Displaying publications 121 - 140 of 256 in total

Abstract:
Sort:
  1. Ahmad NA, Mohamed Zulkifli R, Hussin H, Nadri MH
    J Mol Graph Model, 2021 06;105:107872.
    PMID: 33765525 DOI: 10.1016/j.jmgm.2021.107872
    Aptamers are short oligonucleotides that possess high specificity and affinity against their target. Generated via Systematic Evolution of Ligands by Exponential Enrichment, (SELEX) in vitro, they were screened and enriched. This review covering the study utilizing bioinformatics tools to analyze primary sequence, secondary and tertiary structure prediction, as well as docking simulation for various aptamers and their ligand interaction. Literature was pooled from Web of Science (WoS) and Scopus databases until December 18, 2020 using specific search string related to DNA aptamers, in silico, structure prediction, and docking simulation. Out of 330 published articles, 38 articles were assessed in the analysis based on the predefined inclusion and exclusion criteria. It was found that Mfold and RNA Composer web server is the most popular tool in secondary and tertiary structure prediction of DNA aptamers, respectively. Meanwhile, in docking simulation, ZDOCK and AutoDock are preferred to analyze binding interaction in the aptamer-ligand complex. This review reports a brief framework of recent developments of in silico approaches that provide predictive structural information of ssDNA aptamer.
    Matched MeSH terms: Ligands
  2. Shiekh RA, Malik MA, Al-Thabaiti SA, Wani MY, Nabi A
    ScientificWorldJournal, 2014;2014:404617.
    PMID: 24772018 DOI: 10.1155/2014/404617
    2-Phenyl-N,N'-bis(pyridin-4-ylcarbonyl)butanediamide ligand with a series of transition metal complexes has been synthesized via two routes: microwave irradiation and conventional heating method. Microwave irritation method happened to be the efficient and versatile route for the synthesis of these metal complexes. These complexes were found to have the general composition M(L)Cl2/M(L)(CH3COO)2 (where M = Cu(II), Co(II), Ni(II), and L = ligand). Different physical and spectroscopic techniques were used to investigate the structural features of the synthesized compounds, which supported an octahedral geometry for these complexes. In vitro antifungal activity of the ligand and its metal complexes revealed that the metal complexes are highly active compared to the standard drug. Metal complexes showed enhanced activity compared to the ligand, which is an important step towards the designing of antifungal drug candidates.
    Matched MeSH terms: Ligands
  3. Ramesh M, Muthuraman A
    Curr Top Med Chem, 2021;21(32):2856-2868.
    PMID: 34809547 DOI: 10.2174/1568026621666211122161932
    Neuropathic pain occurs due to physical damage, injury, or dysfunction of neuronal fibers. The pathophysiology of neuropathic pain is too complex. Therefore, an accurate and reliable prediction of the appropriate hits/ligands for the treatment of neuropathic pain is a challenging process. However, computer-aided drug discovery approaches contributed significantly to discovering newer hits/ligands for the treatment of neuropathic pain. The computational approaches like homology modeling, induced-fit molecular docking, structure-activity relationships, metadynamics, and virtual screening were cited in the literature for the identification of potential hit molecules against neuropathic pain. These hit molecules act as inducible nitric oxide synthase inhibitors, FLAT antagonists, TRPA1 modulators, voltage-gated sodium channel binder, cannabinoid receptor-2 agonists, sigma-1 receptor antagonists, etc. Sigma-1 receptor is a distinct type of opioid receptor and several patents were obtained for sigma-1 receptor antagonists for the treatment of neuropathic pain. These molecules were found to have a profound role in the management of neuropathic pain. The present review describes the validated therapeutic targets, potential chemical scaffolds, and crucial protein-ligand interactions for the management of neuropathic pain based on the recently reported computational methodologies of the present and past decades. The study can help the researcher to discover newer drugs/drug-like molecules against neuropathic pain.
    Matched MeSH terms: Ligands
  4. Rahman ML, Fui CJ, Ting TX, Sarjadi MS, Arshad SE, Musta B
    Polymers (Basel), 2020 Oct 29;12(11).
    PMID: 33137923 DOI: 10.3390/polym12112521
    Industrial operations, domestic and agricultural activities worldwide have had major problems with various contaminants caused by environmental pollution. Heavy metal pollution in wastewater also a prominent issue; therefore, a well built and economical treatment technology is demanded for pollution-free wastewater. The present work emphasized pure cellulose extracted from jute fiber and further modification was performed by a free radical grafting reaction, which resulted in poly(methyl acrylate) (PMA)-grafted cellulose and poly(acrylonitrile)-grafted cellulose. Subsequently, poly(hydroxamic acid) and poly(amidoxime) ligands were prepared from the PMA-grafted cellulose and PAN-grafted cellulose, respectively. An adsorption study was performed using the desired ligands with heavy metals such as copper, cobalt, chromium and nickel ions. The binding capacity (qe) with copper ions for poly(hydroxamic acid) is 352 mg g-1 whereas qe for poly(amidoxime) ligand it was exhibited as 310 mg g-1. Other metal ions (chromium, cobalt and nickel) show significance binding properties at pH 6. The Langmuir and Freundlich isotherm study was also performed. The Freundlich isotherm model showed good correlation coefficients for all metal ions, indicating that multiple-layers adsorption was occurred by the polymer ligands. The reusability was evaluated and the adsorbents can be reused for 7 cycles without significant loss of removal performance. Both ligands showed outstanding metals removal capacity from the industrial wastewater as such 98% of copper can be removed from electroplating wastewater and other metals (cobalt, chromium, nickel and lead) can also be removed up to 90%.
    Matched MeSH terms: Ligands
  5. Abdusalam AAA, Murugaiyah V
    Front Mol Biosci, 2020;7:603037.
    PMID: 33392261 DOI: 10.3389/fmolb.2020.603037
    The rapid outbreak of Coronavirus Disease 2019 (COVID-19) that was first identified in Wuhan, China is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The 3CL protease (3CLpro) is the main protease of the SARS-CoV-2, which is responsible for the viral replication and therefore considered as an attractive drug target since to date there is no specific and effective vaccine available against this virus. In this paper, we reported molecular docking-based virtual screening (VS) of 2000 compounds obtained from the ZINC database and 10 FDA-approved (antiviral and anti-malaria) on 3CLpro using AutoDock Vina to find potential inhibitors. The screening results showed that the top four compounds, namely ZINC32960814, ZINC12006217, ZINC03231196, and ZINC33173588 exhibited high affinity at the 3CLpro binding pocket. Their free energy of binding (FEB) were -12.3, -11.9, -11.7, and -11.2 kcal/mol while AutoDock Vina scores were -12.61, -12.32, -12.01, and -11.92 kcal/mol, respectively. These results were better than the co-crystallized ligand N3, whereby its FEB was -7.5 kcal/mol and FDA-approved drugs. Different but stable interactions were obtained between the four identified compounds with the catalytic dyad residues of the 3CLpro. In conclusion, novel 3CLpro inhibitors from the ZINC database were successfully identified using VS and molecular docking approach, fulfilling the Lipinski rule of five, and having low FEB and functional molecular interactions with the target protein. The findings suggests that the identified compounds may serve as potential leads that act as COVID-19 3CLpro inhibitors, worthy for further evaluation and development.
    Matched MeSH terms: Ligands
  6. Chow YW, Pietranico R, Mukerji A
    Biochem Biophys Res Commun, 1975 Oct 27;66(4):1424-31.
    PMID: 6
    Matched MeSH terms: Ligands
  7. Noruddin NAA, Hamzah MF, Rosman Z, Salin NH, Shu-Chien AC, Muhammad TST
    Molecules, 2021 May 03;26(9).
    PMID: 34063700 DOI: 10.3390/molecules26092682
    Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.
    Matched MeSH terms: Ligands
  8. Agatonovic-Kustrin S, Kettle C, Morton DW
    Biomed Pharmacother, 2018 Oct;106:553-565.
    PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147
    An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
    Matched MeSH terms: Ligands
  9. Mahmod Al-Qattan MN, Mordi MN
    Curr Pharm Des, 2019;25(7):817-831.
    PMID: 30834826 DOI: 10.2174/1381612825666190304122624
    Modulating cellular processes through extracellular chemical stimuli is medicinally an attractive approach to control disease conditions. GPCRs are the most important group of transmembranal receptors that produce different patterns of activations using intracellular mediators (such as G-proteins and Beta-arrestins). Adenosine receptors (ARs) belong to GPCR class and are divided into A1AR, A2AAR, A2BAR and A3AR. ARs control different physiological activities thus considered valuable target to control neural, heart, inflammatory and other metabolic disorders. Targeting ARs using small molecules essentially works by binding orthosteric and/or allosteric sites of the receptors. Although targeting orthosteric site is considered typical to modulate receptor activity, allosteric sites provide better subtype selectivity, saturable modulation of activity and variable activation patterns. Each receptor exists in dynamical equilibrium between conformational ensembles. The equilibrium is affected by receptor interaction with other molecules. Changing the population of conformational ensembles of the receptor is the method by which orthosteric, allosteric and other cellular components control receptor signaling. Herein, the interactions of ARs with orthosteric, allosteric ligands as well as intracellular mediators are described. A quinary interaction model for the receptor is proposed and energy wells for major conformational ensembles are retrieved.
    Matched MeSH terms: Ligands
  10. Al-Qattan MNM, Mordi MN
    J Mol Model, 2023 Aug 16;29(9):281.
    PMID: 37584781 DOI: 10.1007/s00894-023-05650-0
    CONTEXT: Modulation of disease progression is frequently started by identifying biochemical pathway catalyzed by biomolecule that is prone to inhibition by small molecular weight ligands. Such ligands (leads) can be obtained from natural resources or synthetic libraries. However, de novo design based on fragments assembly and optimization is showing increasing success. Plasmodium falciparum parasite depends on glutathione-S-transferase (PfGST) in buffering oxidative heme as an approach to resist some antimalarials. Therefore, PfGST is considered an attractive target for drug development. In this research, fragment-based approaches were used to design molecules that can fit to glutathione (GSH) binding site (G-site) of PfGST.

    METHODS: The involved approaches build molecules from fragments that are either isosteric to GSH sub-moieties (ligand-based) or successfully docked to GSH binding sub-pockets (structure-based). Compared to reference GST inhibitor of S-hexyl GSH, ligands with improved rigidity, synthetic accessibility, and affinity to receptor were successfully designed. The method involves joining fragments to create ligands. The ligands were then explored using molecular docking, Cartesian coordinate's optimization, and simplified free energy determination as well as MD simulation and MMPBSA calculations. Several tools were used which include OPENEYE toolkit, Open Babel, Autodock Vina, Gromacs, and SwissParam server, and molecular mechanics force field of MMFF94 for optimization and CHARMM27 for MD simulation. In addition, in-house scripts written in Matlab were used to control fragments connection and automation of the tools.

    Matched MeSH terms: Ligands
  11. Noh MAA, Fazalul Rahiman SS, A Wahab H, Mohd Gazzali A
    J Basic Clin Physiol Pharmacol, 2021 Jun 25;32(4):715-722.
    PMID: 34214294 DOI: 10.1515/jbcpp-2020-0435
    OBJECTIVES: Tuberculosis (TB) remains a public health concern due to the emergence and evolution of multidrug-resistant strains. To overcome this issue, reinforcing the effectiveness of first line antituberculosis agents using targeted drug delivery approach is an option. Glyceraldehyde-3-Phosphate Dehydrogenase (GADPH), a common virulence factor found in the pathogenic microorganisms has recently been discovered on the cell-surface of Mycobacterium tuberculosis, allowing it to be used as a drug target for TB. This study aims to discover active small molecule(s) that target GAPDH and eventually enhance the delivery of antituberculosis drugs.

    METHODS: Ten ligands with reported in vitro and/or in vivo activities against GAPDH were evaluated for their binding interactions through molecular docking studies using AutoDock 4.2 program. The ligand with the best binding energy was then modified to produce 10 derivatives, which were redocked against GAPDH using previous protocols. BIOVIA Discovery Studio Visualizer 2019 was used to explore the ligand-receptor interactions between the derivatives and GAPDH.

    RESULTS: Among the 10 ligands, curcumin, koningic acid and folic acid showed the best binding energies. Further analysis on the docking of two folic acid derivatives, F7 (γ-{[tert-butyl-N-(6-aminohexyl)]carbamate}folic acid) and F8 (folic acid N-hydroxysuccinimide ester) showed that the addition of a bulky substituent at the carboxyl group of the glutamic acid subcomponent resulted in improved binding energy.

    CONCLUSIONS: Folic acid and the two derivatives F7 and F8 have huge potentials to be developed as targeting agents against the GAPDH receptor. Further study is currently on-going to evaluate the effectiveness of these molecules in vitro.

    Matched MeSH terms: Ligands
  12. Khuzaimah Arifin, Wan Ramli Wan Daud, Mohammad B. Kassim
    Sains Malaysiana, 2014;43:95-101.
    A novel bimetallic double thiocyanate-bridged ruthenium and tungsten metal complex containing bipyridyl and dithiolene co-ligands was synthesized and the behavior of the complex as a dye-sensitizer for a photoelectrochemical (PEG) cell for a direct water splitting reaction was investigated. The ligands and metal complexes were characterized on the basis of elemental analysis as well as uv-Vis, Fourier transform infrared ( Pim) and nuclear magnetic resonance (11I and 13C NMR) spectroscopy. Cyclic voltammetry of the bimetallic complex showed multiple redox couples, in which half potentials E 112 at 0 .625 , 0.05 and 0.61 V were assigned as the formal redox processes of Ru(III)IRu(II) reduction, W(IV)IW(V) and W(V)IW(VI) oxidations, respectively. Photocurrent measurements were performed in homogeneous system and TiO2 was used as the photoanode for photocurrent measurements. Current density generated by the bimetallic complex was higher than that of N3 commercial dye which suggested that the bimetallic complex donated more electrons to the semiconductor.
    Matched MeSH terms: Ligands
  13. Govender N, Zulkifli NS, Badrul Hisham NF, Ab Ghani NS, Mohamed-Hussein ZA
    PeerJ, 2022;10:e14168.
    PMID: 36518265 DOI: 10.7717/peerj.14168
    BACKGROUND: Pea eggplant (Solanum torvum Swartz) commonly known as turkey berry or 'terung pipit' in Malay is a vegetable plant widely consumed by the local community in Malaysia. The shrub bears pea-like turkey berry fruits (TBFs), rich in phytochemicals of medicinal interest. The TBF phytochemicals hold a wide spectrum of pharmacological properties. In this study, the TBF phytochemicals' potential inhibitory properties were evaluated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of the Coronavirus disease 2019 (COVID-19). The TBF polyphenols were screened against SARS-CoV receptors via molecular docking and the best receptor-ligand complex was validated further by molecular dynamics (MD) simulation.

    METHOD: The SARS-CoV receptor structure files (viral structural components) were retrieved from the Protein Data Bank (PDB) database: membrane protein (PDB ID: 3I6G), main protease (PDB ID: 5RE4), and spike glycoproteins (PDB ID: 6VXX and 6VYB). The receptor binding pocket regions were identified by Discovery Studio (BIOVIA) for targeted docking with TBF polyphenols (genistin, kaempferol, mellein, rhoifolin and scutellarein). The ligand and SARS-CoV family receptor structure files were pre-processed using the AutoDock tools. Molecular docking was performed with the Lamarckian genetic algorithm using AutoDock Vina 4.2 software. The best pose (ligand-receptor complex) from the molecular docking analysis was selected based on the minimum binding energy (MBE) and extent of structural interactions, as indicated by BIOVIA visualization tool. The selected complex was validated by a 100 ns MD simulation run using the GROMACS software. The dynamic behaviour and stability of the receptor-ligand complex were evaluated by the root mean square displacement (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), solvent accessible surface volume (SASV) and number of hydrogen bonds.

    RESULTS: At RMSD = 0, the TBF polyphenols showed fairly strong physical interactions with SARS-CoV receptors under all possible combinations. The MBE of TBF polyphenol-bound SARS CoV complexes ranged from -4.6 to -8.3 kcal/mol. Analysis of the structural interactions showed the presence of hydrogen bonds, electrostatic and hydrophobic interactions between the receptor residues (RR) and ligands atoms. Based on the MBE values, the 3I6G-rhoifolin (MBE = -8.3 kcal/mol) and 5RE4-genistin (MBE = -7.6 kcal/mol) complexes were ranked with the least value. However, the latter showed a greater extent of interactions between the RRs and the ligand atoms and thus was further validated by MD simulation. The MD simulation parameters of the 5RE4-genistin complex over a 100 ns run indicated good structural stability with minimal flexibility within genistin binding pocket region. The findings suggest that S. torvum polyphenols hold good therapeutics potential in COVID-19 management.

    Matched MeSH terms: Ligands
  14. Raih MF, Ahmad S, Zheng R, Mohamed R
    Biophys Chem, 2005 Apr 1;114(1):63-9.
    PMID: 15792862
    A non-redundant database of 4536 structural domains, comprising more than 790,000 residues, has been used for the calculation of their solvent accessibility in the native protein environment and then in the isolated domain environment. Nearly 140,000 (18%) residues showed a change in accessible surface area in the above two conditions. General features of this change under these two circumstances have been pointed out. Propensities of these interfacing amino acid residues have been calculated and their variation for different secondary structure types has been analyzed. Actual amount of surface area lost by different secondary structures is higher in the case of helix and strands compared to coil and other conformations. Overall change in surface area in hydrophobic and uncharged residues is higher than that in charged residues. An attempt has been made to know the predictability of interface residues from sequence environments. This analysis and prediction results have significant implications towards determining interacting residues in proteins and for the prediction of protein-protein, protein-ligand, protein-DNA and similar interactions.
    Matched MeSH terms: Ligands
  15. Ravichandran R, Ridzwan NFW, Mohamad SB
    J Biomol Struct Dyn, 2020 Dec 31.
    PMID: 33382017 DOI: 10.1080/07391102.2020.1867641
    The disease Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis (Mtb). The bacterial cell-wall consists of peptidoglycan layer maintains the cellular integrity and cell viability. The main problem resides in the cell cycle of Mycobacterium tuberculosis in its quiescent form which is not targeted by any drugs hence there is an immediate need for new antibiotics to target the cell wall. The current study deals with the dTDP-4-dehydrorahmnose reductase (RmlD) which is the final enzyme in the series of cell-wall proteins of Mtb. The RmlD is a part of Carbohydrate biosynthesis has been considered as a good drug target for the novel class of antibiotics. Our study begins with the protein structure prediction, Homology studies were conducted using the Phyre2 web server. The structure is then refined and subjected to molecular dynamics simulations for 50 ns using GROMACS. The clustering analysis has been carried out and generated 41 clusters with 2 Å as the cut-off. Blind docking virtual screening was performed against RmlD protein using the Super Natural-II database with AutoDock4.0. its results helped to screen top ligands based on best binding energies. In both dockings, there are some common residues in which the ligands are interacting and forming the Hydrogen bonds such as Asp-105, Val-158, Thr-160, Gly-161, Arg-224, Arg-256. The ligand-567 giving the best results by being in the top-3 of all the clusters in both blind docking as well as the active-site docking. Hence ligand-567 can be a potential inhibitor of RmlD which can further inhibit the cell-wall synthesis of Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Ligands
  16. Tee WV, Ripen AM, Mohamad SB
    Sci Rep, 2016 Oct 27;6:35937.
    PMID: 27786277 DOI: 10.1038/srep35937
    Crystal structures of holo vitamin D receptor (VDR) revealed a canonical conformation in which the ligand is entrapped in a hydrophobic cavity buried in the ligand-binding domain (LBD). The mousetrap model postulates that helix 12 is positioned away from the domain to expose the interior cavity. However, the extended form of helix 12 is likely due to artifacts during crystallization. In this study, we set out to investigate conformational dynamics of apo VDR using molecular dynamics simulation on microsecond timescale. Here we show the neighboring backbones of helix 2-helix 3n and beta strand 2-helix 6 of LBD, instead of the helix 12, undergo large-scale motion, possibly gating the entrance of ligand to the ligand binding domain. Docking analysis to the simulated open structure of VDR with the estimated free energy of -37.0 kJ/mol, would emphasise the role of H2-H3n and S2-H6 in facilitating the entrance of calcitriol to the LBD of VDR.
    Matched MeSH terms: Ligands
  17. Haezam FN, Awang N, Kamaludin NF, Mohamad R
    Saudi J Biol Sci, 2021 May;28(5):3160-3168.
    PMID: 34025187 DOI: 10.1016/j.sjbs.2021.02.060
    Context: Diphenyltin(IV) diallyldithiocarbamate compound (Compound 1) and triphenyltin(IV) diallyldithiocarbamate compound (Compound 2) are two newly synthesised compounds of organotin(IV) with diallyldithiocarbamate ligands.

    Objective: To assess the cytotoxic effects of two synthesised compounds against HT-29 human colon adenocarcinoma cells and human CCD-18Co normal colon cells.

    Materials and methods: Two successfully synthesised compounds were characterised using elemental (carbon, hydrogen, nitrogen, and sulphur) analysis, Fourier-Transform Infrared (FTIR), and 1H, 13C 119Sn Nucleus Magnetic Resonance (NMR) spectroscopies. The single-crystal structure of both compounds was determined by X-ray single-crystal analysis. The cytotoxicity of the compounds was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazholium bromide (MTT) assay upon 24 h of treatment. While the mode of cell death was determined based on the externalisation of phosphatidylserine using a flow cytometer.

    Results: The elemental analysis data of the two compounds showed an agreement with the suggested formula of (C6H5)2Sn[S2CN(C3H5)2]2 for Compound 1 and (C6H5)3Sn[S2CN(C3H5)2] for Compound 2. The two major peaks of infrared absorbance, i.e., ν(C = N) and ν(C = S) were detected at the range of 1475-1479 cm-1 and 972-977 cm-1, respectively. The chemical shift of carbon in NCS2 group for Compound 1 and 2 were found at 200.82 and 197.79 ppm. The crystal structure of Compound 1 showed that it is six coordinated and crystallised in monoclinic, P21/c space group. While the crystal structure of Compound 2 is five coordinated and crystallised in monoclinic, P21/c space group. The cytotoxicity (IC50) of the two compounds against HT-29 cell were 2.36 μM and 0.39 μM. Meanwhile, the percentage of cell death modes between 60% and 75% for compound 1 and compound 2 were mainly due to apoptosis, suggesting that both compounds induced growth arrest.

    Conclusion: Our study concluded that the synthesised compounds showed potent cytotoxicity towards HT-29 cell, with the triphenyltin(IV) compound showing the highest effect compared to diphenyltin(IV).

    Matched MeSH terms: Ligands
  18. Veeraveedu PT, Sanada S, Okuda K, Fu HY, Matsuzaki T, Araki R, et al.
    Biochem Pharmacol, 2017 Aug 15;138:73-80.
    PMID: 28450225 DOI: 10.1016/j.bcp.2017.04.022
    BACKGROUND AND PURPOSE: ST2 is one of the interleukin (IL)-1 receptor family members comprising of membrane-bound (ST2L) and soluble (sST2) isoforms. Clinical trials have revealed that serum sST2 levels predict outcome in patient with myocardial infarction or chronic heart failure (HF). Meanwhile, we and others have reported that ablation of ST2 caused exaggerated cardiac remodeling in both ischemic and non-ischemic HF. Here, we tested whether IL-33, the ligand for ST2, protects myocardium against HF induced by mechanical overload using ligand specific knockout (IL-33(-/-)) mice.

    METHODS AND RESULTS: Transverse aortic constriction (TAC)/sham surgery were carried out in both IL-33 and WT-littermates. Echocardiographic measurements were performed at frequent interval during the study period. Heart was harvested for RNA and histological measurements. Following mechanical overload by TAC, myocardial mRNA expressions of Th1 cytokines, such as TNF-α were enhanced in IL-33(-/-) mice than in WT mice. After 8-weeks, IL-33(-/-) mice exhibited exacerbated left ventricular hypertrophy, increased chamber dilation, reduced fractional shortening, aggravated fibrosis, inflammation, and impaired survival compared with WT littermates. Accordingly, myocardial mRNA expressions of hypertrophic (c-Myc/BNP) molecular markers were also significantly enhanced in IL-33(-/-) mice than those in WT mice.

    CONCLUSIONS: We report for the first time that ablation of IL-33 directly and significantly leads to exacerbate cardiac remodeling with impaired cardiac function and survival upon mechanical stress. These data highlight the cardioprotective role of IL-33/ST2 system in the stressed myocardium and reveal a potential therapeutic role for IL-33 in non-ischemic HF.

    Matched MeSH terms: Ligands
  19. Mohamad A, Zamri-Saad M, Amal MNA, Al-Saari N, Monir MS, Chin YK, et al.
    Vaccines (Basel), 2021 Apr 10;9(4).
    PMID: 33920311 DOI: 10.3390/vaccines9040368
    Multiple infections of several bacterial species are often observed under natural farm conditions. The infections would cause a much more significant loss compared to a single infectious agent. Vaccination is an essential strategy to prevent diseases in aquaculture, and oral vaccination has been proposed as a promising technique since it requires no handling of the fish and is easy to perform. This research attempts to develop and evaluate a potential feed-based polyvalent vaccine that can be used to treat multiple infections by Vibrios spp., Streptococcus agalactiae, and Aeromonas hydrophila, simultaneously. The oral polyvalent vaccine was prepared by mixing formalin-killed vaccine of V. harveyi, S. agalactiae, and A. hydrophila strains with commercial feed pellet, and palm oil as an adjuvant was added to improve their antigenicity. Thereafter, a vaccinated feed pellet was tested for feed quality analysis in terms of feed stability in water, proximate nutrient analysis, and palatability, safety, and growth performance using Asian seabass, Lates calcarifer as a fish host model. For immune response analysis, a total of 300 Asian seabass juveniles (15.8 ± 2.6 g) were divided into two groups in triplicate. Fish of group 1 were not vaccinated, while group 2 was vaccinated with the feed-based polyvalent vaccine. Vaccinations were carried out on days 0 and 14 with oral administration of the feed containing the bacterin at 5% body weight. Samples of serum for antibody and lysozyme study and the spleen and gut for gene expression analysis were collected at 7-day intervals for 6 weeks. Its efficacy in protecting fish was evaluated in aquarium challenge. Following vaccination by the polyvalent feed-based vaccine, IgM antibody levels showed a significant (p < 0.05) increase in serum against Vibrio harveyi, Aeromonas hydrophila, and Streptococcus agalactiae and reached the peak at week 3, 5, and 6, respectively. The high-stimulated antibody in the serum remained significantly higher than the control (p < 0.05) at the end of the 6 weeks vaccination trial. Not only that, but the serum lysozyme level was also increased significantly at week 4 (p < 0.05) as compared to the control treatment. The immune-related gene, dendritic cells, C3, Chemokine ligand 4 (CCL4), and major histocompatibility complex class I (MHC I) showed significantly higher expression (p < 0.05) after the fish were vaccinated with the oral vaccine. In the aquarium challenge, the vaccine provided a relative percentage survival of 75 ± 7.1%, 80 ± 0.0%, and 80 ± 0.0% after challenge with V. harveyi, A. hydrophila, and S. agalactiae, respectively. Combining our results demonstrate that the feed-based polyvalent vaccine could elicit significant innate and adaptive immunological responses, and this offers an opportunity for a comprehensive immunization against vibriosis, streptococcosis, and motile aeromonad septicemia in Asian seabass, Lates calcarifer. Nevertheless, this newly developed feed-based polyvalent vaccination can be a promising technique for effective and large-scale fish immunization in the aquaculture industry shortly.
    Matched MeSH terms: Ligands
  20. Brown AAM, Hooper TJN, Veldhuis SA, Chin XY, Bruno A, Vashishtha P, et al.
    Nanoscale, 2019 Jul 07;11(25):12370-12380.
    PMID: 31215940 DOI: 10.1039/c9nr02566a
    We report the self-assembly of an extensive inter-ligand hydrogen-bonding network of octylphosphonates on the surface of cesium lead bromide nanocrystals (CsPbBr3 NCs). The post-synthetic addition of octylphosphonic acid to oleic acid/oleylamine-capped CsPbBr3 NCs promoted the attachment of octylphosphonate to the NC surface, while the remaining oleylammonium ligands maintained the high dispersability of the NCs in non-polar solvent. Through powerful 2D solid-state 31P-1H NMR, we demonstrated that an ethyl acetate/acetonitrile purification regime was crucial for initiating the self-assembly of extensive octylphosphonate chains. Octylphosphonate ligands were found to preferentially bind in a monodentate mode through P-O-, leaving polar P[double bond, length as m-dash]O and P-OH groups free to form inter-ligand hydrogen bonds. The octylphosphonate ligand network strongly passivated the nanocrystal surface, yielding a fully-purified CsPbBr3 NC ink with PLQY of 62%, over 3 times higher than untreated NCs. We translated this to LED devices, achieving maximum external quantum efficiency and luminance of 7.74% and 1022 cd m-2 with OPA treatment, as opposed to 3.59% and 229 cd m-2 for untreated CsPbBr3 NCs. This represents one of the highest efficiency LEDs obtained for all-inorganic CsPbBr3 NCs, accomplished through simple, effective passivation and purification processes. The robust binding of octylphosphonates to the perovskite lattice, and specifically their ability to interlink through hydrogen bonding, offers a promising passivation approach which could potentially be beneficial across a breadth of halide perovskite optoelectronic applications.
    Matched MeSH terms: Ligands
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links