPHE) on MCF7 cells with the IC50 value of 6.42±0.35 µg/mL. Significant increase in chromatin condensation was also observed via fluorescence analysis. Treatment of MCF7 cells with TPHE encouraged apoptosis through reduction of MMP by down-regulation of Bcl-2 and up-regulation of Bax, triggering the cytochrome c leakage from mitochondria to the cytosol. The treated MCF7 cells significantly arrested at G1 phase. The chromatographic analysis elicited that the major active compound in this extract is 8β-hydroxy-4β,15-dihydrozaluzanin C. Taken together, the results presented in this study demonstrated that the hexane extract of T. Polycephalum inhibits the proliferation of MCF7 cells, resulting in the cell cycle arrest and apoptosis, which was explained to be through the mitochondrial pathway.
    Matched MeSH terms: Inhibitory Concentration 50
  20. Leong SW, Faudzi SM, Abas F, Aluwi MF, Rullah K, Wai LK, et al.
    Molecules, 2014 Oct 09;19(10):16058-81.
    PMID: 25302700 DOI: 10.3390/molecules191016058
    A series of ninety-seven diarylpentanoid derivatives were synthesized and evaluated for their anti-inflammatory activity through NO suppression assay using interferone gamma (IFN-γ)/lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Twelve compounds (9, 25, 28, 43, 63, 64, 81, 83, 84, 86, 88 and 97) exhibited greater or similar NO inhibitory activity in comparison with curcumin (14.7 ± 0.2 µM), notably compounds 88 and 97, which demonstrated the most significant NO suppression activity with IC50 values of 4.9 ± 0.3 µM and 9.6 ± 0.5 µM, respectively. A structure-activity relationship (SAR) study revealed that the presence of a hydroxyl group in both aromatic rings is critical for bioactivity of these molecules. With the exception of the polyphenolic derivatives, low electron density in ring-A and high electron density in ring-B are important for enhancing NO inhibition. Meanwhile, pharmacophore mapping showed that hydroxyl substituents at both meta- and para-positions of ring-B could be the marker for highly active diarylpentanoid derivatives.
    Matched MeSH terms: Inhibitory Concentration 50
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links