Displaying publications 101 - 120 of 446 in total

Abstract:
Sort:
  1. Ugwu IC, Lee-Ching L, Ugwu CC, Okoye JOA, Chah KF
    Iran J Vet Res, 2020;21(3):180-187.
    PMID: 33178295
    Background: Avian pathogenic Escherichia coli (APEC) strains have been associated with various disease conditions in avian species due to virulence attributes associated with the organism.

    Aims: This study was carried out to determine the in vitro pathogenic characteristics and virulence encoding genes found in E. coli strains associated with colibacillosis in chickens.

    Methods: Fifty-two stock cultures of E. coli strains isolated from chickens diagnosed of colibacillosis were tested for their ability to produce haemolysis on blood agar and take up Congo red dye. Molecular characterization was carried out by polymerase chain reaction (PCR) amplification of virulence encoding genes associated with APEC.

    Results: Eleven (22%) and 41 (71%) were positive for haemolysis on 5% sheep red blood agar and Congo red agar, respectively. Nine virulence-associated genes were detected as follows: FimH (96%), csgA (52%), iss (48%), iut (33%), tsh (21%), cva (15%), kpsII (10%), pap (2%), and felA (2%).

    Conclusion: The APEC strains exhibited virulence properties and harbored virulence encoding genes which could be a threat to the poultry population and public health. The putative virulence genes were diverse and different in almost all isolate implying that pathogenesis was multi-factorial and the infection was multi-faceted which could be a source of concern in the detection and control of APEC infections.

    Matched MeSH terms: Virulence
  2. An JU, Ho H, Kim J, Kim WH, Kim J, Lee S, et al.
    Front Microbiol, 2018;9:3136.
    PMID: 30619204 DOI: 10.3389/fmicb.2018.03136
    Campylobacter jejuni is a major foodborne pathogen that is increasingly found worldwide and that is transmitted to humans through meat or dairy products. A detailed understanding of the prevalence and characteristics of C. jejuni in dairy cattle farms, which are likely to become sources of contamination, is imperative and is currently lacking. In this study, a total of 295 dairy cattle farm samples from 15 farms (24 visits) in Korea were collected. C. jejuni prevalence at the farm level was 60% (9/15) and at the animal level was 23.8% (68/266). Using the multivariable generalized estimating equation (GEE) model based on farm-environmental factors, we estimated that a high density of cattle and average environmental temperature (7 days prior to sampling) below 24°C affects the presence and survival of C. jejuni in the farm environment. Cattle isolates, together with C. jejuni from other sources (chicken and human), were genetically characterized based on analysis of 10 virulence and survival genes. A total of 19 virulence profile types were identified, with type 01 carrying eight genes (all except hcp and virB11) being the most prevalent. The prevalence of virB11 and hcp was significantly higher in isolates from cattle than in those from other sources (p < 0.05). Multilocus sequence typing (MLST) of C. jejuni isolates from three different sources mainly clustered in the CC-21 and CC-48. Within the CC-21 and CC-48 clusters, cattle isolates shared an indistinguishable pattern with human isolates according to pulsed-field gel electrophoresis (PFGE) and flaA-restriction fragment length polymorphism (RFLP) typing. This suggests that CC-21 and CC-48 C. jejuni from dairy cattle are genetically related to clinical campylobacteriosis isolates. In conclusion, the farm environment influences the presence and survival of C. jejuni, which may play an important role in cycles of cattle re-infection, and dairy cattle represent potential reservoirs of human campylobacteriosis. Thus, environmental management practices could be implemented on cattle farms to reduce the shedding of C. jejuni from cattle, subsequently reducing the potential risk of the spread of cattle-derived C. jejuni to humans through the food chain.
    Matched MeSH terms: Virulence
  3. Jatuponwiphat T, Chumnanpuen P, Othman S, E-Kobon T, Vongsangnak W
    Microb Pathog, 2019 Feb;127:257-266.
    PMID: 30550841 DOI: 10.1016/j.micpath.2018.12.013
    Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security.
    Matched MeSH terms: Virulence
  4. Dzaraly ND, Muthanna A, Mohd Desa MN, Taib NM, Masri SN, Rahman NIA, et al.
    Int J Med Microbiol, 2020 Oct;310(7):151449.
    PMID: 33092697 DOI: 10.1016/j.ijmm.2020.151449
    Pneumococci are a common cause of severe infections, such as otitis media, pneumonia, meningitis and bacteremia. Pili are detected in a small proportion of pneumococcal population, but these structures have recently been associated with bacterial virulence in humans. Therefore, the epidemiological relationships between pneumococcal pili, serotype and antimicrobial resistance are of interest. This study aims to discuss the virulence contribution of the Streptococcus pneumoniae pili and the epidemiological relationships among the pilus genes, antimicrobial resistance trends, regional serotypes and genotypic variations. Previous reports have characterized the pneumococcal pilus islet as a clonal feature in the pneumococcal serotypes that are covered by the pneumococcal conjugate vaccine (PCV), including serotypes 19A, 19F, 23F and 7F. Many of the pneumococcal molecular epidemiology network (PMEN) clones are piliated isolates that are also strongly associated with a high frequency of multidrug resistance. Most of these piliated pneumococcal isolates belong to a few clonal complexes (CC), such as CC320, CC199, CC271, CC191 and CC156. Additional molecular epidemiology and genomic studies, particularly whole genome sequence analysis (WGS), are needed to develop an in-depth understanding of the piliated pneumococcal isolates.
    Matched MeSH terms: Virulence
  5. Teo SP, Bhakta S, Stapleton P, Gibbons S
    Antibiotics (Basel), 2020 Dec 16;9(12).
    PMID: 33339285 DOI: 10.3390/antibiotics9120913
    The present study aimed to screen plants for bioactive compounds with potential antibacterial activities. In our efforts to evaluate plants from Borneo, we isolated and elucidated the structures of four natural products from the bioactive fraction of a chloroform extract of Goniothalamus longistipetes using various chromatographic and spectroscopic techniques. The bioactive compounds were identified as a known styryllactone, (+)-altholactone ((2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (1), a new styryllactone, (2S,3R,3aS,7aS)-3-hydroxy-2-phenyl-2,3,3a,7a-tetrahydrobenzo-5(4H)-5-one) (2) as well as a new alkaloid, 2,6-dimethoxyisonicotinaldehyde (3) and a new alkenyl-5-hydroxyl-phenyl benzoic acid (4). 1 and 4 showed broad-spectrum anti-bacterial activities against Gram-positive and Gram-negative bacteria as well as acid-fast model selected for this study. Compound 2 only demonstrated activities against Gram-positive bacteria whilst 3 displayed selective inhibitory activities against Gram-positive bacterial strains. Additionally, their mechanisms of anti-bacterial action were also investigated. Using Mycobacterium smegmatis as a fast-growing model of tubercle bacilli, compounds 1, 2 and 4 demonstrated inhibitory activities against whole-cell drug efflux and biofilm formation; two key intrinsic mechanisms of antibiotic resistance. Interestingly, the amphiphilic compound 4 exhibited inhibitory activity against the conjugation of plasmid pKM101 in Escherichia coli using a plate conjugation assay. Plasmid conjugation is a mechanism by which Gram-positive and Gram-negative-bacteria acquire drug resistance and virulence. These results indicated that bioactive compounds isolated from Goniothalamus longistipetes can be potential candidates as 'hits' for further optimisation.
    Matched MeSH terms: Virulence
  6. Tyagita, H., Bahaman, A.R., Jasni, S., Ibrahim, T.A.T., Fuzina, N.H.
    Jurnal Veterinar Malaysia, 2019;31(1):1-11.
    MyJurnal
    A tourist was infected with a new strain of leptospires namely, Leptospira icterohemorrhagiae serovar Lai strain Langkawi, when he was on vacation in Langkawi, Malaysia. The leptospiral strain was successfully isolated from the patient in the Netherland. In this study, the bacteria were retrieved from Holland and inoculated into fifteen guinea pigs in Universiti Putra Malaysia (UPM) to determine its pathogenicity. The main clinical symptoms in the guinea pigs were decreased appetite and jaundice. Blood profile showed high neutrophil, lymphocyte, PCV, RBC, haemoglobin, leukocyte and thrombocyte counts. Besides that, enhancement of electrolytes such as sodium (Na), chloride (Cl), and potassium (K) was also noted. Biochemical examination showed an increase alkaline phosphatase (ALP), aspartate transaminase (AST) and bilirubin levels. Albumin, alanine transaminase (ALT), blood urea, total protein and creatinine were low values. Histopathological examination under haematoxylin and eosin staining showed evidence of haemorrhages, congestion and oedema in all organs, with inflammatory cell infiltration characterized by neutrophils, lymphocytes and macrophages. Hydropic degeneration and cell necrosis were also common in the findings. Leptospires were detected from Day 2 p.i by silver staining and transmission electron microscopy (TEM). Rise in antibody titre was seen as early as Day 5 p.i and leptospiral DNA was detected by PCR in the kidneys and liver on Day 3 and Day 5, respectively. The findings were indicative of leptospirosis. This study demonstrated that guinea pigs are a suitable animal model to illustrate the clinical symptoms and pathological changes seen following infection with Leptospira icterohaemorrhagiae serovar Lai strain Langkawi. In general, the symptoms and changes seen in leptospirosis are similar to viral infections and the information and data from this present study would help differentiate infection due to leptospires from that of viral infection. Leptospiral infection has often been misdiagnosed to be viral infection such as influenza and dengue which have similar signs and symptoms as leptospirosis.
    Matched MeSH terms: Virulence
  7. Chong LC, Ganesan H, Yong CY, Tan WS, Ho KL
    PLoS One, 2019;14(2):e0211740.
    PMID: 30707739 DOI: 10.1371/journal.pone.0211740
    Macrobrachium rosenbergii nodavirus (MrNV) is the causative agent of white tail disease (WTD) which seriously impedes the production of the giant freshwater prawn and has a major economic impact. MrNV contains two segmented RNA molecules, which encode the RNA dependent RNA polymerase (RdRp) and the capsid protein (MrNV-CP) containing 371 amino acid residues. MrNV-CP comprises of the Shell (S) and the Protruding (P) domains, ranging from amino acid residues 1-252 and 253-371, respectively. The P-domain assembles into dimeric protruding spikes, and it is believed to be involved in host cell attachment and internalization. In this study, the recombinant P-domain of MrNV-CP was successfully cloned and expressed in Escherichia coli, purified with an immobilized metal affinity chromatography (IMAC) and size exclusion chromatography (SEC) up to ~90% purity. Characterization of the purified recombinant P-domain with SEC revealed that it formed dimers, and dynamic light scattering (DLS) analysis demonstrated that the hydrodynamic diameter of the dimers was ~6 nm. Circular dichroism (CD) analysis showed that the P-domain contained 67.9% of beta-sheets, but without alpha-helical structures. This is in good agreement with the cryo-electron microscopic analysis of MrNV which demonstrated that the P-domain contains only beta-stranded structures. Our findings of this study provide essential information for the production of the P-domain of MrNV-CP that will aid future studies particularly studies that will shed light on anti-viral drug discovery and provide an understanding of virus-host interactions and the viral pathogenicity.
    Matched MeSH terms: Virulence
  8. Mahmodi F, Kadir JB, Puteh A, Wong MY, Nasehi A
    Plant Dis, 2013 Feb;97(2):287.
    PMID: 30722331 DOI: 10.1094/PDIS-08-12-0756-PDN
    In July 2011, a severe outbreak of pod and stem blight was observed on lima bean (Phaseolus lunatus L.) plants grown in the Cameron Highlands, located in Pahang State, Malaysia. Disease incidence varied from 33 to 75% in different fields. Pods and stems exhibited withered, light brown to reddish brown necrotic areas. Sub-circular and brown lesions were produced on the leaves. These lesions varied in size, often reaching a diameter of 1 to 2 cm. After tissue death, numerous pycnidia were observed on the surface of the pod or stem. The pycnidia diameter varied from 155 to 495 μm, averaging 265.45 μm, and on the surface of the pod or stem, pycnidia were often arranged concentrically or linearly, respectively. Pycnidiospores were hyaline, 1-celled, usually straight, and rarely, slightly curved. The α-spores varied from 5.5 to 9.0 × 2.5 to 4.0 μm; averaging 7.3 × 3.5 μm. The β-spores found either alone or with pycnidiospores in pycnidia were slender, hyaline, nonseptate, and straight or curved. Size varied from 15.8 to 38.0 × 1.3 to 2.1 μm; averaging 25.86 × 1.8 μm. The colony characteristics were recorded from pure cultures grown on potato dextrose agar plates, and incubated in darkness for 7 days at 25 °C, then exposed to 16/8 h light and dark periods at 25°C for a further 14 to 21 days. Morphological characteristics of the colonies and spores on PDA matched those described for P. phaseolorum var. sojae (2). Colonies were white, compact, with wavy mycelium and stromata with pycnidia that contained abundant β-spores. Sequence analysis of the ribosomal DNA internal transcribed spacer obtained from the Malaysian isolate FM1 (GenBank Accession No. JQ514150) using primers ITS5 and ITS4 (1) aligned with deposited sequences from GenBank confirmed identity and revealed 99% to 100% DNA similarity with P. phaseolorum strains (AY577815, AF001020, HM012819, JQ936148). The isolate FM1 was used for pathogenicity testing. Five non-infected detached leaves and pods of 4-week-old lima bean were surface sterilized and inoculated by placing 10 μl of conidial suspension (106 conidia ml-1) on the surface of leaves and pods using either the wound/drop or non-wound/drop method and distilled water used as control (3). The inoculated leaves and pods were incubated at 25 °C and 98% RH, and the experiment was performed twice. Disease reactions and symptoms were evaluated after inoculation. After one week, typical symptoms of pod and stem blight appeared with formation of pycnidia on the surface of the tissues, but not on non-inoculated controls. P. phaseolorum var. sojae was consistently reisolated from symptoms. To our knowledge, this is the first report of P. phaseolorum var. sojae causing pod and stem blight of lima bean in Malaysia. References: (1) R. Ford et al. Aust. Plant Pathol. 33:559, 2004. (2) G. L. Hartman et al. Compendium of Soybean Diseases. 4th ed. American Phytopathological Society, St. Paul, MN, 1999. (3) P. P. Than et al. Plant Pathol. 57:562, 2008.
    Matched MeSH terms: Virulence
  9. Aliyu HB, Hair-Bejo M, Omar AR, Ideris A
    Front Vet Sci, 2021;8:643976.
    PMID: 33959650 DOI: 10.3389/fvets.2021.643976
    Vaccination is an essential component in controlling infectious bursal disease (IBD), however, there is a lack of information on the genetic characteristics of a recent infectious bursal disease virus (IBDV) that was isolated from IBD vaccinated commercial flocks in Malaysia. The present study investigated 11 IBDV isolates that were isolated from commercial poultry farms. The isolates were detected using reverse transcription-polymerase chain reaction (RT-PCR) targeting the hypervariable region (HVR) of VP2. Based on the HVR sequences, five isolates (IBS536/2017, IBS624/2017, UPM766/2018, UPM1056/2018, and UPM1432/2019) were selected for whole-genome sequencing using the MiSeq platform. The nucleotide and amino acid (aa) sequences were compared with the previously characterized IBDV strains. Deduced aa sequences of VP2HVR revealed seven isolates with 94-99% aa identity to very virulent strains (genogroup 3), two isolates with 97-100% aa identity to variant strains (genogroup 2), and two strains with 100% identity to the vaccine strain (genogroup 1) of IBDV. The phylogenetic analysis also showed that the isolates formed clusters with the respective genogroups. The characteristic motifs 222T, 249K, 286I, and 318D are typical of the variant strain and were observed for UPM1219/2019 and UPM1432/2019. In comparison, very virulent residues such as 222A, 249Q, 286T, and 318G were found for the vvIBDV, except for the UPM1056/2018 strain with a A222T substitution. In addition, the isolate has aa substitutions such as D213N, G254D, S315T, S317R, and A321E that are not commonly found in previously reported vvIBDV strains. Unlike the other vvIBDVs characterized in this study, UPM766/2018 lacks the MLSL aa residues in VP5. The aa tripeptides 145/146/147 (TDN) of VP1 were conserved for the vvIBDV, while a different motif, NED, was observed for the Malaysian variant strain. The phylogenetic tree showed that the IBDV variant clustered with the American and Chinese variant viruses and are highly comparable to the novel Chinese variants, with 99.9% identity. Based on the sequences and phylogenetic analyses, this is the first identification of an IBDV variant being reported in Malaysia. Further research is required to determine the pathogenicity of the IBDV variant and the protective efficacy of the current IBD vaccines being used against the virus.
    Matched MeSH terms: Virulence
  10. Hooi YT, Ong KC, Tan SH, Perera D, Wong KT
    J Comp Pathol, 2020 Apr;176:19-32.
    PMID: 32359633 DOI: 10.1016/j.jcpa.2020.02.001
    Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are the major causes of hand, foot and mouth disease in young children. Although less so with CV-A16, both viruses are associated with serious neurological syndromes, but the differences between their central nervous system infections remain unclear. We conducted a comparative infection study using clinically-isolated CV-A16 and EV-A71 strains in a 1-day-old mouse model to better understand the neuropathology and neurovirulence of the viruses. New serotype-specific probes for in situ hybridization were developed and validated to detect CV-A16 and EV-A71 RNA in infected tissues. Demonstration of CV-A16 virus antigens/RNA, mainly in the brainstem and spinal cord neurons, confirmed neurovirulence, but showed lower densities than in EV-A71 infected animals. A higher lethal dose50 for CV-A16 suggested that CV-A16 is less neurovirulent. Focal virus antigens/RNA in the anterior horn white matter and adjacent efferent motor nerves suggested that neuroinvasion is possibly via retrograde axonal transport in peripheral motor nerves.
    Matched MeSH terms: Virulence
  11. Abraham SB, Al Marzooq F, Himratul-Aznita WH, Ahmed HMA, Samaranayake LP
    BMC Oral Health, 2020 12 01;20(1):347.
    PMID: 33256696 DOI: 10.1186/s12903-020-01347-5
    BACKGROUND: There is limited data on the prevalence of Candida species in infected root canal systems of human teeth. We attempted to investigate the prevalence, genotype, virulence and the antifungal susceptibility of Candida albicans isolated from infected root canals of patients with primary and post-treatment infections in a UAE population.

    METHODS: Microbiological samples from 71 subjects with infected root canals were aseptically collected, and cultured on Sabouraud dextrose agar, and C. albicans was identified using multiplex polymerase chain reaction, and the isolates were further subtyped using ABC genotyping system. Their relative virulence was compared using further four archival samples of endodontic origin from another geographical region, and four more salivary isolates, as controls. The virulence attributes compared were biofilm formation, and production of phospholipase and haemolysin, and the susceptibility to nystatin, amphotericin B, ketoconazole, and fluoconazole was also tested.

    RESULTS: 4 out of 71 samples (5.6%) yielded Candida species. On analysis of variance among the groups, the intracanal isolates, mainly Genotype A, possessed a high degree of phospholipase and haemolysin activity (p 

    Matched MeSH terms: Virulence
  12. Spradbrow PB, Ibrahim AL, Mustaffa-Babjee A, Kim SJ
    Avian Dis, 1978 Apr-Jun;22(2):329-35.
    PMID: 678237
    One-day-old chickens were transported from Australia to Malaysia and vaccinated orotracheally with an uninactivated vaccine prepared from avirulent Australian V4 strain of Newcastle disease virus (NDV). The vaccination regimes were as follows: group A, once, at 2 weeks old; group B, once, at 3 weeks old; group C, twice, at 2 and at 3 weeks old; group D, direct contact with groups A, B, and C; and group E, indirect contact with groups A, B, C, and D. Group F was unvaccinated controls. Challenge was with NDV virulent Ipoh AF 2240-226 strain, administered at 4 weeks old intramuscularly to 10 chickens in each group and orotracheally to 10 chickens in each group. The remaining chickens were challenged by contact with the inoculated chickens. Group mortalities following challenge were: A, 1/77; B, 1/34; C, 0/39; D, 0/45; E, 6/43; and F, 60/60.
    Matched MeSH terms: Virulence
  13. CHAI SIAW YEW, CHAI SZE FAN, LESLEY MAURICE BILUNG, AHMAD SYATIR TAHAR, ROSDI KIRA
    MyJurnal
    Listeria spp. and Salmonella spp. are capable of causing food-borne outbreaks and diseases in humans. This study aimed to quantify and detect the occurrence of Listeria monocytogenes and Salmonella Typhimurium in fruit juices by utilizing Most Probable Number (MPN) in combination with Polymerase Chain Reaction (PCR). In this study, a total of 50 fruit juice samples, consisting of orange, papaya, watermelon, honeydew and apple were collected from Kota Samarahan and Kuching. Specific Polymerase Chain Reaction (PCR) assay targeting the virulence gene, hlyA gene in L. monocytogenes and fliC gene in S. Typhimurium was performed, with the expected size of 730 bp and 559 bp, respectively. MPN analysis showed that the estimated microbial loads of Listeria spp. and Salmonella spp. in all samples were more than 1100 MPN/g. However, based on the PCR analysis, none of the samples (0%) were positive for L. monocytogenes or S. Typhimurium. This study presented as a preliminary food safety screening for the occurrence of Listeria spp. and Salmonella spp. from retailed fruit juices. Hygienic practices and food safety measures should be adhered by all food vendors and restaurants in order to avoid foodborne disease outbreaks in the future.
    Matched MeSH terms: Virulence
  14. Tay ST, Devi S, Puthucheary SD, Kautner IM
    J Med Microbiol, 1995 Mar;42(3):175-80.
    PMID: 7884798
    There are several methods for the detection of haemolytic activity in campylobacters. However, we found the haemolytic effect of campylobacters on conventional blood agar plates to be variable, inconsistent and difficult to interpret. Blood agarose plates showed campylobacter haemolytic activity more clearly. The incubation conditions (temperature and gaseous) appear to be important for the expression of this activity. Ninety four percent of the Campylobacter isolates examined were found to be haemolytic by the microplate assay with minimal haemolytic units that ranged from 1 to 64. Haemolytic activity was detected only from live bacterial cultures and not from any of the 50 bacterial culture supernates, which suggests that campylobacters may possess a cell-associated haemolysin. The identification of such haemolytic activity in a large number of campylobacters (94%) suggests its potential role as a virulence factor in campylobacter gastroenteritis.
    Matched MeSH terms: Virulence
  15. Chong PP, Lee YL, Tan BC, Ng KP
    J Med Microbiol, 2003 Aug;52(Pt 8):657-66.
    PMID: 12867559
    The aims of this study were to compare the genetic relatedness of: (i) sequential and single isolates of Candida strains from women with recurrent vaginal candidiasis (RVC); and (ii) Candida strains from women who had only one episode of infection within a 1-year period. In total, 87 isolates from 71 patients were cultured, speciated and genotyped by random amplification of polymorphic DNA (RAPD) analysis. Patients were categorized into three groups, namely those with: (i) a history of RVC from whom two or more yeast isolates were obtained (group A); (ii) a history of RVC from whom only a single isolate was obtained (group B); and (iii) a single episode of vaginal candidiasis within a 1-year period (group C). Six yeast species were detected: Candida albicans, Candida glabrata, Candida lusitaniae, Candida famata, Candida krusei and Candida parapsilosis. Interestingly, the prevalence of non-albicans species was higher in group A patients (50 %) than in patients in groups B (36 %) or C (18.9 %). Eighty RAPD profiles were observed, with a total of 61 polymorphic PCR fragments of distinct sizes. Clustering analysis showed that, overall, the majority of patients in group A had recurrent infections caused by highly similar, but not identical, sequential strains [mean pairwise similarity coefficient (S(AB)) = 0.721 +/- 0.308]. The range of mean S(AB) values for intergroup comparisons for C. albicans isolates alone was 0.50-0.56, suggesting that there was no significant relatedness between strains from different groups. Genetic similarity of C. albicans isolates from patients in group A was lower than that of C. albicans isolates from patients in group C (mean S(AB) = 0.532 +/- 0.249 and 0.636 +/- 0.206, respectively); this difference was statistically significant (P = 0.036). These results demonstrate that the cause of recurrent infections varies among individuals and ranges between strain maintenance, strain microevolution and strain replacement; the major scenario is strain maintenance with microevolution. They also show that C. albicans strains that cause recurrent infections are less similar to each other than strains that cause one-off infections, suggesting that the former may represent more virulent subtypes.
    Matched MeSH terms: Virulence
  16. Mat Amin N
    Trop Biomed, 2004 Dec;21(2):57-60.
    PMID: 16493399
    Naegleria fowleri is a free-living amoeba, known as a causative agent for a fatal disease of the central nervous system (CNS) in man such as Primary amoebic meningoencephalitis (PAM). Factors contributing to its pathogenicity and its distribution in the environment have been investigated by previous researchers. In case of its pathogenicity, several enzymes such as phospolipase A and sphingomyelinase, have been proposed to probably act as aggressors in promoting PAM but no study so far have been conducted to investigate the presence of proteinase enzyme in this amoeba although a 56kDa cystein proteinase enzyme has been identified in Entamoeba histolytica as an important contributing factor in the amoeba's virulence. In this preliminary study, a pathogenic amoeba, Naegleria fowleri (strain NF3) was examined for the presence of proteinases. Samples of enzymes in this amoeba were analysed by electrophoresis using SDS-PAGE-gelatin gels. The results showed that this amoeba possesses at least two high molecular weight proteinases on gelatin gels; their apparent molecular weights are approximately 128 kDa and approximately 170 kDa. Band of approximately 128 kDa enzyme is membrane-associated and its activity is higher at alkaline pH compared with lower pH; at lower pH, its activity is greatly stimulated by DTT. The approximately 170 kDa band enzyme appears to be inactivated at pH 8.0, at lower ph its activity is higher and DTT-dependance. The activity of this enzyme is partially inhibited by inhibitor E-64 but markedly inhibited to antipain suggesting it belongs to the cysteine proteinase group.
    Matched MeSH terms: Virulence
  17. Mohammad NA, Al-Mekhlafi HM, Anuar TS
    Trop Biomed, 2018 Dec 01;35(4):849-860.
    PMID: 33601835
    Blastocystis is one of the most common parasites inhabiting the intestinal tract of human and animals. Currently, human Blastocystis isolates are classified into nine subtypes (STs) based on the phylogeny of their small subunit ribosomal RNA (SSU rRNA) gene. Although its pathogenicity remains controversial, the possibility of zoonotic transmission was recognized since eight of the nine STs (except for ST9) have been reported in both humans and animals. A cross-sectional study was conducted to determine the prevalence and subtype distribution of Blastocystis isolated from humans and associated animals in an indigenous community with poor hygiene in Malaysia, where the risk of parasitic infection is high. A total of 275 stool samples were collected, subjected to DNA extraction and amplified by PCR assay. The Blastocystis-positive amplicons were then purified and sequenced. Phylogenetic tree of positive isolates, reference strains and outgroup were constructed using maximum likelihood method based on Hasegawa-KishinoYano+G+I model. The prevalence of Blastocystis infection among humans and domestic animals by PCR assay were 18.5% (45/243) and 6.3% (2/32), respectively. Through molecular phylogeny, 47 isolates were separated into five clusters containing isolates from both hosts. Among human isolates, ST3 (53.3%) was the predominant subtype, followed by ST1 (31.1%) and ST2 (15.6%). Chicken and cattle had lower proportions of ST6 (50%) and ST10 (50%), that were barely seen in humans. The distinct distributions of the most important STs among the host animals as well as humans examined demonstrate that there is various host-specific subtypes in the lifecycle of Blastocystis.
    Matched MeSH terms: Virulence
  18. Lau YL, Lee WC, Gudimella R, Zhang G, Ching XT, Razali R, et al.
    PLoS One, 2016;11(6):e0157901.
    PMID: 27355363 DOI: 10.1371/journal.pone.0157901
    Toxoplasmosis is a widespread parasitic infection by Toxoplasma gondii, a parasite with at least three distinct clonal lineages. This article reports the whole genome sequencing and de novo assembly of T. gondii RH (type I representative strain), as well as genome-wide comparison across major T. gondii lineages. Genomic DNA was extracted from tachyzoites of T. gondii RH strain and its identity was verified by PCR and LAMP. Subsequently, whole genome sequencing was performed, followed by sequence filtering, genome assembly, gene annotation assignments, clustering of gene orthologs and phylogenetic tree construction. Genome comparison was done with the already archived genomes of T. gondii. From this study, the genome size of T. gondii RH strain was found to be 69.35Mb, with a mean GC content of 52%. The genome shares high similarity to the archived genomes of T. gondii GT1, ME49 and VEG strains. Nevertheless, 111 genes were found to be unique to T. gondii RH strain. Importantly, unique genes annotated to functions that are potentially critical for T. gondii virulence were found, which may explain the unique phenotypes of this particular strain. This report complements the genomic archive of T. gondii. Data obtained from this study contribute to better understanding of T. gondii and serve as a reference for future studies on this parasite.
    Matched MeSH terms: Virulence
  19. Yadav, M.
    MyJurnal
    Human Herpesvirus-6 (HHV-6) infections are ubiquitous in human populations with an antibody prevalence of 30-85 percent in normal adults. The virus in vivo infects T-lympho-cytes, at various stages of differentiation and is cytopathic to host cell during productive infection. In culture the virus is pleiotropic for several established cell lines including T and B lymphocytes, macrophages and neural cells. Primary viral infection occurs mostly in early childhood. The saliva is the primary source of infection. The infection remains clinically silent in majority but it establishes a lifelong latent presence. However, in about 30 percent of infants, probably a varient HHV-6, causes exanthem subitum (roseola infantum). If the primary infection of HHV-6 is delayed until adolescence it is accompanied by clinical manifestation of an Epstein-Barr virus like infectious mononucleosis in some individuals. Depressed host immune functions may reactivate the latent HHV-6 infection and further aggravation of the primary disease. Since the virus is cytopathic to the host cell the presence of HHV-6 in AIDS patients and other lympholiferative disorders may increase the severity and pathogenicity of the primary disease. Antibodies to the HHV-6 are enhanced in autoimmune disorders, chronic fatigue syndrome, progressive lymphoroliferative disorders and organ transplant patients on immunosuppressive drugs therapy. While considerable basic immunovirological information has been obtained in the last 4 years, large gaps in knowledge still exist on the biologic interaction of HHV-6 with the host.
    Matched MeSH terms: Virulence
  20. Tan CW, Tee HK, Lee MH, Sam IC, Chan YF
    PLoS One, 2016;11(9):e0162771.
    PMID: 27617744 DOI: 10.1371/journal.pone.0162771
    Enterovirus A71 (EV-A71) causes major outbreaks of hand, foot and mouth disease, and is occasionally associated with neurological complications and death in children. Reverse genetics is widely used in the field of virology for functional study of viral genes. For EV-A71, such tools are limited to clones that are transcriptionally controlled by T7/SP6 bacteriophage promoter. This is often time-consuming and expensive. Here, we describe the development of infectious plasmid DNA-based EV-A71 clones, for which EV-A71 genome expression is under transcriptional control by the CMV-intermediate early promoter and SV40 transcriptional-termination signal. Transfection of this EV-A71 infectious DNA produces good virus yield similar to in vitro-transcribed EV-A71 infectious RNA, 6.4 and 5.8 log10PFU/ml, respectively. Infectious plasmid with enhanced green fluorescence protein and Nano luciferase reporter genes also produced good virus titers, with 4.3 and 5.0 log10 PFU/ml, respectively. Another infectious plasmid with both CMV and T7 promoters was also developed for easy manipulation of in vitro transcription or direct plasmid transfection. Transfection with either dual-promoter infectious plasmid DNA or infectious RNA derived from this dual-promoter clone produced infectious viral particles. Incorporation of hepatitis delta virus ribozyme, which yields precise 3' ends of the DNA-launched EV-A71 genomic transcripts, increased infectious viral production. In contrast, the incorporation of hammerhead ribozyme in the DNA-launched EV-A71 resulted in lower virus yield, but improved the virus titers for T7 promoter-derived infectious RNA. This study describes rapid and robust reverse genetic tools for EV-A71.
    Matched MeSH terms: Virulence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links