Displaying publications 121 - 140 of 471 in total

Abstract:
Sort:
  1. Maynard AJ, Ambrose L, Cooper RD, Chow WK, Davis JB, Muzari MO, et al.
    PLoS Negl Trop Dis, 2017 04;11(4):e0005546.
    PMID: 28410388 DOI: 10.1371/journal.pntd.0005546
    BACKGROUND: Within the last century, increases in human movement and globalization of trade have facilitated the establishment of several highly invasive mosquito species in new geographic locations with concurrent major environmental, economic and health consequences. The Asian tiger mosquito, Aedes albopictus, is an extremely invasive and aggressive daytime-biting mosquito that is a major public health threat throughout its expanding range.

    METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source.

    CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.

    Matched MeSH terms: Aedes/classification*; Aedes/genetics; Aedes/growth & development*
  2. Chen, Chee Dhang, Teoh Pei Sze, Wan-Norafikah Othman, Mohd Sofian-Azirun, Lee Han Lim
    MyJurnal
    This study was conducted to evaluate the effectiveness of a floor gully come with grating to prevent the oviposition of Aedes aegypti in the floor trap. In order to conduct the test, two containers were placed into a mosquito cage (30 cm × 30 cm × 30 cm). Both containers were filled with declorinated seasoned tap water and covered with floor gully c/w grating and normal floor gully, respectively. A total of 50 gravid Ae. aegypti females were then released into the cage and left for a week. All the eggs obtained from the test were allowed to remain inside the containers for the eggs to hatch. The number of hatched larvae was counted and recorded. Five replicates were conducted concurrently. There was a significant difference of Ae. aegypti larvae obtained between container with floor gully c/w grating and normal floor gully (p < 0.05). A total of 96.41% reduction of Ae. aegypti larvae was obtained in the container with floor gully c/w grating compared with the normal floor gully, indicating that the floor gully c/w grating used in this study was able to prevent oviposition of Ae. aegypti in holding water.
    Matched MeSH terms: Aedes
  3. Lokman Hakim Sulaiman
    MyJurnal
    Dengue is the most rapidly increasing arthropodborne
    disease globally. The disease burden has increased
    exponentially, doubling almost every decade from the
    estimated 8.3 million cases in 2010 to about 58.4 million
    cases in 2013.1
    The number of countries reporting
    dengue has also increased. Before 1970, less than 9
    countries reported dengue but now it has been reported
    in more than 100 countries worldwide. It is transmitted
    by two species of Aedes mosquito, Aedes aegypti and Ae.
    albopictus. (Copied from article).
    Matched MeSH terms: Aedes
  4. T Ismail TNS, A Kassim NF, A Rahman A, Yahya K, Webb CE
    Trop Med Infect Dis, 2018 Jul 23;3(3).
    PMID: 30274473 DOI: 10.3390/tropicalmed3030077
    Due to conservation and rehabilitation efforts, mangrove forests represent some of the largest environmental niches in Malaysia. However, there is little information on the potential risks posed by mosquitoes that are directly and indirectly associated with mangrove forests. To study the potential health risk to humans active within and in close vicinity of mangrove forests, this research focused on the day biting habits of mosquitoes in mangrove forests of Kedah, Malaysia. The bare leg catch (BLC) method was used to collect adult mosquitoes during a 12-h period from 7:30 a.m. to 7:30 p.m. in both disturbed and less disturbed areas of mangroves. In total, 795 adult mosquitoes from 5 genera and 8 species were collected, and over 65% of the total mosquitoes were collected from the less disturbed area. The predominant species from the less disturbed area was Verrallina butleri; in the disturbed area the dominant species was Culex sitiens. The peak biting hour differed for each species, with Aedes albopictus and Cx. sitiens recorded as having a bimodal biting activity peak during dawn and dusk. For Ve. butleri an erratic pattern of biting activity was recorded in the less disturbed area but it peaked during the early daytime for both collection points. Overall, the distinct pattern of day biting habits of mosquitoes within mangroves peaked during dawn and dusk for the less disturbed area but was irregular for the disturbed area throughout the day. The presence of vectors of pathogens such as Ae. albopictus for both areas raises the need for authorities to consider management of mosquitoes in mangrove forests.
    Matched MeSH terms: Aedes
  5. Amelia-Yap ZH, Sofian-Azirun M, Chen CD, Suana IW, Lau KW, Elia-Amira NMR, et al.
    J Med Entomol, 2019 04 16;56(3):811-816.
    PMID: 30715464 DOI: 10.1093/jme/tjz007
    The emergence of pyrethroid resistance in Aedes aegypti (L.) has limited the success of vector control. Early detection of resistance could assist authorities in deciding well-suited control strategies to minimize operational failures of Ae. aegypti control. Herein, biochemical analysis was performed to investigate the mechanisms involved in pyrethroid resistance in nine populations of Indonesian Ae. aegypti. Enzymes of adult Ae. aegypti such as esterases (ESTs), glutathione-S-transferases (GSTs), and mixed-function oxidases (MFOs) were characterized. Elevated MFO activity was correlated with resistance phenotype, indicating the role of this enzyme in contributing to pyrethroid resistance. No significant correlations were shown between pyrethroid resistance phenotype and α-ESTs, suggesting that marginally exceeded enzyme levels relative to the reference strain in some pyrethroid-susceptible populations were causative factor for insecticide resistance in other groups of insecticides. However, significant correlation was demonstrated between β-ESTs and pyrethroid resistance phenotype. The lowest enzyme levels in GSTs indicated that this enzyme was not predominant in causing pyrethroid resistance, despite the presence of significant correlations. Because metabolic detoxification fails to comprehensively explain the pyrethroid resistance in some Indonesian Ae. aegypti, additional mechanisms such as altered target sites in voltage-gated sodium channel may also contribute to the high pyrethroid resistance in Ae. aegypti.
    Matched MeSH terms: Aedes/drug effects*; Aedes/enzymology; Aedes/genetics
  6. Bamou R, Mayi MPA, Djiappi-Tchamen B, Nana-Ndjangwo SM, Nchoutpouen E, Cornel AJ, et al.
    Parasit Vectors, 2021 Oct 11;14(1):527.
    PMID: 34635176 DOI: 10.1186/s13071-021-04950-9
    The expansion of mosquito-borne diseases such as dengue, yellow fever, and chikungunya in the past 15 years has ignited the need for active surveillance of common and neglected mosquito-borne infectious diseases. The surveillance should be designed to detect diseases and to provide relevant field-based data for developing and implementing effective control measures to prevent outbreaks before significant public health consequences can occur. Mosquitoes are important vectors of human and animal pathogens, and knowledge on their biodiversity and distribution in the Afrotropical region is needed for the development of evidence-based vector control strategies. Following a comprehensive literature search, an inventory of the diversity and distribution of mosquitoes as well as the different mosquito-borne diseases found in Cameroon was made. A total of 290 publications/reports and the mosquito catalogue website were consulted for the review. To date, about 307 species, four subspecies and one putative new species of Culicidae, comprising 60 species and one putative new species of Anopheles, 67 species and two subspecies of Culex, 77 species and one subspecies of Aedes, 31 species and one subspecies of Eretmapodites, two Mansonia, eight Coquillettidia, and 62 species with unknown medical and veterinary importance (Toxorhynchites, Uranotaenia, Mimomyia, Malaya, Hodgesia, Ficalbia, Orthopodomyia, Aedeomyia, and Culiseta and Lutzia) have been collected in Cameroon. Multiple mosquito species implicated in the transmission of pathogens within Anopheles, Culex, Aedes, Eretmapodites, Mansonia, and Coquillettidia have been reported in Cameroon. Furthermore, the presence of 26 human and zoonotic arboviral diseases, one helminthic disease, and two protozoal diseases has been reported. Information on the bionomics, taxonomy, and distribution of mosquito species will be useful for the development of integrated vector management programmes for the surveillance and elimination of mosquito-borne diseases in Cameroon.
    Matched MeSH terms: Aedes/parasitology; Aedes/physiology; Aedes/virology
  7. Sukiato F, Wasserman RJ, Foo SC, Wilson RF, Cuthbert RN
    J Vector Ecol, 2019 12;44(2):264-270.
    PMID: 31729799 DOI: 10.1111/jvec.12358
    Urbanization has caused an increase in favorable habitats for Aedes aegypti (Diptera: Culicidae), given their ability to reproduce in small and often non-degradable artificial water-containers. While much work has been done on Ae. aegypti biology and ecology in urban landscapes, the role of shading on immature stages as an independent factor from temperature, and any possible interactions between these factors, remains unexamined. We assessed how temperature and shading affected egg hatch-rate, larval/pupal mortality, and larval development to adult stage under different factorial temperature (28; 31; 34; 37; 40° C) and shade (0%, 3,100 lux; 40%, 1,860 lux; 75%, 775 lux; 100%, 0 lux) regimes. Hatch-rate was significantly lower at 37° C (57 %), and no eggs hatched at 40° C. There was no significant effect caused by shading on hatchability. Larval and pupal mortality at 37° C was significantly higher (35%) compared to lower temperature groups, while the effects of shading were emergent at low temperatures. Developmental times from hatching to adult emergence were significantly reduced with increasing temperatures and with greater light exposures. The eco-physiological response of Ae. aegypti larvae to temperature and light regimes suggest a photosensitivity previously unstudied in this species.
    Matched MeSH terms: Aedes/growth & development; Aedes/physiology*; Aedes/radiation effects
  8. Dieng H, Ellias SB, Satho T, Ahmad AH, Abang F, Ghani IA, et al.
    Environ Sci Pollut Res Int, 2017 Jun;24(17):14782-14794.
    PMID: 28470499 DOI: 10.1007/s11356-017-8711-4
    In dengue mosquitoes, successful embryonic development and long lifespan are key determinants for the persistence of both virus and vector. Therefore, targeting the egg stage and vector lifespan would be expected to have greater impacts than larvicides or adulticides, both strategies that have lost effectiveness due to the development of resistance. Therefore, there is now a pressing need to find novel chemical means of vector control. Coffee contains many chemicals, and its waste, which has become a growing environmental concern, is as rich in toxicants as the green coffee beans; these chemicals do not have a history of resistance in insects, but some are lost in the roasting process. We examined whether exposure to coffee during embryonic development could alter larval eclosion and lifespan of dengue vectors. A series of bioassays with different coffee forms and their residues indicated that larval eclosion responses of Aedes albopictus and Ae. aegypti were appreciably lower when embryonic maturation occurred in environments containing coffee, especially roasted coffee crude extract (RCC). In addition, the lifespan of adults derived from eggs that hatched successfully in a coffee milieu was reduced, but this effect was less pronounced with roasted and green coffee extracts (RCU and GCU, respectively). Taken together, these findings suggested that coffee and its residues have embryocidal activities with impacts that are carried over onto the adult lifespan of dengue vectors. These effects may significantly reduce the vectorial capacity of these insects. Reutilizing coffee waste in vector control may also represent a realistic solution to the issues associated with its pollution.
    Matched MeSH terms: Aedes
  9. Afizah AN, Mahirah MN, Azahari AH, Asuad MK, Nazni WA, Lee HL
    PMID: 26863856
    Ovitrap surveillance was conducted in 2012 and 2006 in Malay and Aboriginal Villages on Carey Island. In each village, standard ovitraps were placed indoors and outdoors at randomly selected houses/locations. All L3 larvae recovered were identified up to species level. Results demonstrated that only larvae of Aedes albopictus were found in all the positive ovitraps placed indoors and outdoors. In 2012, a high ovitrap index (OI) of 66.7% indoor and 84.0% outdoor in the Malay Village; and 62.5% indoor and 88.0% outdoor in Aboriginal Village with an apparent absence of Aedes aegypti. In 2006, a 100% OI was recorded in all ovitraps set indoors and outdoors in both villages.
    Matched MeSH terms: Aedes/classification; Aedes/growth & development; Aedes/physiology*
  10. Wang Y, Li C, Zhao S, Wei Y, Li K, Jiang X, et al.
    PLoS Negl Trop Dis, 2024 Apr;18(4):e0012158.
    PMID: 38683870 DOI: 10.1371/journal.pntd.0012158
    Vector-borne infectious disease such as dengue fever (DF) has spread rapidly due to more suitable living environments. Considering the limited studies investigating the disease spread under climate change in South and Southeast Asia, this study aimed to project the DF transmission potential in 30 locations across four South and Southeast Asian countries. In this study, weekly DF incidence data, daily mean temperature, and rainfall data in 30 locations in Singapore, Sri Lanka, Malaysia, and Thailand from 2012 to 2020 were collected. The effects of temperature and rainfall on the time-varying reproduction number (Rt) of DF transmission were examined using generalized additive models. Projections of location-specific Rt from 2030s to 2090s were determined using projected temperature and rainfall under three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585), and the peak DF transmissibility and epidemic duration in the future were estimated. According to the results, the projected changes in the peak Rt and epidemic duration varied across locations, and the most significant change was observed under middle-to-high greenhouse gas emission scenarios. Under SSP585, the country-specific peak Rt was projected to decrease from 1.63 (95% confidence interval: 1.39-1.91), 2.60 (1.89-3.57), and 1.41 (1.22-1.64) in 2030s to 1.22 (0.98-1.51), 2.09 (1.26-3.47), and 1.37 (0.83-2.27) in 2090s in Singapore, Thailand, and Malaysia, respectively. Yet, the peak Rt in Sri Lanka changed slightly from 2030s to 2090s under SSP585. The epidemic duration in Singapore and Malaysia was projected to decline under SSP585. In conclusion, the change of peak DF transmission potential and disease outbreak duration would vary across locations, particularly under middle-to-high greenhouse gas emission scenarios. Interventions should be considered to slow down global warming as well as the potential increase in DF transmissibility in some locations of South and Southeast Asia.
    Matched MeSH terms: Aedes/growth & development; Aedes/physiology; Aedes/virology
  11. Zawani MK, Abu HA, Sazaly AB, Zary SY, Darlina MN
    Genet. Mol. Res., 2014;13(4):8184-96.
    PMID: 25299203 DOI: 10.4238/2014.October.7.13
    The mosquito Aedes albopictus is indigenous to Southeast Asian and is a vector for arbovirus diseases. Studies examining the population genetics structure of A. albopictus have been conducted worldwide; however, there are no documented reports on the population genetic structure of A. albopictus in Malaysia, particularly in Penang. We examined the population genetics of A. albopictus based on a 445-base pair segment of the mitochondrial DNA cytochrome oxidase 1 gene among 77 individuals from 9 localities representing 4 regions (Seberang Perai Utara, Seberang Perai Tengah, Northeast, and Southwest) of Penang. A total of 37 haplotypes were detected, including 28 unique haplotypes. The other 9 haplotypes were shared among various populations. These shared haplotypes reflect the weak population genetic structure of A. albopictus. The phylogenetic tree showed a low bootstrap value with no genetic structure, which was supported by minimum spanning network analysis. Analysis of mismatch distribution showed poor fit of equilibrium distribution. The genetic distance showed low genetic variation, while pairwise FST values showed no significant difference between all regions in Penang except for some localities. High haplotype diversity and low nucleotide diversity was observed for cytochrome oxidase 1 mtDNA. We conclude that there is no population genetic structure of A. albopictus mosquitoes in the Penang area.
    Matched MeSH terms: Aedes/genetics*
  12. Koou SY, Chong CS, Vythilingam I, Lee CY, Ng LC
    Parasit Vectors, 2014;7:471.
    PMID: 25301032 DOI: 10.1186/s13071-014-0471-0
    In Singapore, dose-response bioassays of Aedes aegypti (L.) adults have been conducted, but the mechanisms underlying resistance to insecticides remain unclear. In this study, we evaluated insecticide resistance and its underlying mechanism in field populations of Ae. aegypti adults.
    Matched MeSH terms: Aedes/drug effects*
  13. Dieng H, Rajasaygar S, Ahmad AH, Ahmad H, Rawi CS, Zuharah WF, et al.
    Acta Trop, 2013 Dec;128(3):584-90.
    PMID: 23999373 DOI: 10.1016/j.actatropica.2013.08.013
    Annually, 4.5 trillion cigarette butts (CBs) are flicked into our environment. Evidence exists that CB waste is deadly to aquatic life, but their lethality to the aquatic life of the main dengue vector is unknown. CBs are full of toxicants that occur naturally, during planting and manufacturing, which may act as larvicidal agents. We assessed Aedes aegypti vulnerability to Marlboro butts during its development. Overall, CBs showed insecticidal activities against larvae. At early phases of development, mortality rates were much higher in two CBs solution (2CBSol) and 3CBSol microcosms (MICRs). Larval survival gradually decreased with development in 1CBSol-MICRs. However, in great presence of CBs, mortality was high even for the late developmental stages. These results suggest that A. aegypti larvae are vulnerable to CB presence in their habitats, but this effect was seen most during the early developmental phases and in the presence of increased amounts of cigarette remnants. CB filters are being used as raw material in many sectors, i.e., brick, art, fashion, plastic industries, as a practical solution to the pollution problem, the observed butt waste toxicity to mosquito larvae open new avenues for the identification of novel insecticide products.
    Matched MeSH terms: Aedes/drug effects*
  14. Saiful AN, Lau MS, Sulaiman S, Hidayatulfathi O
    Asian Pac J Trop Biomed, 2012 Apr;2(4):315-9.
    PMID: 23569922 DOI: 10.1016/S2221-1691(12)60031-8
    To evaluate the effectiveness and residual effects of trypsin modulating oostatic factor-Bacillus thuringiensis israeliensis (TMOF-Bti) formulations against Aedes aegypti (Ae. aegypti) (L.) larvae at UKM Campus Kuala Lumpur.
    Matched MeSH terms: Aedes/drug effects*
  15. Aziz AT, Dieng H, Ahmad AH, Mahyoub JA, Turkistani AM, Mesed H, et al.
    Asian Pac J Trop Biomed, 2012 Nov;2(11):849-57.
    PMID: 23569860 DOI: 10.1016/S2221-1691(12)60242-1
    To investigate the prevalence of container breeding mosquitoes with emphasis on the seasonality and larval habitats of Aedes aegypti (Ae. aegypti) in Makkah City, adjoining an environmental monitoring and dengue incidence.
    Matched MeSH terms: Aedes*
  16. Yap HH, Chong NL, Foo AE, Lee CY
    Gaoxiong Yi Xue Ke Xue Za Zhi, 1994 Dec;10 Suppl:S102-8.
    PMID: 7844836
    Dengue Fever (DF) and Dengue Haemorrhagic Fever (DHF) have been the most common urban diseases in Southeast Asia since the 1950s. More recently, the diseases have spread to Central and South America and are now considered as worldwide diseases. Both Aedes aegypti and Aedes albopictus are involved in the transmission of DF/DHF in Southeast Asian region. The paper discusses the present status and future prospects of Aedes control with reference to the Malaysian experience. Vector control approaches which include source reduction and environmental management, larviciding with the use of chemicals (synthetic insecticides and insect growth regulators and microbial insecticide), and adulticiding which include personal protection measures (household insecticide products and repellents) for long-term control and space spray (both thermal fogging and ultra low volume sprays) as short-term epidemic measures are discussed. The potential incorporation of IGRs and Bacillus thuringiensis-14 (Bti) as larvicides in addition to insecticides (temephos) is discussed. The advantages of using water-based spray over the oil-based (diesel) spray and the use of spray formulation which provide both larvicidal and adulticidal effects that would consequently have greater impact on the overall vector and disease control in DF/DHF are highlighted.
    Matched MeSH terms: Aedes*
  17. Yong HS, Yao L, Dhaliwal SS, Cheong WH, Chiang GL
    Comp. Biochem. Physiol., B, 1983;75(1):43-5.
    PMID: 6406135
    1. A total of 8 samples from three natural populations and a laboratory strain of Aedes albopictus were analysed for glycerol-3-phosphate dehydrogenase phenotypes by means of horizontal starch-gel electrophoresis. 2. The electrophoretic phenotypes were governed by three codominant Gpd alleles. 3. There was low variability, with the heterozygosity in the variable samples ranging from 0.02 to 0.12. 4. The commonest allele in all the population samples was GpdB which encoded an electrophoretic band with intermediate mobility. 5. There was no temporal or spatial variation.
    Matched MeSH terms: Aedes/enzymology*
  18. Aiken SR, Frost DB, Leigh CH
    Soc Sci Med Med Geogr, 1980 Sep;14D(3):307-16.
    PMID: 7455728
    Matched MeSH terms: Aedes/growth & development
  19. Lee JM, Yek SH, Wilson RF, Rahman S
    Acta Trop, 2020 Dec;212:105683.
    PMID: 32888935 DOI: 10.1016/j.actatropica.2020.105683
    Understanding the diversity and dynamics of the microbiota within the mosquito holobiome is of great importance to apprehend how the microbiota modulates various complex processes and interactions. This study examined the bacterial composition of Aedes albopictus across land use type and mosquito sex in the state of Selangor, Malaysia using 16S rRNA sequencing. The bacterial community structure in mosquitoes was found to be influenced by land use type and mosquito sex, with the environment and mosquito diet respectively identified to be the most likely sources of microbes. We found that approximately 70% of the microbiota samples were dominated by Wolbachia and removing Wolbachia from analyses revealed the relatively even composition of the remaining bacterial microbiota. Furthermore, microbial interaction network analysis highlighted the prevalence of co-exclusionary patterns in all networks regardless of land use and mosquito sex, with Wolbachia exhibiting co-exclusionary interactions with other residential bacteria such as Xanthomonas, Xenophilus and Zymobacter.
    Matched MeSH terms: Aedes/microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links