Displaying publications 121 - 140 of 731 in total

Abstract:
Sort:
  1. Lindgren AG, Braun RG, Juhl Majersik J, Clatworthy P, Mainali S, Derdeyn CP, et al.
    Int J Stroke, 2021 Apr 26.
    PMID: 33739214 DOI: 10.1177/17474930211007288
    Numerous biological mechanisms contribute to outcome after stroke, including brain injury, inflammation, and repair mechanisms. Clinical genetic studies have the potential to discover biological mechanisms affecting stroke recovery in humans and identify intervention targets. Large sample sizes are needed to detect commonly occurring genetic variations related to stroke brain injury and recovery. However, this usually requires combining data from multiple studies where consistent terminology, methodology, and data collection timelines are essential. Our group of expert stroke and rehabilitation clinicians and researchers with knowledge in genetics of stroke recovery here present recommendations for harmonizing phenotype data with focus on measures suitable for multicenter genetic studies of ischemic stroke brain injury and recovery. Our recommendations have been endorsed by the International Stroke Genetics Consortium.
    Matched MeSH terms: Genetic Variation
  2. Illyaaseen Z, Ngeow YF, Yap SF, Ng HF
    Malays J Pathol, 2021 Apr;43(1):55-61.
    PMID: 33903306
    Candida albicans is an important opportunistic fungal pathogen capable of causing fatal systemic infections in humans. Presently in Malaysia, there is little information available on the genetic diversity of this organism and trends in behavioural characteristics. In this project, three genotyping methods: 25S rDNA genotyping, Alternative Lengthening of Telomerase (ALT) sequence typing and Multi-Locus Sequence Typing (MLST) were applied to study the genetic diversity of strains from infected hospital in-patients and asymptomatic individuals in the community. The results showed that, with the 25S rDNA genotyping, as in other parts of the world, the most common genotype was type A which accounted for approximately 70% of the 111 isolates tested. Further typing with the ALT sequence showed type 3 to be the most common in the isolates tested. MLST analysis revealed many possibly novel sequence types, as well as a statistically significant association between pathogenicity and a group of closely related isolates, most of which were from hospital samples. Further work on genotypes associated with enhanced virulence will help to clarify the value of genotyping for clinical and epidemiological investigations.
    Matched MeSH terms: Genetic Variation
  3. Forcina G, Camacho-Sanchez M, Tuh FYY, Moreno S, Leonard JA
    Heliyon, 2021 Jan;7(1):e05583.
    PMID: 33437884 DOI: 10.1016/j.heliyon.2020.e05583
    Background and aims: Wildlife conservation has focused primarily on species for the last decades. Recently, popular perception and laws have begun to recognize the central importance of genetic diversity in the conservation of biodiversity. How to incorporate genetic diversity in ongoing monitoring and management of wildlife is still an open question.

    Methods: We tested a panel of multiplexed, high-throughput sequenced introns in the small mammal communities of two UNESCO World Heritage Sites on different continents to assess their viability for large-scale monitoring of genetic variability in a spectrum of diverse species. To enhance applicability across other systems, the bioinformatic pipeline for primer design was outlined.

    Results: The number of loci amplified and amplification evenness decreased as phylogenetic distance increased from the reference taxa, yet several loci were still variable across multiple mammal orders.

    Conclusions: Genetic variability found is informative for population genetic analyses and for addressing phylogeographic and phylogenetic questions, illustrated by small mammal examples here.

    Matched MeSH terms: Genetic Variation
  4. Lee SY, Turjaman M, Mohamed R
    Trop Life Sci Res, 2018 Jul;29(2):13-28.
    PMID: 30112138 MyJurnal DOI: 10.21315/tlsr2018.29.2.2
    Indonesia is home to several tree taxa that are harvested for agarwood. This highly valuable oleoresin ironically was the cause for some species to become vulnerable due to gluttonous human activity. However, information on the genetic diversity of these endangered trees is limited. In this study, 28 specimens representing eight species from two genera, Aquilaria and Gyrinops, were collected from ex-situ and in-situ populations in Indonesia. Phylogenetic analysis conducted on DNA sequences of the nuclear ribosomal internal transcribed spacer (ITS) and the trnL-trnF intergenic spacer regions, revealed that Aquilaria and Gyrinops are paraphyletic when Aquilaria cumingiana is excluded. The phylogenetic analysis for ITS and trnL-trnF showed capability to categorise agarwood-producing species based on their regions: East Indonesia and West Indonesia, using Wallace's Line as the divider. In addition, we discuss challenges in species identification and taxonomy of agarwood-producing genera, and their conservation efforts in Indonesia.
    Matched MeSH terms: Genetic Variation
  5. Aida Nazlyn Nazari, Azhar Mohamad, Shuhaimi Shamsudin
    MyJurnal
    Assessing performance and genetic diversity of the wild material of oil palm is important for
    under- standing genetic structure of natural oil palm populations towards improvement of the
    crops. This in-formation is important for oil palm breeding programs, and also for continued exsitu
    conservation of the germplasm and breeding program in Malaysia. Mutation induction is one
    of the approaches in creating variants for selection in the breeding program. In this study, the
    effect of irradiated pollen towards pollen viability, bunches formation and number of
    parthenocarpic fruits were evaluated. Elaies guineensis Jacq. pollens were exposed to series of
    acute gamma radiation at dose 0, 10, 20, 40, 50, 100, 200, 300, 500, 100 and 2000 Gy . Pollen
    viability and pollen tube formation were disrupted in which unable the pollen to reach the ovule.
    At this stage, embryo was aborted towards formation of parthenocarpic fruits and rotten bunches.
    The study suggested that at low levels of irradiation i.e. < 200 Gy, generative nucleus partially
    damage and it is still maintaining capacity of fertilizing the egg cells for hybridization. It is
    important for breeders in understanding this finding towards novel variants of oil palm via
    mutation induction
    Matched MeSH terms: Genetic Variation
  6. Syafawati WU, Zefarina Z, Zafarina Z, Hassan MN, Norazmi MN, Panneerchelvam S, et al.
    Immunohematology, 2016 Dec;32(4):143-160.
    PMID: 28257229
    Matched MeSH terms: Genetic Variation
  7. Bilung, Lesley Maurice, Yong, Sy Fuh, Linang, Velnetti, Benjamin, Adam, Vincent, Micky, Apun, Kasing, et al.
    MyJurnal
    Thirty one Vibrio cholera isolates recovered from cholera outbreak in Bintulu, Sarawak (Malaysia) were detected with the presence of ctx gene by using specific PCR. These isolates were further characterized and differentiated by using the Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-PCR) and BOX-PCR to determine their genomic fingerprints. The specific PCR result confirmed the identities of 27 isolates out of 31 as pathogenic V. cholerae. The ERIC-PCR generated several genetic profiles consisting of 4-6 bands with sizes in the range of 100 to 600 bp, while the BOX-PCR produced profiles numbering 2-7 bands in the sizes between 200 to 1000 bp. Based on the dendrogram generated from the DNA fingerprinting profiles (ERIC-PCR and BOX-PCR), all of the isolates can be divided into 2 main clusters that is further divided into 2 sub-clusters. The low genetic diversity of the isolates indicated the outbreak of V. cholerae in the study area was due to the contamination from a single or few sources of V. cholerae.
    Matched MeSH terms: Genetic Variation
  8. CHEE, F. T., SIAMBUN, M. M., MARIAM A. L.
    MyJurnal
    There is a need to set up a germplasm resource centre or gene bank in Sabah to keep the collections of varieties of locally cultivated crops, especially rice. This is necessary to prevent genetic loss caused by the infrastructure development in the state of Sabah especially when Sabah is known for her rich genetic resources for food and agriculture. This gene bank will play an important role in the conservation of genetic resources especially for future rice crop improvement and development. These collections are known to carry useful gene(s) for crop improvement such as aroma, taste, resistance to insect pests and diseases, and tolerance to abiotic stress. Decades ago, a set of local landrace rice collection were made and conserved at International Rice Research Institute (IRRI) and Malaysia Agriculture Research and Development Institute (MARDI). Besides IRRI and MARDI, local farmers also play an important role as conservationist. Therefore, this study has been carried out to re ne the status of the current genetic diversity in local rice farming. From January 2009 to February 2010, 108 samples were collected from Tuaran and Kota Belud districts. Preliminary observation of 19 samples found that
    there is a high genetic diversity based on seed morphology alone. Variations in the characteristics were detected in awn, apiculus, lemma and palea, sterile lemma and seed coat. Length and width of seeds were measured and calculated for ratio to estimate the shapes of the seeds. The weight of 100 grains ranged from 1.42 to 3.19 g. However, further studies on morphology evaluation, disease screening, and molecular evaluation are needed to be compared with the existing data. In addition, genetic erosion, migration, and drift also need to be studied due to high seed exchanges among the local farmers.
    Matched MeSH terms: Genetic Variation
  9. Yosida TH
    Cytogenet. Cell Genet., 1977;18(3):149-59.
    PMID: 862437
    Supernumerary chromosomes have been examined in 352 black rats, covering three geographic variants, by use of conventional and C-band staining techniques. Metacentric supernumerary chromosomes, one to three in number, were found in Malayan black rats (Rattus rattus diardii), with 2n=42, in Indian black rats (R. rattus rufescens), with 2n=38, and in Ceylonese black rats (R. rattus kandianus), with 2n=40. The supernumeraries had similar morphology and stained heavily along their entire length by C-band staining. These findings suggested that the supernumeraries had originally developed in the Asian-type black rats and then were sequentially transmitted to the Ceylonese and Oceanian-type black rats, probably in southwestern Asia. A subtelocentric supernumerary chromosome found in one Japanese black rat seemed to have developed independently from the above metacentric supernumeraries.
    Matched MeSH terms: Genetic Variation
  10. Chiew, Miao Si, Lai, Kok Song, Sobri Hussein, Janna Ong Abdullah
    MyJurnal
    Stevia rebaudiana Bertoni in the Asteraceae family is commercially valuable and cultivated throughout the world due to the great demand for its steviol glycosides (SGs) contents particularly rebaudioside A. Previous studies confirmed that maximal content of SGs in stevia was achieved at or just before flowering, and delayed flowering with long days provide longer duration for steviol glycosides accumulation. However, there is no suitable stevia variety to be cultivated in Malaysia due to her short day length. Mutation induction, including gamma irradiation, had been shown to be useful for generating genetic variations as well as developing new plant varieties from which desired mutants were successfully selected. The use of mutagens, both physical and chemical, has helped in creating mutants that expressed the selected desirable traits. This paper presents some selected essential data available in extant scientific studies on stevia with the focus on application of gamma irradiation on stevia. Both established achievements and recent publications of gamma radiation on stevia were reviewed. Emphasis is on the exceptional potential of stevia through induced mutation approach especially by using gamma rays.
    Matched MeSH terms: Genetic Variation
  11. Barkman TJ, Klooster MR, Gaddis KD, Franzone B, Calhoun S, Manickam S, et al.
    Am J Bot, 2017 09;104(9):1382-1389.
    PMID: 29885244 DOI: 10.3732/ajb.1700117
    PREMISE OF THE STUDY: Partitioning of population genetic variation in plants may be affected by numerous factors including life history and dispersal characteristics. In parasitic plants, interactions with host populations may be an additional factor influencing partitioning. To test for hierarchical population genetic patterns related to obligate endoparasitism, we studied three species of Rafflesiaceae, which grow as extremely reduced endophytes infecting Tetrastigma vines in Southeast Asia.

    METHODS: Microsatellite markers were developed and multilocus genotypes were determined for Rafflesia cantleyi, Rafflesia tuan-mudae, and Sapria himalayana and each of their Tetrastigma hosts. Relatedness among parasite individuals was estimated, and AMOVAs were used to determine levels of population genetic subdivision.

    KEY RESULTS: Microsatellite genotypes for 340 paired parasite and host samples revealed that host vines were infected by numerous Rafflesiaceae individuals that may spread for up to 14 m within stem tissues. Surprisingly, Rafflesiaceae parasites within a given host are significantly more closely related to each other than individuals of the same species in other host individuals. The pattern of hierarchical population genetic subdivision we detected across species is likely due to limited seed dispersal with reinfection of natal host vines.

    CONCLUSIONS: These findings demonstrate common population genetic patterns between animal and plant parasites, potentially indicating advantages of close relatives infecting hosts. This study also has important conservation implications for Rafflesiaceae since our data suggest that destruction of a single infected host vine could result in large genetic losses.

    Matched MeSH terms: Genetic Variation
  12. Leaw CP, Tan TH, Lim HC, Teng ST, Yong HL, Smith KF, et al.
    Harmful Algae, 2016 05;55:137-149.
    PMID: 28073527 DOI: 10.1016/j.hal.2016.02.010
    In this study, inter- and intraspecific genetic diversity within the marine harmful dinoflagellate genus Coolia Meunier was evaluated using isolates obtained from the tropics to subtropics in both Pacific and Atlantic Ocean basins. The aim was to assess the phylogeographic history of the genus and to clarify the validity of established species including Coolia malayensis. Phylogenetic analysis of the D1-D2 LSU rDNA sequences identified six major lineages (L1-L6) corresponding to the morphospecies Coolia malayensis (L1), C. monotis (L2), C. santacroce (L3), C. palmyrensis (L4), C. tropicalis (L5), and C. canariensis (L6). A median joining network (MJN) of C. malayensis ITS2 rDNA sequences revealed a total of 16 haplotypes; however, no spatial genetic differentiation among populations was observed. These MJN results in conjunction with CBC analysis, rDNA phylogenies and geographical distribution analyses confirm C. malayensis as a distinct species which is globally distributed in the tropical to warm-temperate regions. A molecular clock analysis using ITS2 rDNA revealed the evolutionary history of Coolia dated back to the Mesozoic, and supports the hypothesis that historical vicariant events in the early Cenozoic drove the allopatric differentiation of C. malayensis and C. monotis.
    Matched MeSH terms: Genetic Variation
  13. Hanafiah A, Lopes BS
    Infect Genet Evol, 2020 Mar;78:104135.
    PMID: 31837482 DOI: 10.1016/j.meegid.2019.104135
    Helicobacter pylori is the most predominant bacterium in almost 50% of the world's population and colonization causes a persistent inflammatory response leading to chronic gastritis. It shows high genetic diversity and individuals generally harbour a distinct bacterial population. With the advancement of whole-genome sequencing technology, new H. pylori subpopulations have been identified that show admixture between various H. pylori strains. Genotypic variation of H. pylori may be related to the presence of virulence factors among strains and is associated with different outcomes of infection in different individuals. This review summarizes the genetic diversity in H. pylori strain populations and its virulence characteristics responsible for variable outcomes in different ethnic groups.
    Matched MeSH terms: Genetic Variation
  14. Midot F, Lau SYL, Wong WC, Tung HJ, Yap ML, Lo ML, et al.
    Microorganisms, 2019 Oct 16;7(10).
    PMID: 31623251 DOI: 10.3390/microorganisms7100464
    Ganoderma boninense causes basal stem rot (BSR) and is responsible for substantial economic losses to Southeast Asia's palm oil industry. Sarawak, a major producer in Malaysia, is also affected by this disease. Emergence of BSR in oil palm planted on peat throughout Sarawak is alarming as the soil type was previously regarded as non-conducive. Phylogenetic analysis indicated a single species, G. boninense as the cause of BSR in Sarawak. Information on evolutionary and demographic history for G. boninense in Sarawak inferred through informative genes is lacking. Hence, a haplotype study on single nucleotide polymorphisms in internal transcribed spacers (SNPs-ITS) of G. boninense was carried out. Sequence variations were analysed for population structure, phylogenetic and phylogeographic relationships. The internal transcribed spacers (ITS) region of 117 isolates from four populations in eight locations across Sarawak coastal areas revealed seven haplotypes. A major haplotype, designated GbHap1 (81.2%), was found throughout all sampling locations. Single nucleotide polymorphisms were observed mainly in the ITS1 region. The genetic structure was not detected, and genetic distance did not correlate with geographical distance. Haplotype network analysis suggested evidence of recent demographic expansion. Low genetic differences among populations also suggested that these isolates belong to a single G. boninense founder population adapting to oil palm as the host.
    Matched MeSH terms: Genetic Variation
  15. Noorhariza Mohd Zaki, Rozana Rosli, Ting NC, Singh R, Ismanizan Ismail
    Ten Elaeis oleifera microsatellite markers were developed and characterised from 1500 sequences of the E. oleifera genomic library. The markers were utilised to assess the genetic diversity of E. oleifera germplasm collections from four South American countries (Colombia, Costa Rica, Panama and Honduras). The number of alleles per-locus varied from 2 to 11 and the observed and expected heterozygosity ranged from 0.0685 to 0.9853 and 0.1393 to 0.8216 respectively. Majority of the markers showed transferability to Elaeis guineensis while two markers showed transferability across Arecaceae taxa. These E. oleifera microsatellite markers are expected to become useful tools to determine the population structure and conservation of E. oleifera populations.
    Matched MeSH terms: Genetic Variation
  16. Gunter NV, Yap BJM, Chua CLL, Yap WH
    Front Genet, 2019;10:395.
    PMID: 31130981 DOI: 10.3389/fgene.2019.00395
    Psoriasis is multifactorial disease with complex genetic predisposition. Recent advances in genetics and genomics analyses have provided many insights into the relationship between specific genetic predisposition and the immunopathological mechanisms driving psoriasis manifestation. Novel approaches which utilize array-based genotyping technologies such as genome-wide association studies and bioinformatics tools for transcriptomics analysis have identified single nucleotide polymorphisms, genes and pathways that are associated with psoriasis. The discovery of these psoriasis-associated susceptibility loci, autoimmune targets and altered signaling pathways have provided opportunities to bridge the gap of knowledge from sequence to consequence, allowing new therapeutic strategies for the treatment of psoriasis to be developed. Here, we discuss recent advances in the field by highlighting how immune functions associated with psoriasis susceptibility loci may contribute to disease pathogenesis in different populations. Understanding the genetic variations in psoriasis and how these may influence the immunological pathways to cause disease will contribute to the efforts in developing novel and targeted personalized therapies for psoriasis patients.
    Matched MeSH terms: Genetic Variation
  17. Fazeli-Nasab B, Sayyed RZ, Farsi M, Ansari S, El-Enshasy HA
    Physiol Mol Biol Plants, 2020 Jan;26(1):107-117.
    PMID: 32158124 DOI: 10.1007/s12298-019-00732-x
    Mango (Mangifera indica) is one of the most important tropical fruits in the world. Twenty-two genotypes of native mangoes from different regions of southern Iran (Hormozgan and Kerman) were collected and analyzed for the ribosomal genes. GC content was found to be 55.5%. Fu and Li's D* test statistic (0.437), Fu and Li's F* test statistic (0.500) and Tajima's D (1.801) were positive and nonsignificant. A total of 769 positions were identified (319 with insertion or deletion including 250 polymorphic and 69 monomorphic loci; 450 loci without any insertion or deletion including 35 Singletons and 22 haplotypes). Nucleotide diversity of 0.309 and a high genetic differentiation including Chi square of 79.8; P value of 0.3605 and df value of 76 was observed among mango genotypes studied. The numerical value of the ratio dN/dS (0.45) indicated a pure selection in the examined gene and the absence of any key changes. Cluster analysis differentiated the mango used in this research (M. indica L.) into two genotypes but could not differentiate their geographical locations. The results of this study indicated that a high genetic distance exists between HajiGholam (Manojan) and Arbabi (Rodan) genotypes and showed higher genetic diversity in mango of Rodan region. Results of present study suggested that for successful breeding, the genotypes of Rodan region mango especially Arbabi mango can be used as a gene donor and ITS can be a suitable tool for genetic evaluations of inter and intra species.
    Matched MeSH terms: Genetic Variation
  18. John JL, Mori D, Amit LN, Mosiun AK, Chin AZ, Ahmed K
    J Clin Virol, 2021 10;143:104968.
    PMID: 34509928 DOI: 10.1016/j.jcv.2021.104968
    Globally, norovirus (NoV) has become one of the important causes of acute gastroenteritis (AGE) in children. It is responsible for death of children younger than 5 years in developing countries. Although there is limited information and the rate of child mortality caused by diarrhea is low in Malaysia, the burden of diarrhea is high, especially in Sabah. NoV GI, GII and GIV genogroups are known to infect humans, and GII.4 is the predominant genotype distributed worldwide. Better understanding of the etiology of NoV will help to inform policies for prevention and control. The aim of this study was to determine the burden and genotype distribution of NoV in children younger than 5 years with AGE who attended health-care facilities in Sabah, Malaysia. Diarrhea stool samples were collected from 299 children with AGE and NoV was detected by amplifying the capsid and RNA-dependent RNA polymerase gene and reverse transcription-polymerase chain reaction (RT-PCR) analysis. Nucleotide sequencing of the amplicons was used for genotypes and phylogenetic analyses . NoV-positive stool samples were found in 17.7% (53/299) among which 13/53 (24.5%), 38/53 (71.7%), and 2/53 (3.8%) identified as NoV GI, GII and combination of GI and GII, respectively. The most common genotypes were GII.3 [P12] (80%) followed by GII.6 [P7] (13.3%), and GII.17 [P17] (6.7%). In the phylogenetic tree, all Sabahan NoV samples were shown to share ancestry with their respective genotype from predominantly East Asian countries and to some extent Australia and Europe. However, the Sabahan strains formed independent clusters with significant bootstrap values, indicating a clonal spread after the strains had entered Sabah.
    Matched MeSH terms: Genetic Variation
  19. Lim HC, Habib A, Chen WJ
    Genes (Basel), 2021 11 29;12(12).
    PMID: 34946874 DOI: 10.3390/genes12121926
    A broad-scale comparative phylogeographic and phylogenetic study of pennah croakers, mainly Pennahia anea, P. macrocephalus, and P. ovata was conducted to elucidate the mechanisms that may have driven the diversification of marine organisms in Southeast Asian waters. A total of 316 individuals from the three species, and an additional eight and six individuals of P. argentata and P. pawak were employed in this study. Two genetically divergent lineages each of P. argentata and P. anea (lineages L1 and L2) were respectively detected from the analyses based on mitochondrial cytochrome b gene data. Historical biogeography analysis with a multi-gene dataset revealed that Pennahia species most likely originated in the South China Sea and expanded into the eastern Indian Ocean, East China Sea, and northwestern Pacific Ocean through three separate range expansions. The main diversifications of Pennahia species occurred during Miocene and Pliocene periods, and the occurrences of lineage divergences within P. anea and P. argentata were during the Pleistocene, likely as a consequence of cyclical glaciations. The population expansions that occurred after the sea level rise might be the reason for the population homogeneity observed in P. macrocephalus and most P. anea L2 South China Sea populations. The structure observed between the two populations of P. ovata, and the restricted distributions of P. anea lineage L1 and P. ovata in the eastern Indian Ocean, might have been hampered by the northward flowing ocean current at the Malacca Strait and by the distribution of coral reefs or rocky bottoms. While our results support S. Ekman's center-of-origin hypothesis taking place in the South China Sea, the Malacca Strait serving as the center of overlap is a supplementary postulation for explaining the present-day high diversity of pennah croakers centered in these waters.
    Matched MeSH terms: Genetic Variation
  20. Attah AO, Sanggari A, Li LI, Nik Him NAII, Ismail AH, Meor Termizi FH
    Parasitol Res, 2023 Jan;122(1):1-10.
    PMID: 36434314 DOI: 10.1007/s00436-022-07731-0
    There has been increasing interest in the study of Blastocystis in the last two decades. Many studies have been carried out in human and animal hosts including environmental sources, but there is little or no information on the occurrence of Blastocystis in water sources worldwide. Therefore, this study aimed at assessing the occurrence of Blastocystis in water sources across the world from 2005 to 2022, noting the method of detection and the distribution of the subtypes from various water sources. A literature search was performed on internet-based databases including Google search, PubMed, Scopus, and Web of Science. Upon application of the criteria for inclusion, 25 articles revealing the occurrence of Blastocystis in water sources in 15 countries were included in the review. Blastocystis occurrence varies across water sources ranging from 0% in a drinking water source in Venezuela to 100% in rivers; well water, stored water, and fishpond in Nepal and Malaysia; and fountain water, irrigation water, and rainwater in Italy, Spain, and Thailand. The occurrence of the parasite was significantly associated with the coliform count, temperature, conductivity, dissolved oxygen, turbidity, total dissolved solids, and chemical oxygen demand. A total of 11 Blastocystis subtypes were identified in water sources worldwide, namely, ST1-ST8, ST10, ST23, and ST26 in which ST1 and ST3 were the most prevalent subtypes. Considering the importance of Blastocystis as a waterborne parasite, the subtype distribution and morphological distinction in water sources need to be carried out using molecular and electron microscopic techniques. Existing studies have covered only about 10% of the world's countries.
    Matched MeSH terms: Genetic Variation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links