Materials and Methods: This retrospective cohort study extracted de-identified data from the Malaysian Registry of Intensive Care in four Malaysian tertiary ICUs between January 2010 and December 2014. The study was registered under the NMRR and approved by the ethics committee. AKI was defined as twice the baseline creatinine or urine output <0.5 ml/kg/h for 12 h.
Results: Of 26,663 patients, 24.2% had AKI within 24 h of admission. Patients with AKI were older and had higher severity of illness compared to those without AKI. AKI patients had a longer duration of mechanical ventilation, length of ICU, and hospital stay. Age, Simplified Acute Physiological II Score, and the presence of sepsis and preexisting hypertension, chronic cardiovascular disease independently associated with AKI. About 32.3% had sepsis. Patients with both AKI and sepsis had the highest risk of mortality (relative risk 3.43 [3.34-3.53]).
Conclusions: AKI is common in our ICU, with higher morbidity and mortality. Independent risk factors of AKI include age, the severity of illness, sepsis and preexisting hypertension, and chronic cardiovascular disease. AKI independently contributes to mortality. The presence of AKI and sepsis increased the risk of mortality by three times.
CASE SUMMARY: Two special COVID-19 cases-one full-term pregnant woman and one elderly (72-year-old) man-were treated by veno-venous (VV)-ECMO in the Second People's Hospital of Zhongshan, Zhongshan City, Guangdong Province, China. Both patients had developed refractory hypoxemia shortly after hospital admission, despite conventional support, and were therefore managed by VV-ECMO. Although both experienced multiple ECMO-related complications on top of the COVID-19 disease, their conditions improved gradually. Both patients were weaned successfully from the ECMO therapy. At the time of writing of this report, the woman has recovered completely and been discharged from hospital to home; the man remains on mechanical ventilation, due to respiratory muscle weakness and suspected lung fibrosis. As ECMO itself is associated with various complications, it is very important to understand and treat these complications to achieve optimal outcome.
CONCLUSION: VV-ECMO can provide sufficient gas exchange for COVID-19 patients with acute respiratory distress syndrome. However, it is crucial to understand and treat ECMO-related complications.
METHODS: It is a prospective, open-labeled, randomized controlled study conducted at National Heart Institute, Kuala Lumpur from July 2018 to July 2019. All patients with simple and complex congenital heart diseases (CHD) with good left ventricular function (left ventricular ejection fraction [LVEF] >50%) were included while those with LVEF <50% were excluded. A total of 100 patients were randomized into two groups of 50 each receiving either del Nido or BSTH cardioplegia. Primary end points were the spontaneous return of activity following aortic cross-clamp release and ventricular function between two groups. Secondary end point was myocardial injury as assessed by troponin T levels.
RESULTS: Cardiopulmonary bypass and aortic cross-clamp time, return of spontaneous cardiac activity following the aortic cross-clamp release, the duration of mechanical ventilation, and intensive care unit stay were comparable between two groups. Statistically significant difference was seen in the amount and number of cardioplegia doses delivered (P < .001). The hemodilution was significantly less in the del Nido complex CHD group compared to BSTH cardioplegia (P = .001) but no difference in blood usage (P = .36). The myocardial injury was lesser (lower troponin T release) with del Nido compared to BSTH cardioplegia (P = .6).
CONCLUSION: Our study showed that both del Nido and BSTH cardioplegia are comparable in terms of myocardial protection. However, single, less frequent, and lesser volume of del Nido cardioplegia makes it more suitable for complex repair.
METHODS: This is a retrospective analysis of a single-center prospective observational study that enrolled mechanically ventilated adults with expected ≥96 hours ICU stay. SARC-F and CFS questionnaires were administered to patient's next-of-kin and mNUTRIC were calculated. Calf-circumference was measured at the right calf. Nutrition data was collected from nursing record. The high-risk scores (mNUTRIC ≥5, SARC-CALF >10 or CFS ≥4) of these variables were combined to become the NUTRIC-SF score (range: 0-3).
RESULTS: Eighty-eight patients were analyzed. Multiple logistic model demonstrated increasing mNUTRIC score was independently associated with 60-day mortality while increasing SARC-CALF and CFS showed a strong trend towards higher 60-day mortality. Discriminative ability of NUTRIC-SF for 60-day mortality is better than it's component (AUROC 0.722, 95% confidence interval [CI] 0.677-0.868). Every increment of 300 kcal/day and 30 g/day is associated with a trend towards higher rate of discharge alive for high [≥2; Adjusted Hazard Ratio 1.453 (95% CI 0.991-2.130) for energy, 1.503 (95% CI 0.936-2.413) for protein] but not low (<2) NUTRIC-SF score.
CONCLUSION: NUTRIC-SF score may be a clinically relevant risk stratification tool in the ICU. This article is protected by copyright. All rights reserved.
METHODS: Microscopic agglutination test (MAT)-positive and MAT-negative human serum samples (n=30) from patients with leptospirosis were obtained from the Public Health Laboratory, Kota Kinabalu, Sabah, Malaysia and control serum samples (n=10) were obtained from healthy student volunteers. We estimated the levels of IL-1β, IL-6, IL-8, IL-10, and TNF-α in serum samples by a Luminex assay.
RESULTS: The levels of IL-6, IL-8, and IL1-β were significantly higher in 13% of the patients with leptospirosis compared to the healthy controls, while the levels of IL-10 and TNF-α were not elevated in either group.
CONCLUSION: Our data suggest that elevated levels of IL-6, IL- 8, and IL1-β may be associated with leptospirosis disease severity, which requires patient follow-up for confirmation.
CASE PRESENTATION: A 25-year-old super morbidly obese female (body mass index = 55 kg/meter2) presented with worsening shortness of breath. For MV, pairing of a 6 mm (mm) diameter ETT to accommodate the patient's vocal cord edema, with a CSS not designed to maintain a clean catheter tip, precipitated ETT blockage and respiratory acidosis. Replacement of these devices with a 6.5 mm ETT and a CSS designed to keep the catheter tip clean resolved the complications. After use of the different ETT and CSS for approximately one week, the patient was discharged to home.
DISCUSSION: The clean-tip catheter CSS enabled a more patent airway than its counterpart device that did not have this feature. Use of a clean-tip catheter CSS was an important care development for this patient, because this individual's super morbidly obese condition minimized tolerance for MV complications that would exacerbate her pre-existing tenuous respiratory health status.
CONCLUSION: Special attention should be given to the choices of ETT size and CSS to manage super morbidly obese patients who have a history of difficult airway access.
METHODS: This prospective study over November 2017-October 2019 was conducted in a single-center multidisciplinary pediatric intensive care unit (PICU) and included patients <21years of age with PARDS. Clinical history of those requiring mechanical ventilation for <3 days was interrogated and cases in which the diagnosis of PARDS were unlikely, identified. The impact of chronic comorbidities on clinical outcomes, in particular, pulmonary disease and immunosuppression, were analyzed.
RESULTS: Eighty-five of 1272 PICU admissions (6.7%) met the criteria for PARDS and were included. Median age and oxygenation indexes were 2.8 (0.6, 8.3) years and 10.6 (7.6, 15.4), respectively. Overall mortality was 12 out of 85 (14.1%). Despite fulfilling criteria in 6/85 (7.1%), hypoxemia contributed by bronchospasm, mucus plugging, fluid overload, and atelectasis was quickly reversible and PARDS was unlikely in these patients. Comorbidities (57/85 [67.1%]) were not associated with worsened outcomes. However, pre-existing pulmonary disease and immunosuppression were associated with severe PARDS (12/20 [60.0%] vs 19/65 [29.2%]; P = .017), extracorporeal membrane oxygenation use (5/20 [25.0%] vs 3/65 [4.6%]; P = .016) and reduced ventilator free days (VFD) (15 [0, 19] vs 21 [6, 23]; P = .039), compared with those without them.
CONCLUSION: A small percentage of children fulfilling the PALICC definition had quickly reversible hypoxemia with likely alternate pathophysiology to PARDS. Patients with pulmonary comorbidities and immunosuppression had a more severe course of PARDS compared with others.
METHODS: In this multicenter randomized trial, critically ill patients will be randomized to receive supplemental enteral protein (1.2 g/kg/day) added to standard enteral nutrition to achieve a high amount of enteral protein (range of 2-2.4 g/kg/day) or no supplemental enteral protein to achieve a moderate amount of enteral protein (0.8-1.2 g/kg/day). The primary outcome is 90-day all-cause mortality; other outcomes include functional and health-related quality-of-life assessments at 90 days. The study sample size of 2502 patients will have 80% power to detect a 5% absolute risk reduction in 90-day mortality from 30 to 25%. Consistent with international guidelines, this statistical analysis plan specifies the methods for evaluating primary and secondary outcomes and subgroups. Applying this statistical analysis plan to the REPLENISH trial will facilitate unbiased analyses of clinical data.
CONCLUSION: Ethics approval was obtained from the institutional review board, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia (RC19/414/R). Approvals were also obtained from the institutional review boards of each participating institution. Our findings will be disseminated in an international peer-reviewed journal and presented at relevant conferences and meetings.
TRIAL REGISTRATION: ClinicalTrials.gov, NCT04475666 . Registered on July 17, 2020.
OBJECTIVES: 1. To assess the effects of CPAP on AoP in preterm infants (this may be compared to supportive care or mechanical ventilation). 2. To assess the effects of different CPAP delivery systems on AoP in preterm infants.
SEARCH METHODS: Searches were conducted in September 2022 in the following databases: Cochrane Library, MEDLINE, Embase, and CINAHL. We also searched clinical trial registries and the reference lists of studies selected for inclusion.
SELECTION CRITERIA: We included all randomised and quasi-randomised controlled trials (RCTs) in which researchers determined that CPAP was necessary for AoP in preterm infants (born before 37 weeks). Cross-over studies were also included, provided sufficient data were available for analysis.
DATA COLLECTION AND ANALYSIS: We used the standard methods of Cochrane and Cochrane Neonatal, including independent assessment of risk of bias and extraction of data by at least two review authors. Discrepancies were resolved by involvement of a third author. We used the GRADE approach to assess the certainty of evidence for the following outcomes: 1) failed CPAP; 2) apnoea; 3) adverse effects of CPAP.
MAIN RESULTS: We included four single-centre trials conducted in Malaysia, Spain, Germany, and North America, involving 138 infants with a mean/median gestation of 26 to 28 weeks. Two studies were parallel-group RCTs and two were cross-over trials. None of the studies compared CPAP with supportive care. All trials compared one form of CPAP with another. Two compared a variable flow device with ventilator CPAP, one compared two different variable flow devices, and one compared a variable flow device with bubble CPAP. Interventions were administered for periods ranging between six and 48 hours, with pressures between 4 and 6 cm H2O. We assessed all trials as having a high risk of bias for blinding of participants and personnel, and two studies for blinding of outcome assessors. We found a high risk of a carry-over effect in two studies where the washout period was not adequately described, and a high risk of bias in a study that appeared to use an analysis method not generally accepted for cross-over studies. Comparison 1. CPAP and supportive care compared to supportive care alone We did not identify any study for inclusion in this comparison. Comparison 2. CPAP delivered by different types of devices 2a. Variable flow compared to ventilator CPAP Two studies were included in this comparison. We are very uncertain whether there is any difference in the incidence of failed CPAP, defined as the need for mechanical ventilation (risk ratio (RR) 0.16, 95% confidence interval (CI) 0.01 to 2.90; 1 study, 26 participants; very low-certainty). We are very uncertain whether there is any difference in the frequency of apnoea events (mean difference (MD) per four-hour interval -0.10, 95% CI -1.30 to 1.10; 1 study, 26 participants; very low-certainty). We are uncertain whether there is any difference in adverse events. Neurodevelopmental outcomes were not reported. 2b. Variable flow compared to bubble CPAP We included one study in this comparison, but it did not report our pre-specified outcomes. 2c. Infant Flow variable flow CPAP compared to Medijet variable flow CPAP We are very uncertain whether there is any difference in the incidence of failed CPAP (RR 2.62, 95% CI 0.91 to 7.53; 1 study, 80 participants; very low-certainty). The frequency of apnoea was not reported, and we do not know whether there is any difference in adverse events. Neurodevelopmental outcomes were not reported. Comparison 3. CPAP compared to mechanical ventilation We did not identify any studies for inclusion in this comparison.
AUTHORS' CONCLUSIONS: Due to the limited available evidence, we are very uncertain whether any CPAP device is more effective than other forms of supportive care, other CPAP devices, or mechanical ventilation for the prevention and treatment of AoP. The devices used in these studies included two types of variable flow CPAP device: bubble CPAP and ventilator CPAP. For each comparison, data were only available from a single study. There are theoretical reasons why these devices might have different effects on AoP, therefore further trials are indicated.
METHODS: Oxy-PICU was a pragmatic, multicentre, open-label, randomised controlled trial in England and Scotland. Eligible children were older than 38 weeks and younger than 16 years and had been admitted for emergency care in one of 15 participating PICUs, where they received invasive respiratory support for abnormal gas exchange. Participants were randomly assigned (1:1) to either a conservative oxygenation target (SpO2 88-92%) or liberal oxygenation target (SpO2 >94%). Survival status was assessed at 90 days and 1 year, and health-related quality of life (HRQoL), quality-adjusted life-years (QALYs), health-care costs, and incremental net monetary benefit were assessed at 1 year after the index hospital admission and randomisation. HRQoL was measured with age-appropriate Paediatric Quality of Life Generic Core Scales and mapped onto the Child Health Utility 9D index score. HRQoL and survival data were combined to construct QALYs. Costs at 1 year were derived from use of hospital, outpatient, and community health services. The trial was registered in the ISRCTN registry (ISRCTN92103439).
FINDINGS: 2040 children were enrolled between Sept 1, 2020 and May 15, 2022. 1868 (91·6%) children were included in the 90-day survival analysis; of these 930 (49·8%) had been assigned liberal oxygen and 938 (50·2%) conservative oxygen. 1867 (91·5%) children were included in the 1-year survival analysis; 930 (49·8%) had been assigned liberal oxygenation and 937 (50·2%) conservative oxygen. At 90 days, 35 (3·7%) patients in the conservative oxygenation group and 45 (4·8%) patients in the liberal oxygenation group had died (adjusted hazard ratio [aHR] 0·75 [95% CI 0·48 to 1·17]). By 1 year, 52 (5·5%) patients in the conservative oxygenation group and 66 (7·1%) patients in the liberal oxygenation group had died (aHR 0·77 [95%CI 0·53 to 1·10]). Overall, mean HRQoL, life-years, and QALYs at 1 year were similar in the two groups. The adjusted incremental effect on cost of conservative oxygenation versus liberal oxygenation was -£879 (95% CI -9036 to 7278), whereas the incremental difference in QALYs was estimated at 0·001 (-0·010 to 0·011), leading to an incremental net monetary benefit of £894 (-7290 to 9078) associated with conservative oxygenation relative to liberal oxygenation. These results did not vary by age (<12 months vs ≥12 months), comorbidity at baseline, age-adjusted heart rate, or haemoglobin level at admission and were robust to alternative assumptions.
INTERPRETATION: Compared with usual care (SpO2 >94%) for invasively ventilated children who are admitted as an emergency to a PICU, conservative oxygenation (SpO2 88-92%) was not associated with differences in longer-term survival, costs, or cost-effectiveness. Taken together with previous findings of Oxy-PICU that conservative oxygenation compared with liberal oxygenation leads to better patient-centred and parent-centred outcomes at 30 days, these findings support the use of conservative oxygenation targets for this population.
FUNDING: UK National Institute for Health and Social Care Research Health Technology Assessment Programme.