Displaying publications 121 - 140 of 305 in total

Abstract:
Sort:
  1. Puvanesuaran VR, Ibrahim N, Noordin R, Balakrishnan V
    Eur Rev Med Pharmacol Sci, 2012 Sep;16(9):1179-83.
    PMID: 23047500
    AIM: A method was developed to separate contaminant-free viable Toxoplasma gondii cysts from brain samples of infected mice for molecular biology studies and reinfection.
    MATERIALS AND METHODS: The mice brains were homogenized and washed with phosphate buffered saline (PBS) Tween 80 prior to fractionation using 19-22% dextran solution. Finally, the supernatant was purified by two-step membrane filtration (100-160 microm and < 10 microm) to obtain pure T. gondii cyst. The isolates were analyzed through microscopic observation, qPCR and by reinfection of new batch of mice.
    RESULTS: T. gondii cysts were best isolated with 21% dextran solution and two step filtration.
    CONCLUSIONS: The method was observed not to disrupt the integrity of the cysts containing bradyzoites. In addition, the isolated cysts in the filtrate were found to be contaminant-free, viable and able to infect healthy mice when introduced orally; which, mimics the natural infectivity pathway.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  2. Anbazhagan D, Mui WS, Mansor M, Yan GO, Yusof MY, Sekaran SD
    Braz J Microbiol, 2011 Apr;42(2):448-58.
    PMID: 24031653 DOI: 10.1590/S1517-83822011000200006
    Nosocomial infections are major clinical threats to hospitalised patients and represent an important source of morbidity and mortality. It is necessary to develop rapid detection assays of nosocomial pathogens for better prognosis and initiation of antimicrobial therapy in patients. In this study, we present the development of molecular methods for the detection of six common nosocomial pathogens including Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. Conventional multiplex PCR and SYBR Green based real time PCR assays were performed using genus and species specific primers. Blind testing with 300 clinical samples was also carried out. The two assays were found to be sensitive and specific. Eubacterial PCR assay exhibited positive results for 46 clinical isolates from which 43 samples were detected by real time PCR assay. The sensitivity of the assay is about 93.7% in blind test isolates. The PCR results were reconfirmed using the conventional culture method. This assay has the potential to be a rapid, accurate and highly sensitive molecular diagnostic tool for simultaneous detection of Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. This assay has the potential to detect nosocomial pathogens within 5 to 6 hours, helping to initiate infection control measures and appropriate treatment in paediatric and elderly (old aged) patients, pre-and post surgery patients and organ transplant patients and thus reduces their hospitalization duration.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  3. Azlin I, Wong FL, Ezham M, Hafiza A, Ainoon O
    Malays J Pathol, 2011 Dec;33(2):95-100.
    PMID: 22299209 MyJurnal
    A number of genetic risk factors have been implicated in the development of neonatal severe hyperbilirubinaemia. This includes mutations in the uridine glucoronosyl transferase 1A1 (UGT1A1) gene which is responsible for unconjugated hyperbilirubinemia in Gilbert's Syndrome. We studied the prevalence of UGT1A1 gene mutations in a group of Malay neonates to determine whether they are risk factors to severe neonatal jaundice. One hundred and twenty-five Malay neonates with severe hyperbilirubinemia were studied. Ninety-eight infants without severe hyperbilirubinaemia were randomly selected from healthy Malay term infants (controls). DNA from EDTA cord blood samples were examined for UGT1A1 mutations nt211G > A and nt247T > C using established Taqman SNP genotyping assays and the UGT1A1*28 variant was detected by the Agilent 2100 bioanalyzer. All samples were also screened for common Malay G6PD variants using established techniques. The frequency of UGT1A1 211G > A mutation is significantly higher in the severely hyperbilirubinemic group (13%) than the control group (4%; p = 0.015) and all the positive cases were heterozygous for the mutation. There was no significant difference in the frequency of UGT1A1*28 mutation between the severely hyperbilirubinemic (3.5%) and the control group (0.01%; p = 0.09). None of the neonates in both groups carried the nt247 T > C mutation. The prevalence of G6PD mutation was significantly higher in the severely jaundiced group than control (9% vs 4%; p = 0.04). In conclusion, nt 211 G > A alleles constitute at least 12% of UGT1A1 mutations underlying unconjugated hyperbilirubinemia and appears to be a significant independent risk factor associated with severe neonatal hyperbilirubinemia in the Malay newborns.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  4. Muhd Radzi SF, Rückert C, Sam SS, Teoh BT, Jee PF, Phoon WH, et al.
    Sci Rep, 2015;5:14007.
    PMID: 26360297 DOI: 10.1038/srep14007
    Langat virus (LGTV), one of the members of the tick-borne encephalitis virus (TBEV) complex, was firstly isolated from Ixodes granulatus ticks in Malaysia. However, the prevalence of LGTV in ticks in the region remains unknown. Surveillance for LGTV is therefore important and thus a tool for specific detection of LGTV is needed. In the present study, we developed a real-time quantitative reverse-transcription-polymerase chain reaction (qRT-PCR) for rapid detection of LGTV. Our findings showed that the developed qRT-PCR could detect LGTV at a titre as low as 0.1 FFU/ml. The detection limit of the qRT-PCR assay at 95% probability was 0.28 FFU/ml as determined by probit analysis (p ≤ 0.05). Besides, the designed primers and probe did not amplify ORF of the E genes for some closely related and more pathogenic viruses including TBEV, Louping ill virus, Omsk hemorrhagic fever virus (OHFV), Alkhurma virus (ALKV), Kyasanur Forest Disease virus (KFDV) and Powassan virus (POWV) which showed the acceptable specificity of the developed assay. The sensitivity of the developed method also has been confirmed by determining the LGTV in infected tick cell line as well as LGTV- spiked tick tissues.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  5. Wong DW, Soga T, Parhar IS
    Front Genet, 2015;6:281.
    PMID: 26442099 DOI: 10.3389/fgene.2015.00281
    Sexual dysfunction and cognitive deficits are markers of the aging process. Mammalian sirtuins (SIRT), encoded by sirt 1-7 genes, are known as aging molecules which are sensitive to serotonin (5-hydroxytryptamine, 5-HT). Whether the 5-HT system regulates SIRT in the preoptic area (POA), which could affect reproduction and cognition has not been examined. Therefore, this study was designed to examine the effects of citalopram (CIT, 10 mg/kg for 4 weeks), a potent selective-serotonin reuptake inhibitor and aging on SIRT expression in the POA of male mice using real-time PCR and immunocytochemistry. Age-related increases of sirt1, sirt4, sirt5, and sirt7 mRNA levels were observed in the POA of 52 weeks old mice. Furthermore, 4 weeks of chronic CIT treatment started at 8 weeks of age also increased sirt2 and sirt4 mRNA expression in the POA. Moreover, the number of SIRT4 immuno-reactive neurons increased with aging in the medial septum area (12 weeks = 1.00 ± 0.15 vs. 36 weeks = 1.68 ± 0.14 vs. 52 weeks = 1.54 ± 0.11, p < 0.05). In contrast, the number of sirt4-immunopositive cells did not show a statistically significant change with CIT treatment, suggesting that the increase in sirt4 mRNA levels may occur in cells in which sirt4 is already being expressed. Taken together, these studies suggest that CIT treatment and the process of aging utilize the serotonergic system to up-regulate SIRT4 in the POA as a common pathway to deregulate social cognitive and reproductive functions.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  6. Akit H, Collins C, Fahri F, Hung A, D'Souza D, Leury B, et al.
    Animals (Basel), 2016;6(6).
    PMID: 27338483 DOI: 10.3390/ani6060038
    The purpose of this study was to investigate the effect of dietary lecithin on skeletal muscle gene expression of collagen precursors and enzymes involved in collagen synthesis and degradation. Finisher gilts with an average start weight of 55.9 ± 2.22 kg were fed diets containing either 0, 4, 20 or 80 g/kg soybean lecithin prior to harvest for six weeks and the rectus abdominis muscle gene expression profile was analyzed by quantitative real-time PCR. Lecithin treatment down-regulated Type I (α1) procollagen (COL1A1) and Type III (α1) procollagen (COL3A1) mRNA expression ( p < 0.05, respectively), indicating a decrease in the precursors for collagen synthesis. The α-subunit of prolyl 4-hydroxylase (P4H) mRNA expression also tended to be down-regulated ( p = 0.056), indicating a decrease in collagen synthesis. Decreased matrix metalloproteinase-1 (MMP-1) mRNA expression may reflect a positive regulatory response to the reduced collagen synthesis in muscle from the pigs fed lecithin ( p = 0.035). Lecithin had no effect on tissue inhibitor metalloproteinase-1 (TIMP-1), matrix metalloproteinase-13 (MMP-13) and lysyl oxidase mRNA expression. In conclusion, lecithin down-regulated COL1A1 and COL3A1 as well as tended to down-regulate α-subunit P4H expression. However, determination of muscle collagen content and solubility are required to support the gene functions.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  7. Ng TS, Mohd Desa MN, Sandai D, Chong PP, Than LT
    Jundishapur J Microbiol, 2015 Nov;8(11):e25177.
    PMID: 26855740 DOI: 10.5812/jjm.25177
    BACKGROUND: The sensing mechanism of glucose in Saccharomyces cerevisiae is well studied. However, such information is scarcely found in other yeast species such as Candida glabrata.

    OBJECTIVES: This study aimed to identify the glucose sensing pathway related genes of C. glabrata and to analyze the regulation pattern of these genes in response to different surrounding glucose concentrations through the quantitative real time polymerase chain reaction (qRT-PCR).

    MATERIALS AND METHODS: Phylogenetic analysis was carried out on predicted amino acid sequences of C. glabrata and S. cerevisiae to compare their degree of similarity. In addition, the growth of C. glabrata in response to different amounts of glucose (0%, 0.01%, 0.1%, 1% and 2%) was evaluated via the spot dilution assay on prepared agar medium. Besides, the SNF3 and RGT2, which act as putative glucose sensors, and the RGT1 and MIG1, which act as putative transcriptional regulators and selected downstream hexose transporters (HXTs), were analysed through qRT-PCR analysis for the gene expression level under different glucose concentrations.

    RESULTS: Comparative analysis of predicted amino acids in the phylogenetic tree showed high similarity between C. glabrata and S cerevisiae. Besides, C. glabrata demonstrated the capability to grow in glucose levels as low as 0.01% in the spot dilution assay. In qRT-PCR analysis, differential expressions were observed in selected genes when C. glabrata was subjected to different glucose concentrations.

    CONCLUSIONS: The constructed phylogenetic tree suggests the close evolutionary relationship between C. glabrata and S. cerevisiae. The capability of C. glabrata to grow in extremely low glucose environments and the differential expression of selected glucose-sensing related genes suggested the possible role of these genes in modulating the growth of C. glabrata in response to different glucose concentrations. This study helps deepen our understanding of the glucose sensing mechanism in C. glabrata and serves to provide fundamental data that may assist in unveiling this mechanism as a potential drug target.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  8. Ishak MF, See GB, Hui CK, Abdullah Ab, Saim Lb, Saim Ab, et al.
    Int J Pediatr Otorhinolaryngol, 2015 Oct;79(10):1634-9.
    PMID: 26250439 DOI: 10.1016/j.ijporl.2015.06.034
    This study aimed to isolate, culture-expand and characterize the chondrocytes isolated from microtic cartilage and evaluate its potential as a cell source for ear cartilage reconstruction. Specific attention was to construct the auricular cartilage tissue by using fibrin as scaffold.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  9. Prasad P, Ogawa S, Parhar IS
    Biol Reprod, 2015 Oct;93(4):102.
    PMID: 26157069 DOI: 10.1095/biolreprod.115.129965
    Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants for the treatment of depression. However, SSRIs cause sexual side effects such as anorgasmia, erectile dysfunction, and diminished libido that are thought to be mediated through the serotonin (5-hydroxytryptamine, 5-HT) system. In vertebrates, gonadotropin-releasing hormone (GnRH) neurons play an important role in the control of reproduction. To elucidate the neuroendocrine mechanisms of SSRI-induced reproductive failure, we examined the neuronal association between 5-HT and GnRH (GnRH2 and GnRH3) systems in the male zebrafish. Double-label immunofluorescence and confocal laser microscopy followed by three-dimensional construction analysis showed close associations between 5-HT fibers with GnRH3 fibers and preoptic-GnRH3 cell bodies, but there was no association with GnRH2 cell bodies and fibers. Quantitative real-time PCR showed that short-term treatment (2 wk) with low to medium doses (4 and 40 μg/L, respectively) of citalopram significantly decreased mRNA levels of gnrh3, gonadotropins (lhb and fshb) and 5-HT-related genes (tph2 and sert) in the male zebrafish. In addition, short-term citalopram treatment significantly decreased the fluorescence density of 5-HT and GnRH3 fibers compared with controls. Short-term treatment with low, medium, and high (100 μg/L) citalopram doses had no effects on the profiles of different stages of spermatogenesis, while long-term (1 mo) citalopram treatment with medium and high doses significantly inhibited the different stages of spermatogenesis. These results show morphological and functional associations between the 5-HT and the hypophysiotropic GnHR3 system, which involve SSRI-induced reproductive failures.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  10. Jamil K, Chua KH, Joudi S, Ng SL, Yahaya NH
    J Orthop Surg Res, 2015;10:27.
    PMID: 25889942 DOI: 10.1186/s13018-015-0166-z
    Functional tissue engineering has emerged as a potential means for treatment of cartilage defect. Development of a stable cartilage composite is considered to be a good option. The aim of the study was to observe whether the incorporation of cultured chondrocytes on porous tantalum utilizing fibrin as a cell carrier would promote cartilage tissue formation.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  11. Sam IC, Chong J, Kamarudin R, Jafar FL, Lee LM, Bador MK, et al.
    Trans R Soc Trop Med Hyg, 2020 08 01;114(8):553-555.
    PMID: 32497211 DOI: 10.1093/trstmh/traa037
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  12. Manisya Zauri Abdul Wahid, Tengku Rogayah T. Abd. Rashid, Hariyati Md. Ali, Hamadah Mohd Shafiff, Mohd. Shamsul Samsuddin, Syarifah Nur Aisyatun Syed Mohd Salleh, et al.
    MyJurnal
    Introduction:Echoviruses are Enteroviruses (HEVs) that infect millions of people annually worldwide, primarily paediatrics. These viruses are frequently associated with outbreaks and sporadic cases of viral meningitis, enceph-alitis, paralysis, myocarditis, severe systemic infections; and hand-foot-mouth disease. This study is a retrospective study to identify Echovirus serotypes circulating in Malaysia from January 2014 to June 2019, and their roles in outbreak prediction. This study investigated the Echovirus serotypes circulating in Malaysia from January 2014 to June 2019. Methods: A total of 13,855 inpatient samples consisting respiratory secretion, stool, tissue and body fluid from around the country were received by the Virology Unit, Institute for Medical Research between January 2014 and June 2019. The presence of HEV’s RNA was detected by qPCR. The identified positive sample was further isolated by cell culture and identified by Immunofluorescence Assay (IFA). The IFA positive samples were subjected to amplification of partial VP4 gene by RT-PCR, and proceeded to Sanger sequencing for phylogenetic analysis by using ChromasPro and MEGA Software. The sequence generated were analysed by BLAST to confirm the sequence serotypes generated. Results: Echovirus genome was detected in 0.35% (37/10,681) of the patients. The circulating Echovirus subtypes in Malaysia between January 2014 and June 2019 were Echo-11 (43.2%; 16/37), followed by Echo-6 (16.2%; 6/37); 8.1% (3/37) of Echo-7 and Echo-13, respectively. Meanwhile, other types of Echoviruses (24.3%; 9/37) such as Echo 3-5, Echo-14, Echo-16, Echo-18, Echo-25 and Echo-30 were also detected in this study. Conclusion: In this study, it has been found that Echovirus 11 serotype is the most predominant Echovirus serotype circulating in Malaysia between January 2014 and June 2019. It has been reported to cause severe diseases, such as aseptic meningitis. Therefore, the identification of circulating serotypes of Echovirus is critical to predict the Echovi-rus outbreak and to reduce the risk of developing severe disease in Malaysia.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  13. Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, et al.
    Blood, 2016 Mar 03;127(9):e1-e11.
    PMID: 26660425 DOI: 10.1182/blood-2015-06-649434
    In platelets, splicing and translation occur in the absence of a nucleus. However, the integrity and stability of mRNAs derived from megakaryocyte progenitor cells remain poorly quantified on a transcriptome-wide level. As circular RNAs (circRNAs) are resistant to degradation by exonucleases, their abundance relative to linear RNAs can be used as a surrogate marker for mRNA stability in the absence of transcription. Here we show that circRNAs are enriched in human platelets 17- to 188-fold relative to nucleated tissues and 14- to 26-fold relative to samples digested with RNAse R to selectively remove linear RNA. We compare RNAseq read depths inside and outside circRNAs to provide in silico evidence of transcript circularity, show that exons within circRNAs are enriched on average 12.7 times in platelets relative to nucleated tissues and identify 3162 genes significantly enriched for circRNAs, including some where all RNAseq reads appear to be derived from circular molecules. We also confirm that this is a feature of other anucleate cells through transcriptome sequencing of mature erythrocytes, demonstrate that circRNAs are not enriched in cultured megakaryocytes, and demonstrate that linear RNAs decay more rapidly than circRNAs in platelet preparations. Collectively, these results suggest that circulating platelets have lost >90% of their progenitor mRNAs and that translation in platelets occurs against the backdrop of a highly degraded transcriptome. Finally, we find that transcripts previously classified as products of reverse transcriptase template switching are both enriched in platelets and resistant to decay, countering the recent suggestion that up to 50% of rearranged RNAs are artifacts.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  14. Tan ML, Tan HK, Oon CE, Kuroyanagi M, Muhammad TS
    Food Chem Toxicol, 2012 Feb;50(2):431-44.
    PMID: 22101062 DOI: 10.1016/j.fct.2011.11.001
    14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  15. Kamal Haikal Mat Rabi, Amry Khursany Ismail, Mohd Samsul Samsuddin, Manisha Zauri Abdul Wahid, Zarina Mohd Zamawi, Ravindran Thayan
    MyJurnal
    Introduction: Poliomyelitis is an incapacitating and highly infectious disease which effect mostly young children. It is caused by one of the three serotypes of polioviruses (PV) and transmitted through faecal-oral route hence making the disease quite pertinent to the lower and middle class society or under-immunized population. This surveillance is one of the strategy included by WHO in the “Eradication, Integration and Certification: The Endgame Strategy 2019-2023” as a supplement to AFP surveillance by which it could be more sensitive to detect low circulation of WPV and circulating vaccine derived poliovirus (cVDPV). Methods: Routine collection and testing of representative environmental surveillance are carried out in the National Polio Laboratory. The specimens are collected from designated locations draining target populations at increased risk of poliovirus transmission using the grab method once a month and processed according to WHO standard protocol. Polioviruses were identified by real time reverse transcriptase polymerase chain reaction (rRT-PCR) for intratypic differentiation (ITD) and vaccine derived poliovirus (VDPV) whereas non-polio enteroviruses (NPEVs) were identified by PCR and sequencing. Results: From 2012 to 2019, results showed various isolation of PVs and NPEVs. A total of 12 sewage disposal plants located in urban highly populated areas in Kuala Lumpur (3), Selangor (5), Sabah (3 ) and Negeri Sembilan (1) were investigated. A total of 22 Sabin-like PVs were isolated consisting of 3 PV1, 8 PV2 and 11 PV3 thus indicated that in Malaysia even though PVs were existed in environment, but all of them were Sabin-Like viruses and no evidence of imported WPV or VDPV in the sampling sites. Conclusion: Even though Malaysia has been declared as WPV free country in 2000, Environmental Surveillance is very important and crucial in detecting the introduction and silent circulation of WPV and cVDPV before the virus reaches the community.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  16. Abdullah N, Al Marzooq F, Mohamad S, Abd Rahman N, Rani KGA, Chi Ngo H, et al.
    PLoS One, 2020;15(11):e0241519.
    PMID: 33141868 DOI: 10.1371/journal.pone.0241519
    Silver diamine fluoride (SDF) is commonly used to arrest caries lesions, especially in early childhood caries. Recently, it was suggested that SDF can be combined with potassium iodide (KI) to minimize the discoloration of demineralized dentine associated with SDF application. However, the antibacterial efficacy of SDF alone or combined with KI on in-situ biofilm is unknown. Hence, we compared the anti-plaque biofilm efficacy of two different commercially available SDF solutions, with or without KI, using an in-situ biofilm, analysed using viability real-time PCR with propidium monoazide (PMA). Appliance-borne in-situ biofilm samples (n = 90) were grown for a period of 6 h in five healthy subjects who repeated the experiment on three separate occasions, using a validated, novel, intraoral device. The relative anti-biofilm efficacy of two SDF formulations; 38.0% Topamine (SDFT) and 31.3%, Riva Star (SDFR), KI alone, and KI in combination with SDFR (SDFR+KI) was compared. The experiments were performed by applying an optimized volume of the agents onto the biofilm for 1min, mimicking the standard clinical procedure. Afterwards the viability of the residual biofilm bacteria was quantified using viability real-time PCR with PMA, then the percentage of viable from total bacteria was calculated. Both SDF formulations (SDFT and SDFR) exhibited potent antibacterial activities against the in-situ biofilm; however, there was non-significant difference in their efficacy. KI alone did not demonstrate any antibacterial effect, and there was non-significant difference in the antibacterial efficacy of SDF alone compared to SDF with KI, (SDFT v SDFR/KI). Thus, we conclude that the antibacterial efficacy of SDF against plaque biofilms is not modulated by KI supplements. Viability real-time PCR with PMA was successfully used to analyze the viability of naturally grown oral biofilm; thus, the same method can be used to test the antimicrobial effect of other agents on oral biofilms in future research.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  17. Salleh N, Ismail N, Muniandy S, Korla PK, Giribabu N
    Reprod Toxicol, 2015 Dec;58:194-202.
    PMID: 26529183 DOI: 10.1016/j.reprotox.2015.10.017
    The combinatorial effects of genistein and estrogen (E) or estrogen plus progesterone (E+P) on CFTR, AC and cAMP levels in cervix were investigated. Ovariectomised adult female rats received 50 or 100mg/kg/day genistein with E or E followed by E+P [E+(E+P)] for seven consecutive days. Cervixes were harvested and analyzed for CFTR mRNA levels by Real-time PCR. Distribution of AC and CFTR proteins in endocervix were observed by immunohistochemistry. Levels of cAMP were measured by enzyme-immunoassay. Molecular docking predicted interaction between genistein and AC. Our results indicate that levels of CFTR, AC and cAMP in cervix of rats receiving genistein plus E were higher than E-only treatment (p<0.05) while genistein plus [E+(E+P)] were higher than E+(E+P)-only treatment (p<0.05). In conclusions, increased levels of CFTR, AC and cAMP in cervix of E and E+(E+P)-treated rats by genistein could affect the cervical secretory function which could influence the female reproductive processes.
    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  18. Fieldhouse JK, Bailey ES, Toh TH, Hii KC, Mallinson KA, Ting J, et al.
    PMID: 32817802 DOI: 10.1186/s40794-020-00114-2
    Background: In a year-long pneumonia etiology study conducted June 2017 to May 2018 in Sarawak, Malaysia, 599 patients' nasopharyngeal swab specimens were studied with real-time polymerase chain reaction (rPCR)/ reverse-transcription (rRT-PCR) assays for respiratory pathogens known to contribute to the high burden of lower respiratory tract infections. The study team sought to compare real-time assay results with panspecies conventional molecular diagnostics to compare sensitivities and learn if novel viruses had been missed.

    Methods: Specimens were studied for evidence of adenovirus (AdV), enterovirus (EV) and coronavirus (CoV) with panspecies gel-based nested PCR/RT-PCR assays. Gene sequences of specimens positive by panspecies assays were sequenced and studied with the NCBI Basic Local Alignment Search Tool software.

    Results: There was considerable discordance between real-time and conventional molecular methods. The real-time AdV assay found a positivity of 10.4%; however, the AdV panspecies assay detected a positivity of 12.4% and the conventional AdV-Hexon assay detected a positivity of 19.6%. The CoV and EV panspecies assays similarly detected more positive specimens than the real-time assays, with a positivity of 7.8% by the CoV panspecies assay versus 4.2% by rRT-PCR, and 8.0% by the EV panspecies assay versus 1.0% by rRT-PCR. We were not able to ascertain virus viability in this setting. While most discordance was likely due to assay sensitivity for previously described human viruses, two novel, possible zoonotic AdV were detected.

    Conclusions: The observed differences in the two modes of amplification suggest that where a problem with sensitivity is suspected, real-time assay results might be supplemented with panspecies conventional PCR/RT-PCR assays.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  19. Lau YS, Zhao L, Zhang C, Li H, Han R
    Life Sci, 2020 Jul 10.
    PMID: 32659370 DOI: 10.1016/j.lfs.2020.118069
    AIM: Up-regulation of inflammasome proteins was reported in dystrophin-deficient muscles. However, it remains to be determined whether inflammasome activation plays a role in the pathogenesis of Duchenne muscular dystrophy. This study was therefore set out to investigate whether genetic disruption of the inflammasome pathway impacts the disease progression in mdx mice.

    MAIN METHODS: Mice deficient in both dystrophin and ASC (encoded by Pycard [PYD And CARD Domain Containing]) were generated. The impact of ASC deficiency on muscular dystrophy of mdx mice were assessed by measurements of serum cytokines, Western blot, real-time PCR and histopathological staining.

    KEY FINDINGS: The pro-inflammatory cytokines such as TNF-α, IL-6, KC/GRO and IL-10 were markedly increased in the sera of 8-week-old mdx mice compared to WT. Western blotting showed that P2X7, caspase-1, ASC and IL-18 were upregulated. Disruption of ASC and dystrophin expression in the mdx/ASC-/- mice was verified by Western blot analysis. Histopathological analysis did not find significant alterations in the muscular dystrophy phenotype in mdx/ASC-/- mice as compared to mdx mice.

    SIGNIFICANCE: Taken together, our results show that disruption of the central adaptor ASC of the inflammasome is insufficient to alleviate muscular dystrophy phenotype in mdx mice.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
  20. Mat-Rahim NA, Rashid TRTA, Suppiah J, Thayan R, Yusof AM, Sa'at Z
    Asian Pac J Trop Dis, 2015 Jul;5(7):543-546.
    PMID: 32289031 DOI: 10.1016/S2222-1808(15)60833-7
    Objective: To describe the complete nucleocapsid (N) gene region of Middle East respiratory syndrome coronavirus (MERS-CoV) from imported case in Malaysia and the relations with human- and camel-derived MERS-CoV.

    Methods: Combination of throat and nasal swab specimens was subjected to viral RNA extraction. For screening, the extracted RNA was subjected to real-time RT-PCR targeting upstream of E gene, open reading frame 1b and open reading frame 1a. For confirmation, the RNA was subjected to RT-PCR targeting partial part of the RNA-dependent RNA polymerase and nucleocapsid, followed by amplification of complete N gene region. Nucleotide sequencing of the first Malaysian case of MERS-CoV was performed following the confirmation with real-time RT-PCR detection.

    Results: Initial analysis of partial RNA-dependent RNA polymerase and N gene revealed that the nucleotides had high similarity to Jeddah_1_2013 strain. Analysis of complete N gene region (1 242 nucleotides) from the case showed high similarity and yet distinct to the nucleotide sequences of camel-derived MERS-CoV.

    Conclusions: From the finding, there are possibilities that the patient acquired the infection from zoonotic transmission from dromedary camels.

    Matched MeSH terms: Real-Time Polymerase Chain Reaction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links