Displaying publications 121 - 140 of 702 in total

Abstract:
Sort:
  1. Mah MQ, Kuah MK, Ting SY, Merosha P, Janaranjani M, Goh PT, et al.
    PMID: 30831207 DOI: 10.1016/j.cbpb.2019.01.011
    The capacity of crustaceans to biosynthesise long-chain polyunsaturated fatty acids has yet to be fully defined, due to the lack of evidence on the functional activities of enzymes involved in desaturation or elongation of fatty acid substrates. We report here the cloning and in vitro functional analysis of an elongase from the orange mud crab, Scylla olivacea. Sequence and phylogenetic analysis placed the elovl close to the vertebrate Elovl1 and Elovl7 clade, which is distinct from the other remaining five Elovl families. The elongase was also clustered together with several elongases from crustaceans and insects. This elongase showed activities towards 16:1n-7, and at lower rate, linoleic acid (18:2n-6) and linolenic acid (18:3n-3). To our knowledge this is the first description of a functional enzyme involved in biosynthesis of long-chained polyunsaturated fatty acids in a crustacean species. Expression of the S. olivacea elovl7-like mRNA was prominent in stomach, intestine and gill tissues, due to the need to regulate the permeability of epithelial tissue through modification of fatty acid compositions. The implication of our findings, in terms of ability of Crustacea phylum to biosynthesise polyunsaturated fatty acids is discussed.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Unsaturated
  2. Zadeh-Ardabili PM, Rad SK
    Biotechnol Rep (Amst), 2019 Jun;22:e00341.
    PMID: 31061816 DOI: 10.1016/j.btre.2019.e00341
    Although inflammation is a reactive to injurious stimuli and considered as beneficial process in body, but it causes some discomforts, such as pain. Murine dietary contains appreciable amounts of fatty acids and antioxidants which encourages researchers to focus on their potential therapeutic effects. This study is aimed to examine the analgesic and anti-inflammatory activity of Neptune krill oil (NKO) and fish oil (FO) in rodent model which are two well-known sources of rich content of n-3 polyunsaturated fatty acids (n-3 PUFAs), mostly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). NKO and FO were used at the same dose of 500 mg and also balanced at similar doses of EPA: 12 in NKO vs. 12 in FO wt%, DHA: 7 NKO vs. 8 FO wt%. Application of NKO and FO in acetic acid-induced writhing effect, hot plate, and formalin induced test, indicated the nociceptive activity of the two tested drugs in comparison with normal saline. Also, the anti-inflammatory effect of these supplements was confirmed by carrageenan test. Analysis of cytokines levels in the blood samples of the mice after induction inflammation by carrageenan indicated decreased levels of those proteins compared to that in the normal groups. Both tested drugs, effectively could reduce severe inflammation and pain in rodents in comparison with the references drugs (depends on the tests); however, NKO was found to be more effective.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Omega-3
  3. Ping BTY, Idris CAC, Maurad ZA
    J Oleo Sci, 2020 Oct 07;69(10):1209-1218.
    PMID: 32908090 DOI: 10.5650/jos.ess20045
    Refined red palm olein (RPOo) is the first cooking oil that is a pro-Vitamin A source due to its high carotenoid concentration. The quality specifications from the manufacturers are usually applied to freshly produced oil. However, there is currently no information regarding the oxidative stability and phytonutrient content (Vitamin E and Carotene) for RPOo after prolonged storage time. The objective then is to study the effect of two local storage conditions and storage period(s) on the oxidative stability of RPOo. In this study, peroxide value (PV), p-anisidine value (AnV), induction period (IP), free fatty acid (FFA), and Vitamin E content were determined periodically for twelve months under local storage conditions (supermarket and kitchen). Carotene content, however, was determined only at initial and at the 12th month of storage time periods. It was found that there was an overall progressive but slow increase in PV and p-AnV. For PV, the storage effects were inconsistent. However, the effects were significant (p < 0.01) on the AnV throughout storage. At the end of the 12-months, for both storage conditions, the PV < 10 meq O2 g-1, the AnV < 10, the FFA < 0.2 % (palmitic acid), with a 30% drop in the total Vitamin E, and carotenoids content showed no significant drop (p < 0.01). The PV and AnV were also within Codex Alimentarius' recommended limits. Finally, the oxidative parameters showed that RPOo remains stable after year storage under the two simulated local storage conditions (the aforementioned supermarket and kitchen).
    Matched MeSH terms: Fatty Acids/analysis
  4. Sawitri DR, Mulyono P, Rochmadi, Hisyam A, Budiman A
    J Oleo Sci, 2020 Oct 07;69(10):1297-1305.
    PMID: 32908088 DOI: 10.5650/jos.ess20034
    Oleic acid is a mono-unsaturated fatty acid that can be found abundantly in various vegetable oils and potentially attractive to be used as raw material for epoxide chemical. In-situ epoxidation of oleic acid was conducted in batch reactor using peroxy-formic at 30-60°C. Pseudo-steady-state-hypothesis (PSSH) was applied to develop the kinetic model. Heterogeneous liquid-liquid system was chosen and four models which emphasized on the ring opening agent (ROA) and reversibility of the epoxidation reaction were proposed. It has been suggested that reversible model is well suited to represent the experimental data. Activation energy obtained from Arrhenius equation is in the range of 40-195 kJ/mol.
    Matched MeSH terms: Fatty Acids, Unsaturated/chemistry*
  5. Tan CH, Show PL, Ling TC, Nagarajan D, Lee DJ, Chen WH, et al.
    Bioresour Technol, 2019 Aug;285:121331.
    PMID: 30999192 DOI: 10.1016/j.biortech.2019.121331
    Third generation biofuels, also known as microalgal biofuels, are promising alternatives to fossil fuels. One attractive option is microalgal biodiesel as a replacement for diesel fuel. Chlamydomonas sp. Tai-03 was previously optimized for maximal lipid production for biodiesel generation, achieving biomass growth and productivity of 3.48 ± 0.04 g/L and 0.43 ± 0.01 g/L/d, with lipid content and productivity of 28.6 ± 1.41% and 124.1 ± 7.57 mg/L/d. In this study, further optimization using 5% CO2 concentration and semi-batch operation with 25% medium replacement ratio, enhanced the biomass growth and productivity to 4.15 ± 0.12 g/L and 1.23 ± 0.02 g/L/d, with lipid content and productivity of 19.4 ± 2.0% and 239.6 ± 24.8 mg/L/d. The major fatty acid methyl esters (FAMEs) were palmitic acid (C16:0), oleic acid (C18:1), and linoleic acid (C18:2). These short-chain FAMEs combined with high growth make Chlamydomonas sp. Tai-03 a suitable candidate for biodiesel synthesis.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Volatile
  6. Abdul Hadi N, Marefati A, Matos M, Wiege B, Rayner M
    Carbohydr Polym, 2020 Jul 15;240:116264.
    PMID: 32475554 DOI: 10.1016/j.carbpol.2020.116264
    Acetylated, propionylated and butyrylated rice and quinoa starches at different levels of modification and starch concentrations, were used to stabilize oil-in-water starch Pickering emulsions at 10% oil fraction. Short-chain fatty acid modified starch Pickering emulsions (SPEs) were characterized after emulsification and after 50 days of storage. The particle size distribution, microstructure, emulsion index, and stability were evaluated. An increase in starch concentration led to a decrease of emulsion droplet sizes. Quinoa starch has shown the capability of stabilizing Pickering emulsions in both the native and modified forms. The emulsifying capacity of SPEs was improved by increasing the chain length of SCFA. Modified quinoa starch with higher chain lengths (i.e. propionylated and butyrylated), at higher levels of modification, showed higher emulsion index (>71%) and stability over the entire 50 days storage. At optimized formulation, SCFA-starch particles have the potential in stabilizing emulsions for functional foods, pharmaceutical formulations, or industrial food applications.
    Matched MeSH terms: Fatty Acids, Volatile/chemistry*
  7. Zhang XL, Li GX, Ge YM, Iqbal NM, Yang X, Cui ZD, et al.
    Antonie Van Leeuwenhoek, 2021 Jun;114(6):845-857.
    PMID: 33770293 DOI: 10.1007/s10482-021-01563-1
    During the study into the microbial biodiversity and bioactivity of the Microcystis phycosphere, a new yellow-pigmented, non-motile, rod-shaped bacterium containing polyhydroxybutyrate granules designated as strain Z10-6T was isolated from highly-toxic Microcystis aeruginosa Kützing M.TN-2. The new isolate produces active bioflocculating exopolysaccharides. Phylogenetic analysis based on 16S rRNA gene sequences indicated strain Z10-6T belongs to the genus Sphingopyxis with highest similarity to Sphingopyxis solisilvae R366T (98.86%), and the similarity to other Sphingopyxis members was less than 98.65%. However, both low values obtained by phylogenomic calculation of average nucleotide identity (ANI, 85.5%) and digital DNA-DNA hybridization (dDDH, 29.8%) separated the new species from its closest relative. The main polar lipids were sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified glycolipid and one unidentified aminophospholipid. The predominant fatty acids were summed feature 8, C17:1ω6c, summed feature 3, C16:0, C18:1ω7c 11-methyl and C14:0 2-OH. The respiratory quinone was ubiqunone-10, with spermidine as the major polyamine. The genomic DNA G + C content was 64.8 mol%. Several biosynthesis pathways encoding for potential new bacterial bioactive metabolites were found in the genome of strain Z10-6T. The polyphasic analyses clearly distinguished strain Z10-6T from its closest phylogenetic neighbors. Thus, it represents a novel species of the genus Sphingopyxis, for which the name Sphingopyxis microcysteis sp. nov. is proposed. The type strain is Z10-6T (= CCTCC AB2017276T = KCTC 62492T).
    Matched MeSH terms: Fatty Acids/analysis
  8. Yang Q, Ge YM, Iqbal NM, Yang X, Zhang XL
    Antonie Van Leeuwenhoek, 2021 Jul;114(7):1091-1106.
    PMID: 33895907 DOI: 10.1007/s10482-021-01580-0
    Marine phycosphere harbors unique cross-kingdom associations with enormous ecological significance in aquatic ecosystems as well as relevance for algal biotechnology industry. During our investigating the microbial composition and bioactivity of marine phycosphere microbiota (PM), a novel lightly yellowish and versatile bacterium designated strain AM1-D1T was isolated from cultivable PM of marine dinoflagellate Alexandrium minutum amtk4 that produces high levels of paralytic shellfish poisoning toxins (PSTs). Strain AM1-D1T demonstrates notable bioflocculanting bioactivity with bacterial exopolysaccharides (EPS), and microalgae growth-promoting (MGP) potential toward its algal host. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain AM1-D1T was affiliated to the members of genus Sulfitobacter within the family Rhodobacteraceae, showing the highest sequence similarity of 97.9% with Sulfitobacter noctilucae NB-68T, and below 97.8% with other type strains. The complete genome of strain AM1-D1T consisted of a circular 3.84-Mb chromosome and five circular plasmids (185, 95, 15, 205 and 348 Kb, respectively) with the G+C content of 64.6%. Low values obtained by phylogenomic calculations on the average nucleotide identity (ANI, 77.2%), average amino acid identity (AAI, 74.7%) and digital DNA-DNA hybridization (dDDH, 18.6%) unequivocally separated strain AM1-D1T from its closest relative. The main polar lipids were identified as phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol, one unidentified phospholipid and one unidentified lipid. The predominant fatty acids (> 10%) were C18:1 ω7c, C19:0 cyclo ω8c and C16:0. The respiratory quinone was Q-10. The genome of strain AM1-D1T was predicted to encode series of gene clusters responsible for sulfur oxidation (sox) and utilization of dissolved organic sulfur exometabolites from marine dinoflagellates, taurine (tau) and dimethylsulfoniopropionate (DMSP) (dmd), as well as supplementary vitamin B12 (cob), photosynthesis carotenoids (crt) which are pivotal components during algae-bacteria interactions. Based on the evidences by the polyphasic characterizations, strain AM1-D1T represents a novel species of the genus Sulfitobacter, for which the name Sulfitobacter alexandrii sp. nov. is proposed. The type strain is AM1-D1T (= CCTCC 2017277T = KCTC 62491T).
    Matched MeSH terms: Fatty Acids/analysis
  9. Li R, Cao C, Zheng Z, Yang X, Tan CP, Xu Y, et al.
    Food Funct, 2021 Mar 15;12(5):2020-2031.
    PMID: 33565560 DOI: 10.1039/d0fo02511a
    The consumption of saturated lipids in combination with a sedentary lifestyle increases the risk of obesity and metabolic syndrome. However, the distribution of endogenous fatty acids (FA) after the consumption of saturated lipids and the connection between FA distribution and lipid metabolism-related genes relative expression have not been fully elucidated to date. In this study, we characterized FA profiles in the liver and visceral fats of Sprague Dawley (SD) rats fed with a high-palm-oil diet. The investigation showed that the levels of C16:0 and C18:1 (n-9) increased significantly (P < 0.05) in the liver of the high-palm-oil group (POG), while C16:1 (n-7) and C18:2 (n-6) accumulated markedly (P < 0.05) in the visceral fats of the control group (CN). A correlation analysis indicated a negative correlation between C16:0 and C16:1 (n-7) in the epididymal fat of POG. Our study also demonstrated that the intake of saturated lipids caused changes in lipid metabolism-related gene expression, especially stearoyl-CoA desaturase (SCD), which was upregulated at the third week but was inhibited in the subsequent weeks in the POG liver and perirenal fat. The SCD had a notable positive correlation with C16:1 (n-7) in the POG liver and perirenal fat but a significant negative correlation with C16:0 in the POG epididymal fat. In conclusion, the results of this study indicate that a high-C16:0 diet may result in adaptive SCD expression, and these findings may help to elucidate the effects of dietary fat on lipid metabolism.
    Matched MeSH terms: Fatty Acids/metabolism
  10. Lee YT, Mohd Ismail NI, Wei LK
    PLoS One, 2021;16(1):e0245038.
    PMID: 33439913 DOI: 10.1371/journal.pone.0245038
    BACKGROUND: Ischemic stroke is one of the non-communicable diseases that contribute to the significant number of deaths worldwide. However, the relationship between microbiome and ischemic stroke remained unknown. Hence, the objective of this study was to perform systematic review on the relationship between human microbiome and ischemic stroke.

    METHODS: A systematic review on ischemic stroke was carried out for all articles obtained from databases until 22nd October 2020. Main findings were extracted from all the eligible studies.

    RESULTS: Eighteen eligible studies were included in the systematic review. These studies suggested that aging, inflammation, and different microbial compositions could contribute to ischemic stroke. Phyla Firmicutes and Bacteroidetes also appeared to manipulate post-stroke outcome. The important role of microbiota-derived short-chain fatty acids and trimethylamine N-oxide in ischemic stroke were also highlighted.

    CONCLUSIONS: This is the first systematic review that investigates the relationship between microbiome and ischemic stroke. Aging and inflammation contribute to differential microbial compositions and predispose individuals to ischemic stroke.

    Matched MeSH terms: Fatty Acids, Volatile/metabolism*
  11. Pirian K, Jeliani ZZ, Arman M, Sohrabipour J, Yousefzadi M
    Trop Life Sci Res, 2020 Apr;31(1):1-17.
    PMID: 32963708 DOI: 10.21315/tlsr2020.31.1.1
    Nowadays the exploration and utilisation of food and feed from marine origin is becoming more important with the increase of human population. Macroalgae are rich in nutritious compounds, which can directly be used in human and animal feed industries. The current study presents the screening of chemical components of eight macroalgae species, Sargassum boveanum, Sirophysalis trinodis, Hypnea caroides, Palisda perforata, Galaxaura rugosa, Caulerpa racemose, Caulerpa sertularioides and Bryopsis corticolans from the Persian Gulf. The results revealed that the eight studied algal species possess high protein (14.46% to 38.20%), lipid (1.27% to 9.13%) and ash (15.50% to 49.14%) contents. The fatty acids and amino acids profile showed the presence of essential fatty acids and amino acids with high nutritional value. Phaeophyta species, S. boveanum and S. trinodis, showed the highest value of ash content and polyunsaturated fatty acids while Chlorophyta species, C. racemose, C. sertularioides and B. corticolans, showed the highest level of lipid and protein contents. Rhodophyta species, G. rugosa and P. perforata, showed the highest essential amino acid content. In conclusion, this study demonstrates the potential of the studied marine species as a nutritional source for human and animal uses.
    Matched MeSH terms: Fatty Acids, Essential; Fatty Acids, Unsaturated
  12. Sambanthamurthi R, Rajanaidu N, Hasnah Parman S
    Biochem Soc Trans, 2000 Dec;28(6):769-70.
    PMID: 11171201
    The oil palm mesocarp contains an endogenous lipase which is strongly activated at low temperature. Lipase activity is thus very conveniently assayed by prior exposure of the fruits to low temperature. More than 100 oil palm samples from the germplasm collection of the Palm Oil Research Institute of Malaysia (now known as the Malaysian Palm Oil Board) were screened for non-esterified fatty acid activity using both the low-temperature activation assay and a radioactivity assay. The results showed good correlation between assay procedures. The different samples had a very wide range of lipase activity. Elaeis oleifera samples had significantly lower lipase activity compared with E. guineensis (var. tenera) samples. Even within E. guineensis (var. tenera), there was a wide range of activity. The results confirmed that lipase activity is genotype-dependent. Selection for lipase genotypes is thus possible and this will have obvious commercial value.
    Matched MeSH terms: Fatty Acids, Nonesterified/metabolism*
  13. Ramli US, Baker DS, Quant PA, Harwood JL
    Biochem Soc Trans, 2002 Nov;30(Pt 6):1043-6.
    PMID: 12440968
    Control analysis is a powerful method to quantify the regulation of metabolic pathways. We have applied it to lipid biosynthesis for the first time by using model tissue culture systems from the important oil crops, olive ( Olea europaea L.) and oil palm ( Elaeis guineensis Jacq.). By the use of top-down control analysis, fatty acid biosynthesis has been shown to exert more control than lipid assembly under different experimental conditions. However, both parts of the lipid biosynthetic pathway are important, so that attempts to alter oil yield by manipulating the activity of a single enzyme step are very unlikely to produce significant increases.
    Matched MeSH terms: Fatty Acids/metabolism
  14. Rosmilah M, Shahnaz M, Patel G, Lock J, Rahman D, Masita A, et al.
    Trop Biomed, 2008 Dec;25(3):243-51.
    PMID: 19287364 MyJurnal
    Royal jelly is widely consumed in the community and has perceived benefits ranging from promoting growth in children and improvement of general health status to enhancement of longevity for the elderly. However, royal jelly consumption has been linked to contact dermatitis, acute asthma, anaphylaxis and death. High prevalence of positive skin tests to royal jelly have been reported among atopic populations in countries with a high rate of royal jelly consumption. The present study is aimed to identify the major allergens of royal jelly. Royal jelly extract was separated by sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) and 2-dimensional electrophoresis (2-D). Immunoblotting of the SDS-PAGE and 2-D profiles were performed to identify the allergenic spots. Spots were then excised from the 2-D gel, digested with trypsin and analyzed by mass spectrometry. The SDS-PAGE of royal jelly extract revealed 18 bands between 10 to 167 kD. Western blot of the fractionated proteins detected 15 IgE-binding bands between 14 to 127 kD with seven major allergens of 32, 40, 42, 49, 55, 60 and 67 kD using serum from 53 subjects with royal jelly allergy. The 2-D gel fractionated the royal jelly proteins to more than 50 different protein spots. Out of these, 30 spots demonstrated specific IgE affinity to the sera tested. Eight spots of the major royal jelly allergens were selected for mass-spectrometry analysis. Digested tryptic peptides of the spots were compared to the amino acid sequence search in protein databases which identified the fragments of royal jelly homologus to major royal jelly protein 1 (MRJ1) and major royal jelly protein 2 (MRJ2). In conclusion, the major allergens of royal jelly are MRJ1 and MRJ2 in our patients' population.
    Matched MeSH terms: Fatty Acids/immunology*
  15. Asmah, R., Siti Sumaiyah, S.A., Nurul, S.R.
    MyJurnal
    Omega-3 fatty acids have been shown to reduce the risk of chronic diseases like cardiovascular disease and cancer as well as promote brain development among infants and children. This study was carried out to compare total protein, fat and omega-3 fatty acids content of raw and pressurized fish of P. pangasius (yellowtail catfish) and H. macrura (long tail shad). The fish was cooked using pressure cooker for six minute to be pressurized. The protein content was determined by using Kjedahl method while total fat was determined using solvent extraction using chloroform and methanol. Fatty acid methyl esters (FAME) were prepared by a direct transesterification method, and quantified by gas chromatography using external standard. Results showed that marine fish H. macrura (long tail shad) had higher content (p < 0.05) of protein (18.30 ± 0.040 g/100 g), fat (10.965 ± 1.610 g/100 g), EPA (11.83 ± 0.02 g/100 g) and DHA (5.96 ± 0.31 g/100 g) compared to freshwater fish P. pangasius (yellowtail catfish). The protein content of pressurized fish was higher compare to raw fish, but there was no difference in total fat and omega-3 fatty acids content between raw and pressurized of freshwater fish P. pangasius and marine fish, H. macrura. In conclusion, marine fish are better source of protein, fat and omega-3 content, while pressurized fish shown to have comparable amount of protein, fat and omega-3 fatty acids content with raw fish. The result obtained assist the consumers to prepare a healthy menu in order to retain the protein and omega-3 fatty acids content of fish through healthy way of cooking.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Omega-3
  16. Mohd Fairulnizal, M.N., Norhayati, M.K., Zaiton, A., Norliza, A.H., Rusidah, S., Aswir, A.R., et al.
    MyJurnal
    There is an increase need and demand to update Malaysian Food Composition Database (FCD) which was last updated in 1997. The current FCD program was designed to expand the quantity and improve the quality of the existing database. The present work was aimed to determine the nutrient content of commercial rice products from three rice varieties classified as raw and processed foods, namely Basmati, Siam, and Fragrant rice. A total of six brands from each type of rice were sampled from a local supermarket within Klang Valley. Analyses were carried out for 27 nutrients that include proximate (Energy, Water, Protein, Fat, Carbohydrate, Total Dietary Fibre, and Ash), minerals (Magnesium, Calcium, Sodium, Iron, Zinc, and Copper), water soluble vitamins (C, B1, B2, B3, B6 and B9), fat soluble vitamins (A and E), total sugar, fatty acids (total saturated fat, total monounsaturated fat and total polyunsaturated), trans fatty acids, and cholesterol. The three rice varieties were found to contain comparable nutrient levels except for vitamin C, B1, A, E and total sugar which were not detected in all samples. The fatty acid (total saturated, total monounsaturated, and total polyunsaturated) as well as trans- fatty acid were detected at very low levels. Cholesterol was not detected in all samples. These findings can be utilised in raising public awareness and assistance to better estimate nutrient contents and intake depending on the varieties of rice.
    Matched MeSH terms: Fatty Acids; Trans Fatty Acids
  17. Loo JL, Lai OM, Long K, Ghazali HM
    World J Microbiol Biotechnol, 2007 Dec;23(12):1771-8.
    PMID: 27517833 DOI: 10.1007/s11274-007-9427-2
    Mycelium-bound lipase (MBL) was prepared using a strain of Geotrichum candidum isolated from local soil. At the time of maximum lipase activity (54 h), the mycelia to which the lipase was bound were harvested by filtration and centrifugation. Dry MBL was prepared by lyophilizing the mycelia obtained. The yield of MBL was 3.66 g/l with a protein content of 44.11 mg/g. The lipase activity and specific lipase activity were 22.59 and 510 U/g protein, respectively. The moisture content of the MBL was 3.85%. The activity of free (extracellular) lipase in the culture supernatant (after removal of mycelia) was less than 0.2 U/ml. The MBL showed selectivity for oleic acid over palmitic acid during hydrolysis of palm olein, indicating that the lipase from G. candidum displayed high substrate selectivity for unsaturated fatty acid containing a cis-9 double bond, even in crude form. This unique specificity of MBL could be a direct, simple and inexpensive way in the fats and oil industry for the selective hydrolysis or transesterification of cis-9 fatty acid residues in natural triacylglycerols.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Unsaturated
  18. Chu, W.L., Phang, S.M., Lim, S.L., Teoh, M.L., Wong, C.Y.
    ASM Science Journal, 2009;3(2):178-183.
    MyJurnal
    Chlorella is one of the common microalgae found in a wide range of habitats, including Antarctica. Chlorella UMACC 234 is an interesting isolate in the collection of Antarctic microalgae in the University of Malaya algae culture collection (UMACC) as it grows well at temperatures much higher than the ambience. The alga was isolated from snow samples collected from Casey, Antarctica. This study investigates the influence of nitrogen source on the growth, biochemical composition and fatty acid profile of Chlorella UMACC 234. The cultures were grown in Bold’s Basal Medium with 3.0 mM NaNO3, NH4Cl or urea. The cultures grown on NaNO3 attained the highest specific growth rate (μ = 0.43 day–1) while the specific growth rates of those grown on NH4Cl and urea were not significantly different (p > 0.05). The urea-grown cells produced the highest amounts of lipids (25.7% dry weight) and proteins (52.5% dry weight) compared to those grown on other nitrogen sources. The cell numbers attained by the cultures grown at NaNO3 levels between 0.3 and 3.0 mM were similar but decreased markedly at 9.0 mM NaNO3. The fatty acids of Chlorella UMACC 234 were dominated by saturated fatty acids, especially 16:0 and 18:0. The percentage of polyunsaturated fatty acids was very low, especially in cells grown on urea (0.9% total fatty acids). Characterisation of the growth and biochemical composition of this Antarctic Chlorella is important to our studies on the relationship of Chorella isolates from tropical, temperate and polar regions, especially in terms of phylogeny and stress adaptation.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Unsaturated
  19. Chew SC, Tan CP, Nyam KL
    J Food Sci, 2017 Jul;82(7):1622-1630.
    PMID: 28608553 DOI: 10.1111/1750-3841.13758
    Kenaf seed oil has been suggested to be used as nutritious edible oil due to its unique fatty acid composition and nutritional value. The objective of this study was to optimize the bleaching parameters of the chemical refining process for kenaf seed oil, namely concentration of bleaching earth (0.5 to 2.5% w/w), temperature (30 to 110 °C) and time (5 to 65 min) based on the responses of total oxidation value (TOTOX) and color reduction using response surface methodology. The results indicated that the corresponding response surface models were highly statistical significant (P < 0.0001) and sufficient to describe and predict TOTOX value and color reduction with R2 of 0.9713 and 0.9388, respectively. The optimal parameters in the bleaching stage of kenaf seed oil were: 1.5% w/w of the concentration of bleaching earth, temperature of 70 °C, and time of 40 min. These optimum parameters produced bleached kenaf seed oil with TOTOX value of 8.09 and color reduction of 32.95%. There were no significant differences (P > 0.05) between experimental and predicted values, indicating the adequacy of the fitted models.
    Matched MeSH terms: Fatty Acids/analysis
  20. Kumarn S, Churinthorn N, Nimpaiboon A, Sriring M, Ho CC, Takahara A, et al.
    Langmuir, 2018 10 30;34(43):12730-12738.
    PMID: 30335388 DOI: 10.1021/acs.langmuir.8b02321
    The stabilization mechanism of natural rubber (NR) latex from Hevea brasiliensis was studied to investigate the components involved in base-catalyzed ester hydrolysis, namely, hydrolyzable lipids, ammonia, and the products responsible for the desired phenomenon observed in ammonia-preserved NR latex. Latex stability is generally thought to come from a rubber particle (RP) dispersion in the serum, which is encouraged by negatively charged species distributed on the RP surface. The mechanical stability time (MST) and zeta potential were measured to monitor field latices preserved in high (FNR-HA) and low ammonia (FNR-LA) contents as well as that with the ester-containing components removed (saponified NR) at different storage times. Amounts of carboxylates of free fatty acids (FFAs), which were released by the transformation and also hypothesized to be responsible for the like-charge repulsion of RPs, were measured as the higher fatty acid (HFA) number and corroborated by confocal laser scanning microscopy (CLSM) both qualitatively and quantitatively. The lipids and their FFA products interact differently with Nile red, which is a lipid-selective and polarity-sensitive fluorophore, and consequently re-emit characteristically. The results were confirmed by conventional ester content determination utilizing different solvent extraction systems to reveal that the lipids hydrolyzed to provide negatively charged fatty acid species were mainly the polar lipids (glycolipids and phospholipids) at the RP membrane but not those directly linked to the rubber molecule and, to a certain extent, those suspended in the serum. From new findings disclosed herein together with those already reported, a new model for the Hevea rubber particle in the latex form is proposed.
    Matched MeSH terms: Fatty Acids; Fatty Acids, Nonesterified
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links