Increasing evidence of the association between ribosomal protein (RP) genes with nasopharyngeal carcinoma (NPC) have been derived from findings of their differential expression patterns in NPC cell lines. Nevertheless, expression data from a comprehensive list of RP gene family members is still lacking. This paper reports the assessment of two RP genes, eL13 and eL14, with regards to their expression patterns in several NPC cell lines (TW04, TW01, HK1, HONE1 and SUNE-1) relative to a non-malignant control (NP69). A conventional Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) assay was employed. Analysis of eL13 has never been explored before this, whereas investigation of eL14 represents an extended study. We found a general over-expression trend of eL14 in 40% (2 of 5; TW01 and HONE-1) of the NPC cell lines studied, with higher upregulated level in only one (TW01) of them. However, this pattern of expression level is not statistically significant. Expression of eL13 was not detected in any of the cell lines used. The inconsistency of these expression patterns demonstrates an elusive nature of RP activities in the malignancy of the nasopharynx.
Vibrio parahaemolyticus is a causative agent of foodborne outbreaks associated with the consumption of raw or under-cooked seafood. This study aimed to quantify and detect the occurrence of V. parahaemolyticus in freshwater fish by performing Most Probable Number (MPN) method in combination with Polymerase Chain Reaction (PCR). In this study, a total of 20 red tilapia (Oreochromis sp.) were collected from nearby local wet markets. Polymerase Chain Reaction (PCR) assay targeting the toxR gene in V. parahaemolyticus was performed, with the expected DNA amplification size of 368 bp. MPN analysis showed that the estimated microbial load of V. parahaemolyticus were more than 1100 MPN/g. The result of the PCR assay confirmed the presence of V. parahaemolyticus in 90% of the isolates. This positive detection elucidated the presence of food-borne bacteria in freshwater fish from local wet-market which may affect not only the health of fish stocks but also raise public health concerns.
Red seaweed Gracilaria, one of the largest genus in Division Rhodophyta inhabits Sarawak coastal water. This study was designed to identify the species of Gracilaria using morphological approach and to assess selected water quality parameters in Gracilaria habitats. Three field samplings were carried out in Santubong and Asajaya, Sarawak from November 2013 to December 2014. Overall, three species were identified namely Gracilaria changii, G. blodgettii and G. coronopifolia, attached to net of cage culture in Santubong and root of mangrove trees in Asajaya. In addition, three different taxa of aquatic macroinvertebrates (polychaete, small crab, bivalve) and single species of red seaweed (Acanthophora sp.) were observed in Gracilaria assemblages. An estimate of 37% to 40% of the upper part of the cage net in Santubong was covered by seaweeds and only 16% to 20% in Asajaya's mangrove. The study had provided better information on identification of Gracilaria and their habitat in Sarawak. Future work involving DNA barcoding of each species is in progress.
We report on the cloning of the lipase gene from Bacillus licheniformis IBRLCHS2
and the expression of the recombinant lipase. DNA sequencing analysis of the
cloned lipase gene showed that it shares 99% identity with the lipase gene from
B. licheniformis ATCC 14580 and belongs to subfamily 1.4 of true lipases based on amino
acid sequence alignment of various Bacillus lipases. The 612 bp lipase gene was then
cloned into the pET-15b(+) expression vector and the construct was transformed into
E. coli BL21 (DE3) for bulk expression of the lipase. Expression was analysed by SDSPAGE
where the lipase was found to have a molecular weight of about 23 kDa.
Stevia rebaudiana, a perennial herb native to northeastern Paraguay, has gained immense attention globally over the recent decades due to the natural sweetness of its leaves. Like in most plants, this particular species contains high amount of secondary metabolites, thus rendering the isolation of high quality and quantity RNA extract for molecular applications rather challenging. An effective, high-yield and high-quality RNA isolation protocol for this economically important plant species was devised here based on the cetyltrimethylammonium bromide (CTAB) extraction method, with an additional genomic DNA (gDNA) removal step. DNA and other contaminants that may affect downstream applications were effectively removed. Our results exhibited that RNA samples isolated from the leaves and stems of Stevia rebaudiana using this improvised method are high in integrity and quality with RNA integrity number (RIN) of more than 8 and low in contaminants.
In this study, bacterial strains Ha5T, Ta1, and Jb2 were isolated from different colonies of weaver ant Oecophylla smaragdina. They were identified as bacterial symbionts of the ant belonging to family Acetobacteraceae and were distinguished as different strains based on distinctive random-amplified polymorphic DNA (RAPD) fingerprints. Cells of these bacterial strains were Gram-negative, rod-shaped, aerobic, non-motile, catalase-positive and oxidase-negative. They were able to grow at 15-37°C (optimum, 28-30°C) and in the presence of 0-1.5% (w/v) NaCl (optimum 0%). Their predominant cellular fatty acids were C18:1ω7c, C16:0, C19:0ω8c cyclo, C14:0, and C16:0 2-OH. Strains Ha5T, Ta1, and Jb2 shared highest 16S rRNA gene sequence similarity (94.56-94.63%) with Neokomagataea tanensis NBRC106556T of family Acetobacteraceae. Both 16S rRNA gene sequence-based phylogenetic analysis and core gene-based phylogenomic analysis placed them in a distinct lineage in family Acetobacteraceae. These bacterial strains shared higher than species level thresholds in multiple overall genome-relatedness indices which indicated that they belonged to the same species. In addition, they did not belong to any of the current taxa of Acetobacteraceae as they had low pairwise average nucleotide identity (< 71%), in silico DNA-DNA hybridization (< 38%) and average amino acid identity (< 67%) values with all the type members of the family. Based on these results, bacterial strains Ha5T, Ta1, and Jb2 represent a novel species of a novel genus in family Acetobacteaceae, for which we propose the name Oecophyllibacter saccharovorans gen. nov. sp. nov., and strain Ha5T as the type strain.
Matched MeSH terms: DNA, Bacterial/genetics; Sequence Analysis, DNA; Random Amplified Polymorphic DNA Technique
E. coli mediated gene delivery faces a major drawback of low efficiency despite of being a safer alternative to viral vectors. This study showed a novel, simple and effective strategy to enhance invasive E. coli DH10B vector's efficiency in human epithelial cells. The bactofection efficiency of invasive E .coli vector was analyzed in nine cell lines. It demonstrated highest (16%) reporter gene (GFP) expression in cervical cells. Methods were employed to further enhance its efficiency by adding transfection reagents (trans-bactofection method) to promote entry into host cells, lysosomotropic reagents for escape from lysosomal degradation or antibiotics to lyse internalized bacteria. Increased bacterial entry, as elucidated from nil to 3% expression in liver cells, was obtained upon complexing bacteria with PULSin. Chloroquine mediated endosomal escape resulted in 7.2 folds increase whereas tetracycline addition to lyse internalized bacteria caused ≈90% of GFP in HeLa. Eventually, the combined effect of these three methods exhibited close to 100% GFP in cervical and remarkable increase of 138 folds in breast cells. This is the first study showing comparative study of vector's gene delivery ability in various epithelial cells of the human body with improving its delivery efficiency. These data demonstrated the potential of developed bactofection method to boost up the efficiency of other bacterial vectors also, which could further be used for effectual therapeutic gene delivery in human cells.
In this study, six clinical isolates (two from blood, two from urine and one each from a bronchoalveolar lavage and a vaginal swab) were identified as Candida rugosa based on carbohydrate assimilation profiles using API 20C AUX and ID32 C kits (bioMérieux). Sequence analysis of the D1/D2 domain of the yeasts differentiated the isolates into two subgroups, A and B (three isolates per subgroup), which were closely related (99.1-99.6 % nucleotide similarity) to C. rugosa strain ATCC 10571. Compared with the C. rugosa type strain, the intergenic transcribed spacer (ITS) nucleotide similarity for subgroup A was only 89.2 % (29 mismatches and one deletion) and for subgroup B was 93.7 % (20 mismatches). All isolates grew green colonies on Oxoid Chromogenic Candida Agar, with darker pigmentation observed for subgroup A. All isolates were able to grow at 25-42 °C but not at 45 °C. The isolates had identical enzymic profiles, as determined by API ZYM (bioMérieux) analysis, and produced proteinase. High amphotericin MICs (≥1 µg ml(-1)) were noted for two isolates from each subgroup. Dose-dependent susceptibility to fluconazole (MIC 32 µg ml(-1)) was noted in a blood isolate. The biofilms of the isolates demonstrated increased resistance to amphotericin and fluconazole. The greater ITS sequence variability of subgroup A isolates is in support of this yeast being recognized as a distinct species; however, further verification using more sophisticated molecular approaches is required. A sequence comparison study suggested the association of subgroup A with environmental sources and subgroup B with clinical sources. Accurate identification and antifungal susceptibility testing of C. rugosa are important in view of its decreased susceptibility to amphotericin and fluconazole. The ITS region has been shown to be a valuable region for differentiation of closely related subgroups of C. rugosa.
Matched MeSH terms: DNA, Fungal/genetics; DNA, Fungal/chemistry; Sequence Analysis, DNA
Intestinal parasites are the causative agents of a number of important human infections in developing countries. The objective of this study was to determine the prevalence of selected helminths and protozoan infections among patients admitted with gastrointestinal disorders at Hospital Universiti Sains Malaysia, Kelantan, Malaysia using multiplex real-time PCR. In addition microscopic examination was also performed following direct smear, zinc sulphate concentration and Kato-Katz thick smear techniques; and the presence of protozoan parasites was confirmed using trichrome and acid-fast stains. Of the 225 faecal samples analysed, 26.2% were positive for intestinal parasites by the multiplex real-time PCR, while 5.3% were positive by microscopy. As compared to microscopy, the multiplex real-time PCR detected 5.8 and 4.5 times more positives for the selected helminth and protozoan infections respectively. Among the selected helminths detected in this study, hookworm was the most prevalent by real-time PCR, while Ascaris lumbricoides was detected the most by microscopy. Meanwhile, among the selected protozoa detected in this study, Entamoeba histolytica was the most prevalent by real-time PCR, however microscopy detected equal number of cases with E. histolytica and Giardia lamblia. This study showed that real-time PCR can be used to obtain a more accurate prevalence data on intestinal helminths and protozoa.
The paper examines the propagation direction and speed of large scale travelling ionospheric disturbances (LSTIDs) obtained from GPS observations of extreme geomagnetic storms during the 23rd solar cycle; these are the October 2003 and November 2003 geomagnetic storms. In the analysis, the time delay between total electron content (TEC) structures at Scott Base station (SBA) (Lat. –77.85º, Long. 166.76º), McMurdo (McM4), (Lat. –77.84º, Long. 166.95º), Davis (DAV1), (Lat. –68.58º, Long. 77.97º) and Casey station (CAS1) (Lat. –66.28º, Long. 110.52º) GPS stations as well as the distance between these stations were employed in the analysis. The measurements during the October 2003 storm showed obvious time delay between the TEC enhancement occurrences at SBA/MCM4, DAV1 and CAS1 stations. The time delay indicated a movement of the ionospheric structures from higher to lower latitudes in a velocity ranging between 0.8 km/s – 1.2 km/s. The first sudden TEC enhancement was observed at SBA/McM4 (Lat. –75.84º) followed by CAS1 station (Lat. –66.28º) and the final TEC enhancement was seen at DAV1 station (Lat. –68.58º) with TEC magnitude decreasing while moving from higher to lower latitudes. One important observation was that although the latitude of the CAS1 station was lower than the DAV1 station, the TEC enhancement was firstly seen at the CAS1 station due to the shorter distance between SBA and CAS1 compared with the distance between SBA and CAS1 of about 500 km. The TEC measurements during the November 2003 storm showed an opposite propagation direction (i.e. poleward direction from lower to higher latitudes) which was seen with a velocity ranging between 0.3 km/s – 0.4 km/s. As similar response was observed using vertical TEC measurements obtained from individual PRN satellites but with higher velocity ranges (1.2 km/s – 2.4 km/s during October
and 0.5 km/s – 0.7 km/s during November). The equatorward or poleward expansion of LSTIDs during the October and November 2003 storms was probably caused by the disturbances in the neutral temperature which occurred close to the dayside convection throat or due to the neutral wind oscillation induced by atmospheric gravity waves launched from the aurora region.
In this study polymerase chain reaction (PCR) was used to identify yeast in domestic ragi obtained
from two local markets in Sarawak and Pahang. These ragi are normally used as a dry starter in food fermentation (tapai) for Pahang (ST2) and Sarawak (ST3) and tuak (ST1) which is an alcoholic drink in Sarawak. Universal primer, NL1 and NL4 were used as a primer in this study to amplify D1/D2 fragment. Based on the result from the sequencing and after the BLAST search of the nucleotide sequences, the strain was confirmed as Candida glabrata (FN424108.) partial 26S rRNA gene, strain IMUFRJ 51955 for ST1, Saccharomyces cerevisiae(EU285514.1) isolate 35 26S ribosomal RNA gene, partial sequence for ST2 sample and Candida glabrata (FN393990.1) partial 26S rRNA gene, strain MUCL 51244 for ST3. All these strains were found in domestic ragi used for food fermentation.
Ruthenium(II) polypyridyl complexes can intercalate DNA with high affinity and prevent cell proliferation; however, the direct impact of ruthenium-based intercalation on cellular DNA replication remains unknown. Here we show the multi-intercalator [Ru(dppz)2(PIP)](2+) (dppz = dipyridophenazine, PIP = 2-(phenyl)imidazo[4,5-f][1,10]phenanthroline) immediately stalls replication fork progression in HeLa human cervical cancer cells. In response to this replication blockade, the DNA damage response (DDR) cell signalling network is activated, with checkpoint kinase 1 (Chk1) activation indicating prolonged replication-associated DNA damage, and cell proliferation is inhibited by G1-S cell-cycle arrest. Co-incubation with a Chk1 inhibitor achieves synergistic apoptosis in cancer cells, with a significant increase in phospho(Ser139) histone H2AX (γ-H2AX) levels and foci indicating increased conversion of stalled replication forks to double-strand breaks (DSBs). Normal human epithelial cells remain unaffected by this concurrent treatment. Furthermore, pre-treatment of HeLa cells with [Ru(dppz)2(PIP)](2+) before external beam ionising radiation results in a supra-additive decrease in cell survival accompanied by increased γ-H2AX expression, indicating the compound functions as a radiosensitizer. Together, these results indicate ruthenium-based intercalation can block replication fork progression and demonstrate how these DNA-binding agents may be combined with DDR inhibitors or ionising radiation to achieve more efficient cancer cell killing.
Matched MeSH terms: DNA/metabolism; DNA Damage/drug effects; DNA Damage/radiation effects; DNA Repair/drug effects; DNA Replication/drug effects*
The main source of E. coli 0157:H7 is cattle, but recent studies showed high percentage of outbreaks
contributed by contaminated water. The occurrence of E. coli O157:H7 in environmental water samples poses a potential threat to human health. The aim of this study was to establish a protocol for the detection of the pathogen E. coli O157:H7 and E. coli virulence genes (eaeA, rfbE, hly, stx1, and stx2) in a multiplex PCR protocol using six specific primer pairs. The target genes produced species-specific amplicons at 625 bp, 397 bp, 296 bp, 166 bp, 210 bp and 484 bp for E. coli O157:H7 (fliCh7 gene) and virulence genes (eaeA, rfbE, hly, stx1, and stx2) respectively. The results obtained show that the established PCR protocol is suitable for a rapid and specific analysis of the pathogenic E. coli O157:H7 in environmental water samples for the assessment of microbiological risks.
The introduction of new agricultural commodities and products derived from modernbiotechnology may have an impact on human and animal health, the environment and economiesof countries. As more Genetically Modified Organisms (GMO) enter markets worldwide, themonitoring of GMOs is being preferred for obvious reasons such as determination of seed purity,verification of non-GMO status of agricultural crops and fulfilling GMO labeling provisions, tomention a few. Numerous GMO analytical methods which include screening, identification andquantification have been developed to reliably determine the presence and/or amount of GMOin agricultural commodities, in raw agricultural materials and in processed and refined ingredients.The detection of GMOs relies on the detection of transgenic DNA or protein material. For routineanalysis, a good sample preparation technique should reproducibly generate DNA/protein ofsufficient quality, purity and yield while minimizing the effects of inhibition andcontamination.
The key sample preparation steps include homogenization, pretreatment, extraction andpurification. Due to the fact that analytical laboratories receive samples that are often processedand refined, the quality and quantity of transgenic target analyte (e.g. protein and DNA) frequentlychallenge the sensitivity of any detection method. With the development of GMO analysistechniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMOdetection, and the real-time PCR is the most effective and important method for GMOquantification. The choice of target sequence; for example a promoter, a terminator, a gene, or ajunction between two of these elements, is the single most important factor controlling the specificity of the PCR method. Recent developments include event-specific methods, particularlyuseful for identification and quantification of GM content. Although PCR technology has obvious
limitations, the potentially high degree of sensitivity and specificity explains why PCR in its various
formats, is currently the leading analytical technology employed in GMO analysis. Comparatively, immunoassays are becoming attractive tools for rapid field monitoring for the integrity of agricultural commodities in identity preservation systems, whereby non-specialised personnel can employ them in cost-effective manner. This review discusses various popular extraction methodologies and summarises the current status of the most widely used and easily applicable GMO analysis technologies in laboratories, namely the PCR and immunoassay technologies.
Genetically modified organisms (GMO) are increased remarkably from year to year and the estimated global area cultivated with genetically modified (GM) crops reached 125 million hectares in year 2008. However, insect resistance maize based on Bacillus thuringienses (Bt) is of the most cultivated GM crop in worldwide. Bacillus thuringiensis (Bt) is an aerobic, gram-positive bacterium that synthesize one or more Cry protein that are toxic to various types crop and forestry insects pests. To date, several cry genes have been introduced into GM plant to combat with various type of insect. Worldwide commercialization of GM crops has raised the customers’ concern about the Biosafety issues, and thus, many countries have implemented the labeling legislations for GM food and their derivatives. In this study, we introduced the quantitative analysis method based on the recombinant plasmid DNA as calibrators that can be used to determine the percentage of GMO content in various types of food and feed samples. Therefore, we have reported 7.5% (6/80) of the samples were contained StarLink maize and 1.25% (1/80) samples were contained Bt176 maize. Additionally, the percentage of GM content in each positive sample were further determined with the developed quantitative method. The percentage of the StarLink corns that present in the positive samples were varies from 0.09% to 2.53% and Bt176 corn that present in the positive sample was 16.90%. The present study demonstrated that the recombinant plasmid DNA that used in quantitative real-time method as good alternative quantitative analysis of GM content.
Application of surface plasmon resonance (SPR) biosensor in detection of genetically modified organism (GMO) is demonstrated. A total of four biotinylated probes namely Tnosb, P35Sb, LECb and TSQb were successfully immobilized onto the SA chip. Results analysis indicated that the SPR system with the sensor chip immobilized with the Tnosb, P35Sb, LECb and TSQb biotinylated probes potentially detect complementary standard fragments as low as 1 nM. Biospecific interaction analysis (BIA), employing surface plasmon resonance (SPR) and biosensor technologies provide easy, rapid and automatable approach in detection of GMOs. Short assay times, label free DNA hybridization reaction and no toxic compounds are required, i.e. ethidium bromide, and the reusability of the sensor surface are some of the factors that contribute to the general advantages of the surface plasmon resonance (SPR) biosensor system in detection of GMOs.
The objective of the present study was to develop a rapid, reliable and yet inexpensive protocol for genomic DNA extraction from frozen and ethanol-preserved Asian green-lipped mussels for random amplified microsatelite (RAM) analysis. The procedure comprised of three major steps: (1) Tissue degradation by boiling in 6% Chelex 100 resin in TE buffer; (2) Protein digestion by Proteinase K; and (3) DNA precipitation by adding 2 volumes of cold absolute ethanol. The entire procedure can be completed within two hours. The resulting RAM profiles were clear and reproducible. Our results demonstrate that the combined protocol of Chelex 100-Proteinase K-ethanol precipitation is a powerful yet economical DNA isolation method for population genetic studies involving a large sample size.
Polycyclic aromatic hydrocarbons (PAHs) are persistent pollutants and chemically a class of structurally similar chemical compounds characterized by the presence of fused aromatic rings. This research was undertaken to find out immunotoxic effects produced by pyrene, phenanthrene and fluoranthene. These chemicals were injected into developing chicks at three dose levels (0.2, 2 and 20 mg per kg) through allantioc route to rule out possible mechanisms involved in immunotoxicity. DNA adduct produced by PAHs in immune organs were analyzed by DNA adduct enzyme-linked immunosorbent assay (ELISA) kit and DNA damage was assessed by comet assay. A significant increase in the DNA adduct levels was found in thymus and bursa in 2 mg and 20 mg dose levels of pyrene, fluoranthene and phenanthrene treated groups, whereas those in spleen simulated the value of controls. Comet assay indicated that PAHs especially pyrene, fluoranthene and phenanthrene were capable of inducing increased level of comet parameters in thymus at all the dose levels. Bursa of Fabricius and spleen also showed a gradual rise in comet parameters corresponding to all dose levels, but the increase was more marked as in thymus. Thus, it can be concluded that DNA adducts produced by PAHs lead to single-strand breaks and reduced DNA repair, which ultimately begin a carcinogenic process. Hence, this experiment can be considered as a strong evidence of genotoxic potential of PAHs like pyrene, phenanthrene and fluoranthene in developing chicks.
Matched MeSH terms: DNA Damage*; DNA Adducts/metabolism*
Microsatellites or simple sequence repeats (SSRs) are tandem repeats of DNA of 1-6 bp long. They ubiquitously occur in both eukaryotic and prokaryotic genomes. Because of their abundance,
they have widespread applications in both animal and plant sciences; such as varietal identification, genetic mapping, QTL mapping, phylogenetic and diversity studies. Thus, SSRs have become valuable DNA markers for molecular biologists and geneticists. Microsatellites are markers
of choice for many molecular geneticists because of their hypervariability, codominant
inheritance, multi-allelism and PCR-based assaying of variations that are amenable to automation and high throughput assay. However, the utilization of microsatellite markers in the past was
hampered by its laborious de novo isolations and species-specific nature.
Mitochondrial DNA (mtDNA) deletions are a major cause of chronic progressive external ophthalmoplegia (CPEO) and Kearns-Sayre syndrome (KSS). We analyzed single mtDNA deletions in 11 CPEO and one KSS patients by means of Southern blot and long polymerase chain reaction (PCR) assays. The deletion sizes ranged from 3.4 kb to 6.9 kb whereas the heteroplasmy level varied from 18.8% to 85.5%. Two unique deletions sized 4320 bp and 4717 bp were found. This study represents the first genetic screen of mtDNA disorders in Malaysia, and it follows the data seen in other published reports on CPEO and KSS genetic aetiology.