Displaying publications 101 - 120 of 335 in total

Abstract:
Sort:
  1. Ong WD, Okubo-Kurihara E, Kurihara Y, Shimada S, Makita Y, Kawashima M, et al.
    Plant Cell Physiol, 2017 01 01;58(1):95-105.
    PMID: 28011868 DOI: 10.1093/pcp/pcw181
    Plants have a remarkable ability to perceive and respond to various wavelengths of light and initiate regulation of different cascades of light signaling and molecular components. While the perception of red light and the mechanisms of its signaling involving phytochromes are largely known, knowledge of the mechanisms of blue light signaling is still limited. Chemical genetics involves the use of diverse small active or synthetic molecules to evaluate biological processes. By combining chemicals and analyzing the effects they have on plant morphology, we identified a chemical, 3-bromo-7-nitroindazole (3B7N), that promotes hypocotyl elongation of wild-type Arabidopsis only under continuous blue light. Further evaluation with loss-of-function mutants confirmed that 3B7N inhibits photomorphogenesis through cryptochrome-mediated light signaling. Microarray analysis demonstrated that the effect of 3B7N treatment on gene expression in cry1cry2 is considerably smaller than that in the wild type, indicating that 3B7N specifically interrupts cryptochrome function in the control of seedling development in a light-dependent manner. We demonstrated that 3B7N directly binds to CRY1 protein using an in vitro binding assay. These results suggest that 3B7N is a novel chemical that directly inhibits plant cryptochrome function by physical binding. The application of 3B7N can be used on other plants to study further the blue light mechanism and the genetic control of cryptochromes in the growth and development of plant species.
    Matched MeSH terms: Light*; Light Signal Transduction/drug effects; Light Signal Transduction/genetics; Light Signal Transduction/radiation effects
  2. Lau PS, Bidin N, Krishnan G, Nassir Z, Bahktiar H
    J Cosmet Laser Ther, 2015 Apr;17(2):86-9.
    PMID: 25260140 DOI: 10.3109/14764172.2014.968587
    Low-energy laser irradiance at certain wavelengths is able to stimulate the tissue bio-reaction and enhance the healing process. Collagen deposition is one of the important aspects in healing process because it can increase the strength of the skin. This study was designed to examine the biophotonic effect of irradiance on collagen production of diabetic wound in rat model. The tensile strength of skin was employed as a parameter to describe the wound. Diabetic rat models were induced by streptozotocin via intravenous injection. Skin-breaking strength was measured using an Instron tensile test machine. The experimental animals were treated with 808-nm diode laser at two different powers-0.1 and 0.5 W/cm(2)-and 30, 60, and 120 s for each session. The tensile strength was optimized after treated with high-power diode laser. The photostimulation effect was revealed by accelerated healing process and enhanced tensile strength of wound. Laser photostimulation on tensile strength in diabetic wound suggests that such therapy facilitates collagen production in diabetic wound healing.
    Matched MeSH terms: Low-Level Light Therapy/adverse effects; Low-Level Light Therapy/instrumentation*
  3. Lau P, Bidin N, Krishnan G, AnaybBaleg SM, Sum MB, Bakhtiar H, et al.
    PMID: 26313856 DOI: 10.1016/j.jphotobiol.2015.08.009
    The photobiostimulation effects of near infrared 808 nm diode laser irradiance on diabetic wound were investigated. 120 rats were induced with diabetes by streptozotocin injection. Full thickness punch wounds of 6mm diameter were created on the dorsal part of the rats. All rats were randomly distributed into four groups; one group served as control group, whereas three groups were stimulated daily with unchanged energy density dose of 5 J/cm(2) with different power density, which were 0.1 W/cm(2), 0.2 W/cm(2) and 0.3 W/cm(2) with different exposure duration of 50s, 25s and 17s, respectively. Ten rats from each group were sacrificed on day 3, 6 and 9, respectively. Skin tissues were removed for histological purpose. The contraction of wound was found optimized after exposure with 0.1 W/cm(2). Based on the histological evidence, laser therapy has shown able to promote wound repair through enhanced epithelialization and collagen fiber synthesis. Generally, irradiated groups were advanced in terms of healing than non-irradiated group.
    Matched MeSH terms: Low-Level Light Therapy/instrumentation; Low-Level Light Therapy/methods*
  4. Ong WJ, Tan LL, Chai SP, Yong ST
    Chem Commun (Camb), 2015 Jan 18;51(5):858-61.
    PMID: 25429376 DOI: 10.1039/c4cc08996k
    A facile one-pot impregnation-thermal reduction strategy was employed to fabricate sandwich-like graphene-g-C3N4 (GCN) nanocomposites using urea and graphene oxide as precursors. The GCN sample exhibited a slight red shift of the absorption band edge attributed to the formation of a C-O-C bond as a covalent cross linker between graphene and g-C3N4. The GCN sample demonstrated high visible-light photoactivity towards CO2 reduction under ambient conditions, exhibiting a 2.3-fold enhancement over pure g-C3N4. This was ascribed to the inhibition of electron-hole pair recombination by graphene, which increased the charge transfer.
    Matched MeSH terms: Light
  5. Abdul Rahim R, Leong LC, Chan KS, Rahiman MH, Pang JF
    ISA Trans, 2008 Jan;47(1):3-14.
    PMID: 17709106
    This paper presents the implementing multiple fan beam projection technique using optical fibre sensors for a tomography system. From the dynamic experiment of solid/gas flow using plastic beads in a gravity flow rig, the designed optical fibre sensors are reliable in measuring the mass flow rate below 40% of flow. Another important matter that has been discussed is the image processing rate or IPR. Generally, the applied image reconstruction algorithms, the construction of the sensor and also the designed software are considered to be reliable and suitable to perform real-time image reconstruction and mass flow rate measurements.
    Matched MeSH terms: Light
  6. Ee CL, Mohd Abdullah AA, Samsudin A, Khaliddin N
    Ulus Travma Acil Cerrahi Derg, 2019 09;25(5):527-530.
    PMID: 31475330 DOI: 10.5505/tjtes.2018.57059
    Non-accidental injury (NAI) is not an uncommon problem worldwide, which leads to significant morbidity and mortality in infants. The presence of retinal or subdural haemorrhages, or encephalopathy with injuries inconsistent with the clinical history is highly suggestive of NAI. In this study, we report on a case of a a 3-month-old infant who presented to the casualty department with a very sudden onset of recurrent generalised tonic-clonic seizures. There was no history of trauma or visible external signs. She was found to have bilateral subdural haemorrhages and atypical unilateral ischaemic retinopathy. Retinal photocoagulation was performed with subsequent resolution of vitreous and retinal haemorrhages. However, visual recovery in that eye remained poor. The findings showed that a high index of suspicion of NAI is required in infants with intracranial haemorrhage and unilateral retinal haemorrhages.
    Matched MeSH terms: Light Coagulation
  7. Muhamad Sarih N, Myers P, Slater A, Slater B, Abdullah Z, Tajuddin HA, et al.
    Sci Rep, 2019 08 14;9(1):11834.
    PMID: 31413269 DOI: 10.1038/s41598-019-47847-5
    Three fluorescent organic compounds-furocoumarin (FC), dansyl aniline (DA), and 7-hydroxycoumarin-3-carboxylic acid (CC)-are mixed to produce almost pure white light emission (WLE). This novel mixture is immobilised in silica aerogel and applied as a coating to a UV LED to demonstrate its applicability as a low-cost, organic coating for WLE via simultaneous emission. In ethanol solution and when immobilised in silica aerogel, the mixture exhibits a Commission Internationale d'Eclairage (CIE) chromaticity index of (0.27, 0.33). It was observed that a broadband and simultaneous emission involving coumarin carboxylic acid, furocoumarin and dansyl aniline played a vital role in obtaining a CIE index close to that of pure white light.
    Matched MeSH terms: Light
  8. Osada N, Takeda H
    Ann Bot, 2003 Jan;91(1):55-63.
    PMID: 12495920
    To investigate crown development patterns, branch architecture, branch-level light interception, and leaf and branch dynamics were studied in saplings of a plagiotropically branching tree species, Polyalthia jenkinsii Hk. f. & Thoms. (Annonaceae) in a Malaysian rain forest. Lengths of branches and parts of the branches lacking leaves ('bare' branches) were smaller in upper branches than in lower branches within crowns, whereas lengths of 'leafy' parts and the number of leaves per branch were larger in intermediate than in upper and lower branches. Maximum diffuse light absorption (DLA) of individual leaves was not related to sapling height or branch position within crowns, whereas minimum DLA was lower in tall saplings. Accordingly, branch-level light interception was higher in intermediate than in upper and lower branches. The leaf production rate was higher and leaf loss rate was smaller in upper than in intermediate and lower branches. Moreover, the branch production rate of new first-order branches was larger in the upper crowns. Thus, leaf and branch dynamics do not correspond to branch-level light interception in the different canopy zones. As a result of architectural constraints, branches at different vertical positions experience predictable light microenvironments in plagiotropic species. Accordingly, this pattern of carbon allocation among branches might be particularly important for growth and crown development in plagiotropic species.
    Matched MeSH terms: Light
  9. Charles A, Khan MR, Ng KH, Wu TY, Lim JW, Wongsakulphasatch S, et al.
    Sci Total Environ, 2019 Apr 15;661:522-530.
    PMID: 30682605 DOI: 10.1016/j.scitotenv.2019.01.195
    In this paper, a facile synthesis method for CaFe2O4 is introduced that produces a catalyst capable of significant photocatalytic degradation of POME under visible light irradiation. The co-precipitation method was used to produce two catalysts at calcination temperatures of 550 °C and 700 °C dubbed CP550 and CP700. CP550 demonstrated the maximum COD removal of 69.0% at 0.75 g/L catalyst loading after 8 h of visible light irradiation which dropped to 61.0% after three consecutive cycles. SEM images indicated that the higher calcination temperature of CP700 led to annealing which reduced the pore volume (0.025 cm3/g) and pore diameter (10.3 nm) while simultaneously creating a smoother and more spherical surface with lower SBET (9.73 m2/g). In comparison, CP550 had a rough hair-like surface with higher SBET (27.28 m2/g) and pore volume (0.077 cm3/g) as evidenced by BET analysis. XRD data indicated the presence of CaFe5O7 in the CP550 composition which was not present in CP700. The presence of Wustite-like FeO structures in CaFe5O7 are likely the cause for lower photoluminescence intensity profile and hence better charge separation of CP550 as these structures in CaFe2O4 have been known to increase resistivity and electron localization. The COD removal of CP550 dropped from 69.0% to just 7.0% upon adding a small quantity of isopropanol into the reaction mixture indicating hydroxyl radicals as the primary reactive oxidative species.
    Matched MeSH terms: Light
  10. Joseph CG, Taufiq-Yap YH, Musta B, Sarjadi MS, Elilarasi L
    Front Chem, 2020;8:568063.
    PMID: 33628762 DOI: 10.3389/fchem.2020.568063
    Over the last decade, interest in the utilization of solar energy for photocatalysis treatment processes has taken centre-stage. Researchers had focused on doping TiO2 with SiO2 to obtain an efficient degradation rate of various types of target pollutants both under UV and visible-light irradiation. In order to further improve this degradation effect, some researchers resorted to incorporate plasmonic metal nanoparticles such as silver and gold into the combined TiO2-SiO2 to fully optimize the TiO2-SiO2's potential in the visible-light region. This article focuses on the challenges in utilizing TiO2 in the visible-light region, the contribution of SiO2 in enhancing photocatalytic activities of the TiO2-SiO2 photocatalyst, and the ability of plasmonic metal nanoparticles (Ag and Au) to edge the TiO2-SiO2 photocatalyst toward an efficient solar photocatalyst.
    Matched MeSH terms: Light; Sunlight
  11. Vinoth S, Ong WJ, Pandikumar A
    J Colloid Interface Sci, 2021 Jun;591:85-95.
    PMID: 33592528 DOI: 10.1016/j.jcis.2021.01.104
    Cobalt incorporated sulfur-doped graphitic carbon nitride with bismuth oxychloride (Co/S-gC3N4/BiOCl) heterojunction is prepared by an ultrasonically assisted hydrothermal treatment. The heterojunction materials have employed in photoelectrochemical (PEC) water splitting. The PEC activity and stability of the materials are promoted by constructing an interface between the visible light active semiconductor photocatalyst and cocatalysts. The photocurrent density of Co-9% S-gC3N4/BiOCl has attained 393.0 μA cm-2 at 1.23 V vs. RHE, which is 7-fold larger than BiOCl and ~3-fold higher than 9% S-gC3N4/BiOCl. The enhanced PEC activity can be attributed to the improved electron-hole charge separation and the boosted charge transfer is confirmed by photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) analysis. The fabricated Co/S-gC3N4/BiOCl nanohybrid material has exhibited high stability of up to 10,800 s (3 h) at 1.23 V vs. RHE during PEC water splitting reaction and the obtained photo-conversion efficiency is 3.7-fold greater than S-gC3N4/BiOCl and 17-fold higher than BiOCl. The FESEM and HRTEM images have revealed the formation of heterojunction interface between S-gC3N4 and BiOCl and the elemental mapping has confirmed the presence of cobalt over S-gC3N4/BiOCl. The heterojunction interface has facilitated the photo-excited charge separation and transport across the electrode/electrolyte interface and also the flat-band potential, which is confirmed by Mott-Schottky analysis.
    Matched MeSH terms: Light
  12. Sitti Raehanah Muhamad Shaleh, Marlena Amatus, Najamuddin Abdul Basri, Rossita Shapawi
    MyJurnal
    This study was aimed at determining the optimum temperature for culturing the copepod, Euterpina acutifrons. The trial was conducted for 10 days in chambers at temperatures of 25⁰C, 27⁰C, 29⁰C and 31⁰C. Ten adult individuals of the copepod were randomly collected and placed into three replicate experimental flasks for each treatment. Throughout the trial, the salinity, light intensity, and photoperiod were maintained at 30 ±2psu, 100molm-2s-1 and 12:12 light-dark cycle, respectively. The copepods were fed with 80,000cell/ml Isochrysis sp. daily. At the end of the trial, the total numbers of E. acutifrons nauplii, copepodites and adults were determined and counted using Sedgwick-Rafter. The highest population was found at 27⁰C with mean total population of 800±100 individuals from an initial of 10 individuals. This was followed by those reared at 25⁰C and 29⁰C where the population counts were 700±100 individuals and 367±115 individuals, respectively. At the 31⁰C, all the copepod specimens were found dead on day 5th. Statistical analysis showed that the temperature had a significant effect (P
    Matched MeSH terms: Light
  13. Loo WW, Pang YL, Lim S, Wong KH, Lai CW, Abdullah AZ
    Chemosphere, 2021 Jun;272:129588.
    PMID: 33482519 DOI: 10.1016/j.chemosphere.2021.129588
    Iron-doped titanium dioxide loaded on activated carbon (Fe-TiO2/AC) was successfully synthesized from oil palm empty fruit bunch (OPEFB) using sol-gel method. The properties of the synthesized pure TiO2, Fe-doped TiO2, AC, TiO2/AC and Fe-TiO2/AC were examined by various techniques such as field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) and nitrogen adsorption-desorption analyses at 77 K. FE-SEM revealed that Fe-doped TiO2 particles were dispersed homogeneously on the AC surface. FT-IR demonstrated high surface hydroxylation after Fe doping on TiO2 and UV-Vis DRS showed that Fe-TiO2/AC had the lowest band gap energy. Catalytic performance results proved that Fe dopants could restrict the recombination rate of hole and electron pairs, whereas AC support improved the Malachite Green (MG) adsorption sites and active sites of the hybrid catalyst. Photocatalytic degradation of 100 mg/L MG in the presence of 1.0 g/L 15 wt% Fe-TiO2 incorporated with 25 wt% AC, initial solution pH of 4 and 3 mM H2O2 could achieve the highest removal efficiency of 97% after 45 min light irradiation. This work demonstrates a promising approach to synthesis an inexpensive and efficient Fe-TiO2/AC for the photocatalytic degradation of organic dye.
    Matched MeSH terms: Light
  14. Tan KH, Chen YW, Van CN, Wang H, Chen JW, Lim FS, et al.
    ACS Appl Mater Interfaces, 2019 Jan 09;11(1):1655-1664.
    PMID: 30561192 DOI: 10.1021/acsami.8b17758
    The ability of band offsets at multiferroic/metal and multiferroic/electrolyte interfaces in controlling charge transfer and thus altering the photoactivity performance has sparked significant attention in solar energy conversion applications. Here, we demonstrate that the band offsets of the two interfaces play the key role in determining charge transport direction in a downward self-polarized BFO film. Electrons tend to move to BFO/electrolyte interface for water reduction. Our experimental and first-principle calculations reveal that the presence of neodymium (Nd) dopants in BFO enhances the photoelectrochemical performance by reduction of the local electron-hole pair recombination sites and modulation of the band gap to improve the visible light absorption. This opens a promising route to the heterostructure design by modulating the band gap to promote efficient charge transfer.
    Matched MeSH terms: Light
  15. Lee SC, Lintang HO, Yuliati L
    Chem Asian J, 2012 Sep;7(9):2139-44.
    PMID: 22733646 DOI: 10.1002/asia.201200383
    A urea precursor was used for the first time to prepare mesoporous carbon nitride (MCN) by a thermal polymerization process with silica nanospheres as a hard template. Although the prepared MCN samples have similar structures and optical properties, it was revealed that the specific surface area, pore-size distribution, and morphology of the MCN samples depend on the initial mass ratio of urea to silica. Compared to the bulk carbon nitride (BCN) that only gave 20% phenol removal (6 h of irradiation), the activities can be enhanced up to 74% on MCN samples for photocatalytic removal of phenol under visible-light irradiation. The highest conversion was obtained on MCN with an initial mass ratio of urea to silica of 5, which has high surface area of 191 m(2) g(-1) and a nanoporous structure with uniform pore-size distribution of 7 nm. In addition to the high activity, the MCN sample also showed high photocatalytic stability.
    Matched MeSH terms: Light
  16. Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, et al.
    Biomolecules, 2021 02 10;11(2).
    PMID: 33578851 DOI: 10.3390/biom11020256
    As the most recognizable natural secondary carotenoid astaxanthin producer, the green microalga Haematococcus pluvialis cultivation is performed via a two-stage process. The first is dedicated to biomass accumulation under growth-favoring conditions (green stage), and the second stage is for astaxanthin evolution under various stress conditions (red stage). This mini-review discusses the further improvement made on astaxanthin production by providing an overview of recent works on H. pluvialis, including the valuable ideas for bioprocess optimization on cell growth, and the current stress-exerting strategies for astaxanthin pigment production. The effects of nutrient constituents, especially nitrogen and carbon sources, and illumination intensity are emphasized during the green stage. On the other hand, the significance of the nitrogen depletion strategy and other exogenous factors comprising salinity, illumination, and temperature are considered for the astaxanthin inducement during the red stage. In short, any factor that interferes with the cellular processes that limit the growth or photosynthesis in the green stage could trigger the encystment process and astaxanthin formation during the red stage. This review provides an insight regarding the parameters involved in bioprocess optimization for high-value astaxanthin biosynthesis from H. pluvialis.
    Matched MeSH terms: Light; Lighting
  17. Ismail N, Nazri NK, Abdullah AA, Wan Nik WMN, Wright LJ
    Data Brief, 2021 Feb;34:106738.
    PMID: 33521179 DOI: 10.1016/j.dib.2021.106738
    Polychloropolymethylstyrene (PCMS) polymers were synthesized with clay Cloisite and without clay Cloisite and chloromethylstyrene (CMS) combine with styrene (1:1) v/v or known as copolymer and clay Cloisite by the polymerization process. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra of each polymer synthesized are reported. The spectra of IR shows the different value of the wavenumber and intensity for each set of different sample. The spectra can be as a reference for others to use in synthesizing this polymer and clay Cloisite for different type of application.
    Matched MeSH terms: Light
  18. Karthikeyan V, Gnanamoorthy G, Varun Prasath P, Narayanan V, Sagadevan S, Umar A, et al.
    J Nanosci Nanotechnol, 2020 Sep 01;20(9):5759-5764.
    PMID: 32331175 DOI: 10.1166/jnn.2020.17898
    Herein, we report the facile synthesis, characterization and visible-light-driven photocatalytic degradation of perforated curly Zn0.1Ni0.9O nanosheets synthesized by hydrothermal process. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies confirmed the cubic phase crystalline structure and growth of high density perforated curly Zn0.1Ni0.9O nanosheets, respectively. As a photocatalyst, using methylene blue (MB) as model pollutant, the synthesized nanosheets demonstrated a high degradation efficiency of ~76% in 60 min under visible light irradiation. The observed results suggest that the synthesized Zn0.1Ni0.9O nanosheets are attractive photocatalysts for the degradation of toxic organic waste in the water under visible light.
    Matched MeSH terms: Light
  19. Gnanamoorthy G, Muthukumaran M, Varun Prasath P, Karthikeyan V, Narayanan V, Sagadevan S, et al.
    J Nanosci Nanotechnol, 2020 09 01;20(9):5426-5432.
    PMID: 32331114 DOI: 10.1166/jnn.2020.17814
    Photocatalysts provide excellent potential for the full removal of organic chemical pollutants as an environmentally friendly technology. It has been noted that under UV-visible light irradiation, nanostructured semiconductor metal oxides photocatalysts can degrade different organic pollutants. The Sn6SiO8/rGO nanocomposite was synthesized by a hydrothermal method. The Sn6SiO8 nanoparticles hexagonal phase was confirmed by XRD and functional groups were analyzed by FT-IR spectroscopy. The bandgap of Sn6SiO8 nanoparticles (NPs) and Sn6SiO8/GO composites were found to be 2.7 eV and 2.5 eV, respectively. SEM images of samples showed that the flakes like morphology. This Sn6SiO8/rGO nanocomposite was testing for photocatalytic dye degradation of MG under visible light illumination and excellent response for the catalysts. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, proved by UV-vis DRS. Further, the radical trapping experiments revealed that holes (h+) and superoxide radicals (·O-₂) were the main active species for the degradation of MG, and a possible photocatalytic mechanism was discussed.
    Matched MeSH terms: Light; Lighting
  20. Lai CW, Sreekantan S
    J Nanosci Nanotechnol, 2012 Apr;12(4):3170-4.
    PMID: 22849082
    Well aligned TiO2 nanotubes were successfully synthesized by anodization of Ti foil at 60 V in a fluorinated bath comprised of ethylene glycol with 5 wt% of NH4F and 5 wt% of H2O2. In order to enhance the visible light absorption and photoelectrochemical response of pure TiO2 nanotube arrays, a mixed oxide system (W-TiO2) was investigated. W-TiO2 nanotube arrays were prepared using radio-frequency (RF) sputtering to incorporate the W into the lattice of TiO2 nanotube arrays. The W atoms occupy the substitutional position within the vacancies of TiO2 nanotube arrays. The as-anodized TiO2 is amorphous in nature while the annealed TiO2 is anatase phase. The mixed oxide (W-TiO2) system in suitable TiO2 phase plays important roles in efficient electron transfers due to the reduction in electron-hole recombination. In this article, the effect of the sputtered W into the as-anodized/annealed TiO2 nanotube arrays on the photoelectrochemical response was presented.
    Matched MeSH terms: Light
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links