Displaying publications 121 - 140 of 285 in total

Abstract:
Sort:
  1. Waiho K, Fazhan H, Zhang Y, Zhang Y, Li S, Zheng H, et al.
    Mar Biotechnol (NY), 2019 Jun;21(3):320-334.
    PMID: 30835008 DOI: 10.1007/s10126-019-09882-1
    Although the sexual dimorphism in terms of gonadal development and gametogenesis of mud crab has been described, the internal regulating mechanism and sex differentiation process remain unclear. A comparative gonadal miRNA transcriptomic study was conducted to identify miRNAs that are differentially expressed between testes and ovaries, and potentially uncover miRNAs that might be involved in sex differentiation and gonadal maturation mechanisms of mud crabs (Scylla paramamosain). A total of 10 known miRNAs and 130 novel miRNAs were identified, among which 54 were differentially expressed. Target gene prediction revealed a significant enrichment in 30 KEGG pathways, including some reproduction-related pathways, e.g. phosphatidylinositol signalling system and inositol phosphate metabolism pathways. Further analysis on six differentially expressed known miRNAs, six differentially expressed novel miRNAs and their reproduction-related putative target genes shows that both miRNAs and putative target genes showed stage-specific expression during gonadal maturation, suggesting their potential regulatory roles in sex differentiation and reproductive development. This study reveals the sex-biased miRNA profile and establishes a solid foundation for understanding the sex differentiation and gonadal maturation mechanisms of S. paramamosain.
    Matched MeSH terms: Transcriptome
  2. Gan HM, Austin C, Linton S
    Mar Biotechnol (NY), 2018 Oct;20(5):654-665.
    PMID: 29995174 DOI: 10.1007/s10126-018-9836-2
    The Christmas Island red crab, Gecarcoidea natalis, is an herbivorous land crab that consumes mostly fallen leaf litter. In order to subsist, G. natalis would need to have developed specialised digestive enzymes capable of supplying significant amounts of metabolisable sugars from this diet. To gain insights into the carbohydrate metabolism of G. natalis, a transcriptome assembly was performed, with a specific focus on identifying transcripts coding for carbohydrate active enzyme (CAZy) using in silico approaches. Transcriptome sequencing of the midgut gland identified 70 CAZy-coding transcripts with varying expression values. At least three newly discovered putative GH9 endo-β-1,4-glucanase ("classic cellulase") transcripts were highly expressed in the midgut gland in addition to the previously characterised GH9 and GH16 (β-1,3-glucanase) transcripts, and underscoring the utility of whole transcriptome in uncovering new CAZy-coding transcripts. A highly expressed transcript coding for GH5_10 previously missed by conventional screening of cellulase activity was inferred to be a novel endo-β-1,4-mannase in G. natalis with in silico support from homology modelling and amino acid alignment with other functionally validated GH5_10 proteins. Maximum likelihood tree reconstruction of the GH5_10 proteins demonstrates the phylogenetic affiliation of the G. natalis GH5_10 transcript to that of other decapods, supporting endogenous expression. Surprisingly, crustacean-derived GH5_10 transcripts were near absent in the current CAZy database and yet mining of the transcriptome shotgun assembly (TSA) recovered more than 100 crustacean GH5_10s in addition to several other biotechnological relevant CAZys, underscoring the unappreciated potential of the TSA database as a valuable resource for crustacean CAZys.
    Matched MeSH terms: Transcriptome
  3. Lau WM, Subramaniam M, Goh HH, Lim YM
    Mol Omics, 2021 04 19;17(2):252-259.
    PMID: 33346776 DOI: 10.1039/d0mo00168f
    Maslinic acid is a novel phytochemical reported to target multiple signaling pathways. A complete gene expression profile was therefore constructed to illustrate the anti-tumourigenesis effects of maslinic acid in Raji cells across five time-points. Microarray analysis was used to identify genes that were differentially expressed in maslinic acid treated Raji cells at 0, 4, 8, 12, 24 and 48 h. Extracted RNA was hybridized using the AffymetrixGeneChip to obtain expression profiles. A total of 109 genes were found to be significantly expressed over a period of 48 hours. By 12 hours, maslinic acid regulates the majority of genes involved in the cell cycle, p53 and NF-κB signaling pathways. At the same time, XAF1, APAF1, SESN3, and TP53BP2 were evidently up-regulated, while oncogenes, FAIM, CD27, and RRM2B, were down-regulated by at least 2-fold. In conclusion, maslinic acid shows an hourly progression of gene expression in Raji cells.
    Matched MeSH terms: Transcriptome
  4. Fahmeeda Mohamad Jazamuddin, Wan Mohd Aizat, Hoe-Han Goh, Chen-Fei Low, Syarul Nataqain Baharum
    Trop Life Sci Res, 2019;30(2):2012-209.
    MyJurnal
    Vibriosis is a prevalent aquatic disease caused by Vibrio species and has led to massive loss of brown-marbled grouper, Epinephelus fuscoguttatus. The complexity of molecular mechanisms associated with immune defence can be studied through transcriptomics analysis. High quality and quantity of total RNAs are crucial for the veracity of RNA sequencing and gene expression analysis. A low quality RNA will compromise downstream analysis, resulting in loss of time and revenue to re-acquire the data again. Thus, a reliable and an efficient RNA isolation method is the first and most important step to obtain high quality RNA for gene expression studies. There are many aspects need to be considered when deciding an extraction method, such as the cost-effectiveness of the protocol, the duration of chemical exposure, the duration required for a complete extraction and the number of sample-transferring. A good RNA extraction protocol must be able to produce high yield and purity of RNA free from enzyme inhibitors, such as nucleases (RNase), phenols, alcohols or other chemicals carryover, apart from protein and genomic DNA contamination, to maintain isolated RNA integrity in storage condition. In this study, TransZolTM Up produced clean and pure RNA samples from control gills only but not from the infected gill and whole-body tissues. Modified conventional CTAB (conventional hexadecyltrimethylammonium bromide) method was then used as an alternative method to isolate RNA from gill and whole-body tissues of Vibrio-infected E. fuscoguttatus. Modified CTAB method produced intact RNA on gel electrophoresis with higher RIN number (>6.5) for infected gill and whole-body tissues, suggesting that this method could also be used to isolate high quality RNA from fish samples. Therefore, this method is potentially suitable to be used to extract RNA from other fish species especially those that have been infected.
    Matched MeSH terms: Transcriptome
  5. Thinh DD, Rasid MH, Deris ZM, Shazili NA, De Boeck G, Wong LL
    Arch Environ Contam Toxicol, 2016 Nov;71(4):530-540.
    PMID: 27638714
    To assess stress level induced by multiple stressors in aquatic organism, biomarkers have been adopted as early warning indicator due to their high accuracy, rapidity, and sensitivity. We investigated the effects of ectoparasitic isopod infection on heavy metal bioaccumulation (Fe, Cu, Zn, and Cd) in the fish Nemipterus furcosus and profiled the expression of metallothionein (MT) and heat shock proteins 70 (HSP70) genes of the fish host. Sixty individuals (parasitized and nonparasitized with Cymothoa truncata) were collected from three sites differing in the levels of anthropogenic activities off the South China Sea. Our results revealed no significant difference in heavy metal concentrations between infected and nonparasitized fish. We observed a positive correlation between heavy metal bioaccumulation in the fish host and anthropogenic activities. Accordingly, expression analysis of MT genes in fish liver showed significant differences in expression level between sampling sites, with lowest level in the least exploited site (Batu Rakit). A reverse pattern in HSP70 gene expression was demonstrated in fish muscle, showing the highest expression at Batu Rakit. While cymothoid infection in N. furcosus had no significant impact on fish MT gene expression, it resulted in a reduction of HSP70 level in liver of parasitized fish. These findings highlight the putative roles of MT in heavy metal assessment. Future studies should determine the kinetics of cymothoid infection and other potential stressors in characterizing the HSP70 gene expression profile.
    Matched MeSH terms: Transcriptome
  6. Chan KG, Priya K, Chang CY, Abdul Rahman AY, Tee KK, Yin WF
    PeerJ, 2016;4:e2223.
    PMID: 27547539 DOI: 10.7717/peerj.2223
    Functional genomics research can give us valuable insights into bacterial gene function. RNA Sequencing (RNA-seq) can generate information on transcript abundance in bacteria following abiotic stress treatments. In this study, we used the RNA-seq technique to study the transcriptomes of the opportunistic nosocomial pathogen Pseudomonas aeruginosa PAO1 following heat shock. Samples were grown at both the human body temperature (37 °C) and an arbitrarily-selected temperature of 46 °C. In this work using RNA-seq, we identified 133 genes that are differentially expressed at 46 °C compared to the human body temperature. Our work identifies some key P. aeruginosa PAO1 genes whose products have importance in both environmental adaptation as well as in vivo infection in febrile hosts. More importantly, our transcriptomic results show that many genes are only expressed when subjected to heat shock. Because the RNA-seq can generate high throughput gene expression profiles, our work reveals many unanticipated genes with further work to be done exploring such genes products.
    Matched MeSH terms: Transcriptome
  7. Tan KY, Tan CH, Chanhome L, Tan NH
    PeerJ, 2017;5:e3142.
    PMID: 28392982 DOI: 10.7717/peerj.3142
    BACKGROUND: The monocled cobra (Naja kaouthia) is a medically important venomous snake in Southeast Asia. Its venom has been shown to vary geographically in relation to venom composition and neurotoxic activity, indicating vast diversity of the toxin genes within the species. To investigate the polygenic trait of the venom and its locale-specific variation, we profiled and compared the venom gland transcriptomes of N. kaouthia from Malaysia (NK-M) and Thailand (NK-T) applying next-generation sequencing (NGS) technology.

    METHODS: The transcriptomes were sequenced on the Illumina HiSeq platform, assembled and followed by transcript clustering and annotations for gene expression and function. Pairwise or multiple sequence alignments were conducted on the toxin genes expressed. Substitution rates were studied for the major toxins co-expressed in NK-M and NK-T.

    RESULTS AND DISCUSSION: The toxin transcripts showed high redundancy (41-82% of the total mRNA expression) and comprised 23 gene families expressed in NK-M and NK-T, respectively (22 gene families were co-expressed). Among the venom genes, three-finger toxins (3FTxs) predominated in the expression, with multiple sequences noted. Comparative analysis and selection study revealed that 3FTxs are genetically conserved between the geographical specimens whilst demonstrating distinct differential expression patterns, implying gene up-regulation for selected principal toxins, or alternatively, enhanced transcript degradation or lack of transcription of certain traits. One of the striking features that elucidates the inter-geographical venom variation is the up-regulation of α-neurotoxins (constitutes ∼80.0% of toxin's fragments per kilobase of exon model per million mapped reads (FPKM)), particularly the long-chain α-elapitoxin-Nk2a (48.3%) in NK-T but only 1.7% was noted in NK-M. Instead, short neurotoxin isoforms were up-regulated in NK-M (46.4%). Another distinct transcriptional pattern observed is the exclusively and abundantly expressed cytotoxin CTX-3 in NK-T. The findings suggested correlation with the geographical variation in proteome and toxicity of the venom, and support the call for optimising antivenom production and use in the region. Besides, the current study uncovered full and partial sequences of numerous toxin genes from N. kaouthia which have not been reported hitherto; these include N. kaouthia-specific l-amino acid oxidase (LAAO), snake venom serine protease (SVSP), cystatin, acetylcholinesterase (AChE), hyaluronidase (HYA), waprin, phospholipase B (PLB), aminopeptidase (AP), neprilysin, etc. Taken together, the findings further enrich the snake toxin database and provide deeper insights into the genetic diversity of cobra venom toxins.

    Matched MeSH terms: Transcriptome
  8. Woon JS, King PJH, Mackeen MM, Mahadi NM, Wan Seman WMK, Broughton WJ, et al.
    Mol Biotechnol, 2017 Jul;59(7):271-283.
    PMID: 28573450 DOI: 10.1007/s12033-017-0015-x
    Coptotermes curvignathus is a termite that, owing to its ability to digest living trees, serves as a gold mine for robust industrial enzymes. This unique characteristic reflects the presence of very efficient hydrolytic enzyme systems including cellulases. Transcriptomic analyses of the gut of C. curvignathus revealed that carbohydrate-active enzymes (CAZy) were encoded by 3254 transcripts and that included 69 transcripts encoding glycoside hydrolase family 7 (GHF7) enzymes. Since GHF7 enzymes are useful to the biomass conversion industry, a gene encoding for a GHF7 enzyme (Gh1254) was synthesized, sub-cloned and expressed in the methylotrophic yeast Pichia pastoris. Expressed GH1254 had an apparent molecular mass of 42 kDa, but purification was hampered by its low expression levels in shaken flasks. To obtain more of the enzyme, GH1254 was produced in a bioreactor that resulted in a fourfold increase in crude enzyme levels. The purified enzyme was active towards soluble synthetic substrates such as 4-methylumbelliferyl-β-D-cellobioside, 4-nitrophenyl-β-D-cellobioside and 4-nitrophenyl-β-D-lactoside but was non-hydrolytic towards Avicel or carboxymethyl cellulose. GH1254 catalyzed optimally at 35 °C and maintained 70% of its activity at 25 °C. This enzyme is thus potentially useful in food industries employing low-temperature conditions.
    Matched MeSH terms: Transcriptome
  9. Ab Mutalib NS, Othman SN, Mohamad Yusof A, Abdullah Suhaimi SN, Muhammad R, Jamal R
    PeerJ, 2016;4:e2119.
    PMID: 27350898 DOI: 10.7717/peerj.2119
    Background. Papillary thyroid carcinoma (PTC) is the commonest thyroid malignancy originating from the follicle cells in the thyroid. Despite a good overall prognosis, certain high-risk cases as in those with lymph node metastasis (LNM) have progressive disease and poorer prognosis. MicroRNAs are a class of non-protein-coding, 19-24 nucleotides single-stranded RNAs which regulate gene expression and these molecules have been shown to play a role in LNM. The integrated analysis of miRNAs and gene expression profiles together with transcription factors (TFs) has been shown to improve the identification of functional miRNA-target gene-TF relationships, providing a more complete view of molecular events underlying metastasis process. Objectives. We reanalyzed The Cancer Genome Atlas (TCGA) datasets on PTC to identify differentially expressed miRNAs/genes in PTC patients with LNM-positive (LNM-P) versus lymph node negative (LNN) PTC patients and to investigate the miRNA-gene-TF regulatory circuit that regulate LNM in PTC. Results. PTC patients with LNM (PTC LNM-P) have a significantly shorter disease-free survival rate compared to PTC patients without LNM (PTC LNN) (Log-rank Mantel Cox test, p = 0.0049). We identified 181 significantly differentially expressed miRNAs in PTC LNM-P versus PTC LNN; 110 were upregulated and 71 were downregulated. The five topmost deregulated miRNAs were hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204. In addition, 395 miRNAs were differentially expressed between PTC LNM-P and normal thyroid while 400 miRNAs were differentially expressed between PTC LNN and normal thyroid. We found four significant enrichment pathways potentially involved in metastasis to the lymph nodes, namely oxidative phosphorylation (OxPhos), cell adhesion molecules (CAMs), leukocyte transendothelial migration and cytokine-cytokine receptor interaction. OxPhos was the most significantly perturbed pathway (p = 4.70E-06) involving downregulation of 90 OxPhos-related genes. Significant interaction of hsa-miR-301b with HLF, HIF and REL/NFkB transcription factors were identified exclusively in PTC LNM-P versus PTC LNN. Conclusion. We found evidence of five miRNAs differentially expressed in PTC LNM-P. Alteration in OxPhos pathway could be the central event in metastasis to the lymph node in PTC. We postulate that hsa-miR-301b might be involved in regulating LNM in PTC via interactions with HLF, HIF and REL/NFkB. To the best of our knowledge, the roles of these TFs have been studied in PTC but the precise role of this miRNA with these TFs in LNM in PTC has not been investigated.
    Matched MeSH terms: Transcriptome
  10. Kumaresan V, Pasupuleti M, Arasu MV, Al-Dhabi NA, Arshad A, Amin SMN, et al.
    Mol Biol Rep, 2018 Dec;45(6):2511-2523.
    PMID: 30306509 DOI: 10.1007/s11033-018-4418-y
    Snakehead murrel, Channa striatus is an economically important aquatic species in Asia and are widely cultured and captured because of its nutritious and medicinal values. Their growth is predominantly affected by epizootic ulcerative syndrome (EUS) which is primarily caused by an oomycete fungus, Aphanomyces invadans. However, the molecular mechanism of immune response in murrel against this infection is still not clear. In this study, transcriptome technique was used to understand the molecular changes involved in C. striatus during A. invadans infection. RNA from the control (CF) and infected fish (IF) groups were sequenced using Illumina Hi-seq sequencing technology. For control group, 28,952,608 clean reads were generated and de novo assembly was performed to produce 60,753 contigs. For fungus infected group, 25,470,920 clean reads were obtained and assembled to produce 58,654 contigs. Differential gene expression analysis revealed that a total of 146 genes were up-regulated and 486 genes were down regulated. Most of the differentially expressed genes were involved in innate immune mechanism such as pathogen recognition, signalling and antimicrobial mechanisms. Interestingly, few adaptive immune genes, especially immunoglobulins were also significantly up regulated during fungal infection. Also, the results were validated by qRT-PCR analysis. These results indicated the involvement of various immune genes involved in both innate and adaptive immune mechanism during fungal infection in C. striatus which provide new insights into murrel immune mechanisms against A. invadans.
    Matched MeSH terms: Transcriptome
  11. Chan SN, Low END, Raja Ali RA, Mokhtar NM
    Intest Res, 2018 Jul;16(3):374-383.
    PMID: 30090036 DOI: 10.5217/ir.2018.16.3.374
    Inflammatory bowel disease (IBD), which comprises of Crohn's disease and ulcerative colitis, is an idiopathic relapsing and remitting disease in which the interplay of different environment, microbial, immunological and genetic factors that attribute to the progression of the disease. Numerous studies have been conducted in multiple aspects including clinical, endoscopy and histopathology for the diagnostics and treatment of IBD. However, the molecular mechanism underlying the aetiology and pathogenesis of IBD is still poorly understood. This review tries to critically assess the scientific evidence at the transcriptomic level as it would help in the discovery of RNA molecules in tissues or serum between the healthy and diseased or different IBD subtypes. These molecular signatures could potentially serve as a reliable diagnostic or prognostic biomarker. Researchers have also embarked on the study of transcriptome to be utilized in targeted therapy. We focus on the evaluation and discussion related to the publications reporting the different approaches and techniques used in investigating the transcriptomic changes in IBD with the intention to offer new perspectives to the landscape of the disease.
    Matched MeSH terms: Transcriptome
  12. Govender N, Senan S, Mohamed-Hussein ZA, Isa MNM, Yaakob Z, Ratnam W
    Data Brief, 2018 Dec;21:71-74.
    PMID: 30338276 DOI: 10.1016/j.dib.2018.09.081
    Jatropha curcas L. or the physic nut is a monoecious shrub belonging to the Euphorbiaceae family. The plant is an ideal feedstock for biodiesel production; oil-rich seed (37-42%), has a broad range of growth habitat such as arid, semi-arid and tropical and a relatively feasible process for conversion of crude oil into biodiesel. The major constraint affecting the success of large-scale J. curcas plantation is seed yield inconsistency. Numerous research projects conducted on J. curcas with integrated genetic, genomic and transcriptomic approaches have been applied on the leaf, apical meristem, flower, root and fruit tissues. However, to date, no genomics data of J. curcas shoot system are publicly available, despite its importance in understanding flowering, fruiting and seed set qualities targeted for yield improvement. Here, we present eighteen sets of shoot and inflorescence transcriptomes generated from J. curcas plants with contrasting yields. Raw reads of the RNA-seq data are found in NCBI׳s Sequence Read Archive (SRA) database with the accession number SRP090662 (https://www.ncbi.nlm.nih.gov/sra/?term=SRP090662). This transcriptomic data could be integrated with the present genomic resources for in depth understanding of J. curcas reproductive system.
    Matched MeSH terms: Transcriptome
  13. Nagappan J, Chin CF, Angel LPL, Cooper RM, May ST, Low EL
    Biotechnol Lett, 2018 Dec;40(11-12):1541-1550.
    PMID: 30203158 DOI: 10.1007/s10529-018-2603-7
    The first and most crucial step of all molecular techniques is to isolate high quality and intact nucleic acids. However, DNA and RNA isolation from fungal samples are usually difficult due to the cell walls that are relatively unsusceptible to lysis and often resistant to traditional extraction procedures. Although there are many extraction protocols for Ganoderma species, different extraction protocols have been applied to different species to obtain high yields of good quality nucleic acids, especially for genome and transcriptome sequencing. Ganoderma species, mainly G. boninense causes the basal stem rot disease, a devastating disease that plagues the oil palm industry. Here, we describe modified DNA extraction protocols for G. boninense, G. miniatocinctum and G. tornatum, and an RNA extraction protocol for G. boninense. The modified salting out DNA extraction protocol is suitable for G. boninense and G. miniatocinctum while the modified high salt and low pH protocol is suitable for G. tornatum. The modified DNA and RNA extraction protocols were able to produce high quality genomic DNA and total RNA of ~ 140 to 160 µg/g and ~ 80 µg/g of mycelia respectively, for Single Molecule Real Time (PacBio Sequel® System) and Illumina sequencing. These protocols will benefit those studying the oil palm pathogens at nucleotide level.
    Matched MeSH terms: Transcriptome
  14. Abdul Rahman SN, Bakar MFA, Singham GV, Othman AS
    3 Biotech, 2019 Nov;9(11):388.
    PMID: 31656726 DOI: 10.1007/s13205-019-1921-3
    In this study, RNA sequencing of several Hevea brasiliensis clones grown in Malaysia with different annual rubber production yields and disease resistance was performed on the Illumina platform. A total of 29,862,548 reads were generated, resulting in 101,269 assembled transcripts that were used as the reference transcripts. A similarity search against the non-redundant (nr) protein databases presented 83,771 (83%) positive BLASTx hits. The transcriptome was annotated using gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Pfam database. A search for putative molecular markers was performed to identify single-nucleotide polymorphisms (SNPs). Overall, 3,210,629 SNPs were detected and a total of 1314 SNPs associated with the genes involved in MVA and MEP pathways were identified. A total of 176 SNP primer pairs were designed from sequences that were related to the MVA and MEP pathways. The transcriptome of RRIM 3001 and RRIM 712 were subjected to pairwise comparison and the results revealed that there were 1262 significantly differentially expressed genes unique to RRIM 3001, 1499 significantly differentially expressed genes unique to RRIM 712 and several genes related to the MVA and MEP pathways such as AACT, HMGS, PMK, MVD, DXS and HDS were included. The results will facilitate the characterization of H. brasiliensis transcriptomes and the development of a new set of molecular markers in the form of SNPs from transcriptome assembly for the genotype identification of various rubber varieties with superior traits in Malaysia.
    Matched MeSH terms: Transcriptome
  15. Ng HF, Ngeow YF, Yap SF, Zin T, Tan JL
    Int J Med Microbiol, 2019 Nov 18.
    PMID: 31784213 DOI: 10.1016/j.ijmm.2019.151380
    Previously, we characterized 7C, a laboratory-derived tigecycline-resistant mutant of Mycobacterium abscessus ATCC 19977, and found that the resistance was conferred by a mutation in MAB_3542c, which encodes an RshA-like protein. In M. tuberculosis, RshA is an anti-sigma factor that negatively regulates the SigH-dependent heat/oxidative stress response. We hypothesized that this mutation in 7C might dysregulate the stress response which has been generally linked to antibiotic resistance. In this study, we tested this hypothesis by subjecting 7C to transcriptomic dissection using RNA sequencing. We found an over-expression of genes encoding the SigH ortholog, chaperones and oxidoreductases. In line with these findings, 7C demonstrated better survival against heat shock when compared to the wild-type ATCC 19977. Another interesting observation from the RNA-Seq analysis was the down-regulation of ribosomal protein-encoding genes. This highlights the possibility of ribosomal conformation changes which could negatively affect the binding of tigecycline to its target, leading to phenotypic resistance. We also demonstrated that transient resistance to tigecycline could be induced in the ATCC 19977 by elevated temperature. Taken together, these findings suggest that dysregulated stress response may be associated with tigecycline resistance in M. abscessus.
    Matched MeSH terms: Transcriptome
  16. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Wee WY, Li Y, et al.
    Sci Rep, 2019 05 21;9(1):7664.
    PMID: 31113978 DOI: 10.1038/s41598-019-43979-w
    Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.
    Matched MeSH terms: Transcriptome
  17. Hussin NA, Najimudin N, Ab Majid AH
    Heliyon, 2019 Dec;5(12):e02969.
    PMID: 31872129 DOI: 10.1016/j.heliyon.2019.e02969
    The subterranean termite Globitermus sulphureus is an important Southeast Asian pest with limited genomic resources that causes damages to agriculture crops and building structures. Therefore, the main goal of this study was to survey the G. sulphureus transcriptome composition. Here, we performed de novo transcriptome for G. sulphureus workers' heads using Illumina HiSeq paired-end sequencing technology. A total of 88, 639, 408 clean reads were collected and assembled into 243, 057 transcripts and 193, 344 putative genes. The transcripts were annotated with the Trinotate pipeline. In total, 27, 061 transcripts were successfully annotated using BLASTX against the SwissProt database and 17, 816 genes were assigned to 47, 598 GO terms. We classified 14, 223 transcripts into COG classification, resulting in 25 groups of functional annotations. Next, a total of 12, 194 genes were matched in the KEGG pathway and 392 metabolic pathways were predicted based on the annotation. Moreover, we detected two endogenous cellulases in the sequences. The RT-qPCR analysis showed that there were significant differences in the expression levels of two genes β-glucosidase and endo-β-1,4-glucanase between worker and soldier heads of G. sulphureus. This is the first study to characterize the complete head transcriptome of a higher termite G. sulphureus using a high-throughput sequencing. Our study may provide an overview and comprehensive molecular resource for comparative studies of the transcriptomics and genomics of termites.
    Matched MeSH terms: Transcriptome
  18. Charon J, Grigg MJ, Eden JS, Piera KA, Rana H, William T, et al.
    PLoS Pathog, 2019 12;15(12):e1008216.
    PMID: 31887217 DOI: 10.1371/journal.ppat.1008216
    Eukaryotes of the genus Plasmodium cause malaria, a parasitic disease responsible for substantial morbidity and mortality in humans. Yet, the nature and abundance of any viruses carried by these divergent eukaryotic parasites is unknown. We investigated the Plasmodium virome by performing a meta-transcriptomic analysis of blood samples taken from patients suffering from malaria and infected with P. vivax, P. falciparum or P. knowlesi. This resulted in the identification of a narnavirus-like sequence, encoding an RNA polymerase and restricted to P. vivax samples, as well as an associated viral segment of unknown function. These data, confirmed by PCR, are indicative of a novel RNA virus that we term Matryoshka RNA virus 1 (MaRNAV-1) to reflect its analogy to a "Russian doll": a virus, infecting a parasite, infecting an animal. Additional screening revealed that MaRNAV-1 was abundant in geographically diverse P. vivax derived from humans and mosquitoes, strongly supporting its association with this parasite, and not in any of the other Plasmodium samples analyzed here nor Anopheles mosquitoes in the absence of Plasmodium. Notably, related bi-segmented narnavirus-like sequences (MaRNAV-2) were retrieved from Australian birds infected with a Leucocytozoon-a genus of eukaryotic parasites that group with Plasmodium in the Apicomplexa subclass hematozoa. Together, these data support the establishment of two new phylogenetically divergent and genomically distinct viral species associated with protists, including the first virus likely infecting Plasmodium parasites. As well as broadening our understanding of the diversity and evolutionary history of the eukaryotic virosphere, the restriction to P. vivax may be of importance in understanding P. vivax-specific biology in humans and mosquitoes, and how viral co-infection might alter host responses at each stage of the P. vivax life-cycle.
    Matched MeSH terms: Transcriptome
  19. Tamizi AA, Nazaruddin NH, Yeong WC, Mohd Radzi MF, Jaafar MA, Sekeli R
    Data Brief, 2020 Apr;29:105235.
    PMID: 32071998 DOI: 10.1016/j.dib.2020.105235
    Heterotrigona itama is a species of stingless bee recently domesticated (or reared) for honey production in a few Southeast Asian countries namely Malaysia and Indonesia. Being categorized in the clade Corbiculata together with the honeybees (Apis spp.) and bumble bees (Bombus spp.), the stingless bees are highly social in which the colony members are subjected to labor division where a queen functions as the reproductive caste. In this data article, we provide a resource encompassing a transcriptome profile (de novo assembled) from H. itama queen larva - the first report of transcriptome assembly for this species. The generated data is pivotal for the characterization of important genes and biological pathways in order to further improve our understanding on the developmental biology, behavior, social structure and ecological needs of this eusocial hymenopteran insect from the molecular aspect. The raw RNA sequencing data is available at NCBI Sequence Read Archive (SAR) under the accession number SRP230250 and the assembled reads are deposited at DDBJ/EMBL/Genbank as Transcriptome Shotgun Assembly (TSA) under the accession GIIH00000000.
    Matched MeSH terms: Transcriptome
  20. Mohd Ghani F, Bhassu S
    PeerJ, 2019;7:e8107.
    PMID: 31875142 DOI: 10.7717/peerj.8107
    The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
    Matched MeSH terms: Transcriptome
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links