Displaying publications 121 - 140 of 197 in total

Abstract:
Sort:
  1. Tan CH, Liew JL, Tan NH, Ismail AK, Maharani T, Khomvilai S, et al.
    Toxicon, 2017 Dec 15;140:32-37.
    PMID: 29051104 DOI: 10.1016/j.toxicon.2017.10.014
    Arboreal pit vipers of the Trimeresurus complex group are medically important species in Indonesia (west of Wallace's line), but there is no specific antivenom produced in the country for treating related envenomation. Instead, the exiting trivalent Indonesian antivenom, Biosave® Serum Anti Bisa Ular (SABU, indicated for envenoming by Malayan pit viper, Javan spitting cobra and banded krait) is often misused to treat Trimeresus envenoming resulting in poor therapeutic outcome. Here, we investigated the cross-reactivity and neutralization capability of Thai Green Pit Viper Antivenom (GPVAV) against the venoms of four Indonesian Trimeresurus species. Consistently, the venoms of Trimeresurus (Trimeresurus) insularis, Trimeresurus (Trimeresurus) purpureomaculatus, Trimeresurus (Parias) hageni and Trimeresurus (Craspedocephalus) puniceus of Indonesia showed stronger immunoreactivity on ELISA to GPVAV than to Biosave®. The findings correlated with in vivo neutralization results, whereby GPVAV was far more effective than Biosave® in cross-neutralizing the lethality of the venoms by a potency of at least 13 to 80 times higher. The efficacy of GPVAV is partly attributable to its cross-neutralization of the procoagulant effect of the venoms, thereby mitigating the progression of venom-induced consumptive coagulopathy. The paraspecific effectiveness of GPVAV against Trimeresurus species envenoming in Indonesia await further clinical investigation.
    Matched MeSH terms: Crotalid Venoms/immunology*
  2. Tan KY, Liew ST, Tan QY, Abdul-Rahman FN, Azmi NI, Sim SM, et al.
    Toxicon, 2019 Mar 15;160:55-58.
    PMID: 30797900 DOI: 10.1016/j.toxicon.2019.02.010
    Gel filtration chromatography and gel electrophoresis revealed minimal protein degradation in lyophilized antivenoms which were 2-year expired (Hemato Polyvalent, Neuro Polyvalent; Thailand) and 18-year expired (Hemato Bivalent, Neuro Bivalent; Taiwan). All expired antivenoms retained immunological binding activity, and were able to neutralize the hemotoxic or neurotoxic as well as lethal effects of the homologous snake venoms. The findings show that antivenoms under proper storage conditions may remain relatively stable beyond the indicated shelf life.
    Matched MeSH terms: Snake Venoms/antagonists & inhibitors
  3. Lingam TMC, Tan KY, Tan CH
    Toxicon, 2019 Oct;168:95-97.
    PMID: 31254600 DOI: 10.1016/j.toxicon.2019.06.227
    Daboia siamensis monovalent antivenom (DSMAV, Thailand) exhibited comparable immunoreactivity toward the venoms of eastern Russell's vipers from Thailand and Indonesia. It also effectively neutralized the procoagulant and lethal effects of both venoms, showing high potency. The Indonesian heterologous trivalent antivenom SABU (Serum Anti Bisa Ular), however, has very weak immunoreactivity and it failed to neutralize the Russell's viper venoms. DSMAV appears to be the appropriate choice of antivenom to treat Russell's viper envenoming.
    Matched MeSH terms: Viper Venoms/toxicity*
  4. Tan NH, Saifuddin MN
    Toxicon, 1990;28(4):385-92.
    PMID: 2190359
    The major hemorrhagin (termed hannahtoxin) of the venom of Ophiophagus hannah (king cobra) was purified to electrophoretic homogeneity by DEAE-Sephacel ion exchange chromatography, Sephadex G-200 gel filtration followed by a second DEAE-Sephacel chromatography. Proteolytic activity was associated with the hemorrhagic activity throughout the purification procedures. Hannahtoxin constituted approximately 2% of the crude venom. It had an isoelectric point of 5.3, a carbohydrate content of 12%, a mol. wt of 66,000 as determined by SDS-polyacrylamide gel electrophoresis and 63,000 as determined by gel filtration. It contains 1 mole of Zn per mole of protein. The minimum hemorrhage doses for hannahtoxin are 0.7 microgram and 75 micrograms, respectively, in rabbits and in mice. Hannahtoxin was not lethal to mice at a dose of 2 mg/kg (i.v.) but killed rabbits at doses above 0.18 mg/kg (i.v.). It liberated protein from rabbit glomerular basement membrane but not rat glomerular basement membrane. Treatment of the hemorrhagin with EDTA and 1,10-phenanthroline eliminated both the proteolytic and hemorrhagic activities completely.
    Matched MeSH terms: Elapid Venoms/analysis*
  5. Lazarev VN, Polina NF, Shkarupeta MM, Kostrjukova ES, Vassilevski AA, Kozlov SA, et al.
    Antimicrob Agents Chemother, 2011 Nov;55(11):5367-9.
    PMID: 21876050 DOI: 10.1128/AAC.00449-11
    Spider venoms are vast natural pharmacopoeias selected by evolution. The venom of the ant spider Lachesana tarabaevi contains a wide variety of antimicrobial peptides. We tested six of them (latarcins 1, 2a, 3a, 4b, 5, and cytoinsectotoxin 1a) for their ability to suppress Chlamydia trachomatis infection. HEK293 cells were transfected with plasmid vectors harboring the genes of the selected peptides. Controlled expression of the transgenes led to a significant decrease of C. trachomatis viability inside the infected cells.
    Matched MeSH terms: Spider Venoms/metabolism*
  6. Tan CH, Tan NH, Sim SM, Fung SY, Gnanathasan CA
    Toxicon, 2015 Jan;93:164-70.
    PMID: 25451538 DOI: 10.1016/j.toxicon.2014.11.231
    The hump-nosed pit viper, Hypanle hypnale, contributes to snakebite mortality and morbidity in Sri Lanka. Studies showed that the venom is hemotoxic and nephrotoxic, with some biochemical and antigenic properties similar to the venom of Calloselasma rhodostoma (Malayan pit viper). To further characterize the complexity composition of the venom, we investigated the proteome of a pooled venom sample from >10 Sri Lankan H. hypnale with reverse-phase high performance liquid chromatography (rp-HPLC), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and peptide sequencing (tandem mass-spectrometry and/or N-terminal sequencing). The findings ascertained that two phospholipase A2 subtypes (E6-PLA2, W6-PLA2) dominate the toxin composition by 40.1%, followed by snake venom metalloproteases (36.9%), l-amino acid oxidase (11.9%), C-type lectins (5.5%), serine proteases (3.3%) and others (2.3%). The presence of the major toxins correlates with the venom's major pathogenic effects, indicating these to be the principal target toxins for antivenom neutralization. This study supports the previous finding of PLA2 dominance in the venom but diverges from the view that H. hypnale venom has low expression of large enzymatic toxins. The knowledge of the composition and abundance of toxins is essential to elucidate the pathophysiology of H. hypnale envenomation and to optimize antivenom formulation in the future.
    Matched MeSH terms: Crotalid Venoms/chemistry*
  7. Yap MK, Tan NH, Sim SM, Fung SY
    Toxicon, 2013 Jun;68:18-23.
    PMID: 23537711 DOI: 10.1016/j.toxicon.2013.02.017
    Existing protocols for antivenom treatment of snake envenomations are generally not well optimized due partly to inadequate knowledge of the toxicokinetics of venoms. The toxicokinetics of Naja sputatrix (Javan spitting cobra) venom was investigated following intravenous and intramuscular injections of the venom into rabbits using double-sandwich ELISA. The toxicokinetics of the venom injected intravenously fitted a two-compartment model. When the venom was injected intramuscularly, the serum concentration-time profile exhibited a more complex absorption and/or distribution pattern. Nevertheless, the terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were not significantly different (p > 0.05) from that of the venom injected intravenously. The systemic bioavailability of the venom antigens injected by intramuscular route was 41.7%. Our toxicokinetic finding is consistent with other reports, and may indicate that some cobra venom toxins have high affinity for the tissues at the site of injection. Our results suggest that the intramuscular route of administration doesn't significantly alter the toxicokinetics of N. sputatrix venom although it significantly reduces the systemic bioavailability of the venom.
    Matched MeSH terms: Elapid Venoms/pharmacokinetics*
  8. Tan NH, Yeo KH, Jaafar MI
    Toxicon, 1992 Dec;30(12):1609-20.
    PMID: 1488770
    The specificity and sensitivity of an indirect and two (an 'ordinary' and a 'rapid') double sandwich enzyme-linked immunosorbent assay (ELISA) procedures for the quantitation of Calloselasma rhodostoma (Malayan pit viper) venom were examined. The three assays were equally sensitive and the accuracy of the assays was not substantially affected by individual variation in the venom composition. The specificity of the assays was examined against 26 venoms from snakes of the families Viperidae and Elapidae. While the double sandwich ELISA procedures were sufficiently specific to be used in the clinical immunodiagnosis of C. rhodostoma bite in Malaysia, the indirect ELISA procedure exhibited extensive cross-reactivity with other Malaysian pit viper venoms. Attempts were made to improve the specificity of the indirect ELISA procedure for the quantitation of C. rhodostoma venom. A 'low ELISA cross-reactivity' venom fraction (termed VF52) was isolated from C. rhodostoma venom by repeated Sephadex G-100 gel filtration chromatography. The indirect ELISA procedure using antibodies to VF52 as immunoreagent showed an improvement in specificity. The use of the indirect ELISA procedure for the detection of C. rhodostoma antibodies was also examined and the results show that the assay was sufficiently specific to be used for retrospective diagnosis of C. rhodostoma bite in Malaysia, in particular when VF52 was used as the coating antigen.
    Matched MeSH terms: Viper Venoms/analysis*
  9. Tan NH, Ponnudurai G, Chung MC
    Toxicon, 1997 Jun;35(6):979-84.
    PMID: 9241791
    The proteolytic specificity of rhodostoxin, the major hemorrhagin from Calloselasma rhodostoma (Malayan pit viper) venom was investigated using oxidized B-chain of bovine insulin as substrate. Six peptide bonds were cleaved: Ser9-Hist10, His10-Leu11, Ala14-Leu15, Tyr16-Leu17, Gly20-Glu21 and Phe24-Phe25. Deglycosylated rhodostoxin, however, cleaved primarily at Arg22-Gly23.
    Matched MeSH terms: Crotalid Venoms/metabolism*
  10. Lim WJ, Yap AT, Mangudi M, Hu CY, Yeo CY, Eyo ZW, et al.
    Drug Test Anal, 2017 Mar;9(3):491-499.
    PMID: 27367276 DOI: 10.1002/dta.2034
    Matched MeSH terms: Amphibian Venoms/chemistry*
  11. Singh N, Menon V
    Med J Malaysia, 1973 Sep;28(1):47-9.
    PMID: 4273785
    Matched MeSH terms: Venoms/poisoning*
  12. Tan CH, Wong KY, Tan KY, Tan NH
    J Proteomics, 2017 08 23;166:48-58.
    PMID: 28688916 DOI: 10.1016/j.jprot.2017.07.002
    The venom proteome of Laticauda colubrina (Bali, Indonesia) was elucidated by nano-ESI-LCMS/MS of the venom reverse-phase HPLC fractions. Altogether 31 distinct forms of proteins were identified and clustered into three toxin families: three-finger toxin (3FTX, 66.12% of total venom proteins), phospholipase A2 (PLA2, 33.26%) and cysteine-rich secretory protein (CRiSP, 0.05%). The 3FTX were α-neurotoxins (five long neurotoxins, LNTX, 48.87%; two short neurotoxins, SNTX, 16.94%) and a trace amount of two cytotoxins (CTX, 0.31%). PLA2 were present with a large diversity of homologues (≥20 forms), however none was annotated to the lethal proteoform reported previously. The venom is highly lethal in mice (LD50=0.10μg/g) and this is driven primarily by the SNTX and LNTX (LD50=0.05-0.13μg/g), since the PLA2 proteins were non-lethal up to 2μg/g (20-time the venom LD50). The SNTX and LNTX were effectively cross-neutralized by the heterologous Sea Snake Antivenom (SSAV, Australian product) (potency=0.27mg toxin per ml antivenom, and 0.40mg/ml, respectively), corroborating the cross-neutralization of the whole venom (potency=1.09mg/ml) and its antigenic immunoreactivity toward SSAV. Furthermore, compared with earlier studies, the present work reveals geographical variation of venom composition for L. colubrina which may have implication for the evolution and conservation of the species.

    BIOLOGICAL SIGNIFICANCE: Laticauda colubrina (yellow-lipped sea krait) is a widely distributed, semi-aquatic venomous snake species. The venom proteome at the level of protein family is unsophisticated and consistent with its restricted prey selection. Nonetheless, the subproteomic findings revealed geographical variability of the venom for this widely distributed species. In contrast to two previous reports, the results for the Balinese L. colubrina venom showed that LNTX Neurotoxin a and Neurotoxin b were co-existent while the PLA2 lethal subtype (PLA-II) was undetected by means of LCMS/MS and by in vivo assay. This is an observable trait of L. colubrina considered divergent from specimens previously studied for the Philippines and the Solomon Islands. The stark geographical variation might be reflective of trophic adaptation following evolutionary arms race between the snake and the prey (eels) in different localities. The preferred trait would likely propagate and remain significant within the geographical population, since the strong behaviour of site fidelity in the species would have minimized gene flow between distant populations. Meanwhile, the in vivo neutralization study verified that the efficacy of the heterologous Sea Snake Antivenom (Australian product) is attributable to the cross-neutralization of SNTX and LNTX, two principal lethal toxins that made up the bulk of L. colubrina venom proteins. The findings also implied that L. colubrina, though could be evolutionarily more related to the terrestrial elapids, has evolved a much streamlined, neurotoxin- and PLA2-predominated venom arsenal, with major antigenicity shared among the true sea snakes and the Australo-Papuan elapids. The findings enrich our current understanding of the complexity of L. colubrina venom and the neutralizing spectrum of antivenom against the principal toxins from this unique elapid lineage.

    Matched MeSH terms: Elapid Venoms/immunology*
  13. Chan KE
    PMID: 524154
    Matched MeSH terms: Crotalid Venoms/pharmacology
  14. Tsai IH, Chen YH, Wang YM, Liau MY, Lu PJ
    Arch Biochem Biophys, 2001 Mar 15;387(2):257-64.
    PMID: 11370849
    To investigate the geographic variations in venoms of two medically important pitvipers, we have purified and characterized the phospholipases A2 (PLA2s) from the pooled venoms of Calloselasma rhodostoma from Malaysia, Thailand, Indonesia, and Vietnam, as well as the individual venom of Trimeresurus mucrosquamatus collected from both North and South Taiwan. Enzymatic and pharmacological activities of the purified PLA2s were also investigated. The complete amino acid sequences of the purified PLA2s were determined by sequencing the corresponding cDNAs from the venom gland and shown to be consistent with their molecular weight data and the N-terminal sequences. All the geographic venom samples of C. rhodostoma contain a major noncatalytic basic PLA2-homolog and two or three acidic PLA2s in different proportions. These acidic PLA2s contain Glu6-substitutions and show distinct inhibiting specificities toward the platelets from human and rabbit. We also found that the T. mucrosquamatus venoms from North Taiwan but not those from South Taiwan contain an Arg6-PLA2 designated as TmPL-III. Its amino acid sequence is reported for the first time. This enzyme is structurally almost identical to the low- or nonexpressed Arg6-PLA2 from C. rhodostoma venom gland, and thus appears to be a regressing venom component in both of the Asian pitvipers.
    Matched MeSH terms: Crotalid Venoms/enzymology*; Crotalid Venoms/genetics*; Crotalid Venoms/pharmacology; Crotalid Venoms/chemistry
  15. Chaisakul J, Alsolaiss J, Charoenpitakchai M, Wiwatwarayos K, Sookprasert N, Harrison RA, et al.
    PLoS Negl Trop Dis, 2019 10;13(10):e0007338.
    PMID: 31644526 DOI: 10.1371/journal.pntd.0007338
    BACKGROUND: Daboia siamensis (Eastern Russell's viper) is a medically important snake species found widely distributed across Southeast Asia. Envenomings by this species can result in systemic coagulopathy, local tissue injury and/or renal failure. While administration of specific antivenom is an effective treatment for Russell's viper envenomings, the availability of, and access to, geographically-appropriate antivenom remains problematic in many rural areas. In this study, we determined the binding and neutralizing capability of antivenoms manufactured by the Thai Red Cross in Thailand against D. siamensis venoms from four geographical locales: Myanmar, Taiwan, China and Thailand.

    METHODOLOGY/PRINCIPLE FINDINGS: The D. siamensis monovalent antivenom displayed extensive recognition and binding to proteins found in D. siamensis venom, irrespective of the geographical origin of those venoms. Similar immunological characteristics were observed with the Hemato Polyvalent antivenom, which also uses D. siamensis venom as an immunogen, but binding levels were dramatically reduced when using comparator monovalent antivenoms manufactured against different snake species. A similar pattern was observed when investigating neutralization of coagulopathy, with the procoagulant action of all four geographical venom variants neutralized by both the D. siamensis monovalent and the Hemato Polyvalent antivenoms, while the comparator monovalent antivenoms were ineffective. These in vitro findings translated into therapeutic efficacy in vivo, as the D. siamensis monovalent antivenom was found to effectively protect against the lethal effects of all four geographical venom variants preclinically. Assessments of in vivo nephrotoxicity revealed that D. siamensis venom (700 μg/kg) significantly increased plasma creatinine and blood urea nitrogen levels in anaesthetised rats. The intravenous administration of D. siamensis monovalent antivenom at three times higher than the recommended scaled therapeutic dose, prior to and 1 h after the injection of venom, resulted in reduced levels of markers of nephrotoxicity and prevented renal morphological changes, although lower doses had no therapeutic effect.

    CONCLUSIONS/SIGNIFICANCE: This study highlights the potential broad geographical utility of the Thai D. siamensis monovalent antivenom for treating envenomings by the Eastern Russell's viper. However, only the early delivery of high antivenom doses appears to be capable of preventing venom-induced nephrotoxicity.

    Matched MeSH terms: Venoms; Viper Venoms/antagonists & inhibitors; Viper Venoms/immunology; Viper Venoms/toxicity*
  16. Tan CH, Tan KY, Yap MK, Tan NH
    Sci Rep, 2017 02 27;7:43237.
    PMID: 28240232 DOI: 10.1038/srep43237
    Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It displays distinct sexual dimorphism and prey specificity, however its venomics and inter-sex venom variation have not been thoroughly investigated. Applying reverse-phase HPLC, we demonstrated that the venom profiles were not significantly affected by sex and geographical locality (Peninsular Malaya, insular Penang, insular Sumatra) of the snakes. Essentially, venoms of both sexes share comparable intravenous median lethal dose (LD50) (0.56-0.63 μg/g) and cause neurotoxic envenomation in mice. LCMS/MS identified six waglerin forms as the predominant lethal principles, comprising 38.2% of total venom proteins. Fourteen other toxin-protein families identified include phospholipase A2, serine proteinase, snaclec and metalloproteinase. In mice, HPLC fractions containing these proteins showed insignificant contribution to the overall venom lethality. Besides, the unique elution pattern of approximately 34.5% of non-lethal, low molecular mass proteins (3-5 kDa) on HPLC could be potential biomarker for this primitive crotalid species. Together, the study unveiled the venom proteome of T. wagleri that is atypical among many pit vipers as it comprises abundant neurotoxic peptides (waglerins) but little hemotoxic proteinases. The findings also revealed that the venom is relatively well conserved intraspecifically despite the drastic morphological differences between sexes.
    Matched MeSH terms: Crotalid Venoms/genetics; Crotalid Venoms/isolation & purification; Crotalid Venoms/metabolism; Crotalid Venoms/toxicity*
  17. Silva A, Kuruppu S, Othman I, Goode RJ, Hodgson WC, Isbister GK
    Neurotox Res, 2017 01;31(1):11-19.
    PMID: 27401825 DOI: 10.1007/s12640-016-9650-4
    Russell's vipers are snakes of major medical importance in Asia. Russell's viper (Daboia russelii) envenoming in Sri Lanka and South India leads to a unique, mild neuromuscular paralysis, not seen in other parts of the world where the snake is found. This study aimed to identify and pharmacologically characterise the major neurotoxic components of Sri Lankan Russell's viper venom. Venom was fractionated using size exclusion chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). In vitro neurotoxicities of the venoms, fractions and isolated toxins were measured using chick biventer and rat hemidiaphragm preparations. A phospholipase A2 (PLA2) toxin, U1-viperitoxin-Dr1a (13.6 kDa), which constitutes 19.2 % of the crude venom, was isolated and purified using HPLC. U1-viperitoxin-Dr1a produced concentration-dependent in vitro neurotoxicity abolishing indirect twitches in the chick biventer nerve-muscle preparation, with a t 90 of 55 ± 7 min only at 1 μM. The toxin did not abolish responses to acetylcholine and carbachol indicating pre-synaptic neurotoxicity. Venom, in the absence of U1-viperitoxin-Dr1a, did not induce in vitro neurotoxicity. Indian polyvalent antivenom, at the recommended concentration, only partially prevented the neurotoxic effects of U1-viperitoxin-Dr1a. Liquid chromatography mass spectrometry analysis confirmed that U1-viperitoxin-Dr1a was the basic S-type PLA2 toxin previously identified from this venom (NCBI-GI: 298351762; SwissProt: P86368). The present study demonstrates that neurotoxicity following Sri Lankan Russell's viper envenoming is primarily due to the pre-synaptic neurotoxin U1-viperitoxin-Dr1a. Mild neurotoxicity observed in severely envenomed Sri Lankan Russell's viper bites is most likely due to the low potency of U1-viperitoxin-Dr1a, despite its high relative abundance in the venom.
    Matched MeSH terms: Viper Venoms/genetics; Viper Venoms/isolation & purification; Viper Venoms/toxicity*; Viper Venoms/chemistry
  18. Tan NH
    PMID: 19770070 DOI: 10.1016/j.cbpc.2009.09.002
    A thrombin-like enzyme, purpurase, was purified from the Cryptelytrops purpureomaculatus (mangrove pit viper) venom using high performance ion-exchange and gel filtration chromatography. The purified sample (termed purpurase) yielded a homogeneous band in SDS-polyacrylamide gel electrophoresis with a molecular weight of 35,000. The N-terminal sequence of purpurase was determined to be VVGGDECNINDHRSLVRIF and is homologous to many other venom thrombin-like enzymes. Purpurase exhibits both arginine ester hydrolase and amidase activities. Kinetic studies using tripeptide chromogenic anilide substrates showed that purpurase is not fastidious towards its substrate. The clotting times of fibrinogen by purpurase were concentration dependent, with optimum clotting activity at 3mg fibronogen/mL. The clotting activity by purpurase was in the following decreasing order: cat fibrinogen>human fibrinogen>dog fibrinogen>goat fibrinogen>rabbit fibrinogen. Reversed-phase HPLC analysis of the products of action of purpurase on bovine fibrinogen showed that only fibrinopeptide A was released. Indirect ELISA studies showed that anti-purpurase cross-reacted strongly with venoms of most crotalid venoms, indicating the snake venom thrombin-like enzymes generally possess similar epitopes. In the more specific double-sandwich ELISA, however, anti-purpurase cross-reacted only with venoms of certain species of the Trimeresurus complex, and the results support the recent proposed taxonomy changes concerning the Trimeresurus complex.
    Matched MeSH terms: Crotalid Venoms/enzymology*; Crotalid Venoms/immunology; Crotalid Venoms/isolation & purification; Crotalid Venoms/metabolism; Crotalid Venoms/pharmacology; Crotalid Venoms/chemistry
  19. Tan KY, Tan CH, Fung SY, Tan NH
    J Proteomics, 2015 Apr 29;120:105-25.
    PMID: 25748141 DOI: 10.1016/j.jprot.2015.02.012
    Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness.
    Matched MeSH terms: Cobra Venoms/poisoning*; Cobra Venoms/chemistry*
  20. Zakaria ZA, Sulaiman MR, Somchit MN, Jais AM, Ali DI
    J Pharm Pharm Sci, 2005;8(2):199-206.
    PMID: 16124931
    To determine the involvement of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway in aqueous supernatant of haruan (Channa striatus) fillet (ASH) antinociception using the acetic acid-induced abdominal constriction test.
    Matched MeSH terms: Fish Venoms/isolation & purification; Fish Venoms/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links