Displaying publications 121 - 140 of 195 in total

Abstract:
Sort:
  1. Ehrly AM
    Subsid Med, 1974;4:56-7.
    PMID: 4548779
    Matched MeSH terms: Enzymes/adverse effects; Enzymes/therapeutic use
  2. Tsai JW, Liew HJ, Jhang JJ, Hung SH, Meng PJ, Leu MY, et al.
    Fish Physiol Biochem, 2018 Apr;44(2):489-502.
    PMID: 29192359 DOI: 10.1007/s10695-017-0448-y
    The mosquitofish (Gambusia affinis) naturally inhabits freshwater (FW; 1-3‰) and seawater (SW; 28-33‰) ponds in constructed wetland. To explore the physiological status and molecular mechanisms for salinity adaptation of the mosquitofish, cytoprotective responses and osmoregulation were examined. In the field study, activation of protein quality control (PQC) mechanism through upregulation of the abundance of heat shock protein (HSP) 90 and 70 and ubiquitin-conjugated proteins was found in the mosquitofish gills from SW pond compared to the individuals of FW pond. The levels of aggregated proteins in mosquitofish gills had no significant difference between FW and SW ponds. Furthermore, the osmoregulatory responses revealed that the body fluid osmolality and muscle water contents of the mosquitofish from two ponds were maintained within a physiological range while branchial Na+/K+-ATPase (NKA) expression was higher in the individuals from SW than FW ponds. Subsequently, to further clarify whether the cellular stress responses and osmoregulation were mainly induced by hypertonicity, a laboratory salinity acclimation experiment was conducted. The results from the laboratory experiment were similar to the field study. Branchial PQC as well as NKA responses were induced by SW acclimation compared to FW-acclimated individuals. Taken together, induction of gill PQC and NKA responses implied that SW represents an osmotic stress for mosquitofish. Activation of PQC was suggested to provide an osmoprotection to prevent the accumulation of aggregated proteins. Moreover, an increase in branchial NKA responses for osmoregulatory adjustment was required for the physiological homeostasis of body fluid osmolality and muscle water content.
    Matched MeSH terms: Ubiquitin-Conjugating Enzymes/genetics; Ubiquitin-Conjugating Enzymes/metabolism
  3. Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, et al.
    Plant Physiol, 2019 02;179(2):544-557.
    PMID: 30459263 DOI: 10.1104/pp.18.01187
    Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and β-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to β-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.
    Matched MeSH terms: Enzymes/genetics*; Enzymes/metabolism
  4. Ling YP, Heng LY
    Sensors (Basel), 2010;10(11):9963-81.
    PMID: 22163450 DOI: 10.3390/s101109963
    A new alcohol oxidase (AOX) enzyme-based formaldehyde biosensor based on acrylic microspheres has been developed. Hydrophobic poly(n-butyl acrylate-N-acryloxy-succinimide) [poly(nBA-NAS)] microspheres, an enzyme immobilization matrix, was synthesized using photopolymerization in an emulsion form. AOX-poly(nBA-NAS) microspheres were deposited on a pH transducer made from a layer of photocured and self-plasticized polyacrylate membrane with an entrapped pH ionophore coated on a Ag/AgCl screen printed electrode (SPE). Oxidation of formaldehyde by the immobilized AOX resulted in the production of protons, which can be determined via the pH transducer. Effects of buffer concentrations, pH and different amount of immobilization matrix towards the biosensor's analytical performance were investigated. The formaldehyde biosensor exhibited a dynamic linear response range to formaldehyde from 0.3-316.2 mM and a sensitivity of 59.41 ± 0.66 mV/decade (R(2) = 0.9776, n = 3). The lower detection limit of the biosensor was 0.3 mM, while reproducibility and repeatability were 3.16% RSD (relative standard deviation) and 1.11% RSD, respectively (n = 3). The use of acrylic microspheres in the potentiometric formaldehyde biosensor improved the biosensor's performance in terms of response time, linear response range and long term stability when compared with thick film immobilization methods.
    Matched MeSH terms: Enzymes, Immobilized
  5. Wong FC, Ahmad M, Heng LY, Peng LB
    Talanta, 2006 Jun 15;69(4):888-93.
    PMID: 18970653 DOI: 10.1016/j.talanta.2005.11.034
    An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R(2)=0.98, n=3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90mM AChCl (R(2)=0.984, n=6). The response time of the biosensor is 12min. Based on the optimum incubation time of 15min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7mg/L of dichlorvos (17-85% inhibition, R(2)=0.991, n=9). The detection limit for dichlorvos was 0.5mg/L. The results of the analysis of 1.7-6.0mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.
    Matched MeSH terms: Enzymes, Immobilized
  6. Lo SK, Cheong LZ, Arifin N, Tan CP, Long K, Yusoff MS, et al.
    J Agric Food Chem, 2007 Jul 11;55(14):5595-603.
    PMID: 17571899
    Diacylglycerol (DAG) and triacylglycerol (TAG) as responses on optimization of DAG production using a dual response approach of response surface methodology were investigated. This approach takes the molecular equilibrium of DAG into account and allows for the optimization of reaction conditions to achieve maximum DAG and minimum TAG yields. The esterification reaction was optimized with four factors using a central composite rotatable design. The following optimized conditions yielded 48 wt % DAG and 14 wt % TAG: reaction temperature of 66.29 degrees C, enzyme dosage of 4 wt %, fatty acid/glycerol molar ratio of 2.14, and reaction time of 4.14 h. Similar results were achieved when the process was scaled up to a 10 kg production in a pilot packed-bed enzyme reactor. Lipozyme RM IM did not show any significant activity losses or changes in fatty acid selectivity on DAG synthesis during the 10 pilot productions. However, lipozyme RM IM displayed higher selectivity toward the production of oleic acid-enriched DAG. The purity of DAG oil after purification was 92 wt %.
    Matched MeSH terms: Enzymes, Immobilized
  7. Basri M, Samsudin S, Ahmad MB, Razak CN, Salleh AB
    Appl Biochem Biotechnol, 1999 Sep;81(3):205-17.
    PMID: 15304777
    Lipase from Candida rugosa was immobilized by entrapment on poly(N-vinyl- 2-pyrrolidone-co-2-hydroxyethyl methacrylate) (poly[VP-co-HEMA]) hydrogel, and divinylbenzene was the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases was also determined. Increasing the percentage of composition of VP from 0 to 90, which corresponds to the increase in the hydrophilicity of the hydrogels, increased the activity of the immobilized enzyme. Lipase immobilized on VP(%):HEMA(%) 90:10 exhibited the highest activity. Lipase immobilized on VP(%):HEMA(%) 50:50 showed the highest thermal, solvent, storage, and operational stability compared to lipase immobilized on other compositions of hydrogels as well as the native lipase.
    Matched MeSH terms: Enzymes, Immobilized
  8. Soo EL, Salleh AB, Basri M, Zaliha Raja Abdul Rahman RN, Kamaruddin K
    J Biosci Bioeng, 2003;95(4):361-7.
    PMID: 16233420
    The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications.
    Matched MeSH terms: Enzymes, Immobilized
  9. Karami R, Mohsenifar A, Mesbah Namini SM, Kamelipour N, Rahmani-Cherati T, Roodbar Shojaei T, et al.
    PMID: 26503886
    Organophosphorus (OP) compounds are one of the most hazardous chemicals used as insecticides/pesticide in agricultural practices. A large variety of OP compounds are hydrolyzed by organophosphorus hydrolases (OPH; EC 3.1.8.1). Therefore, OPHs are among the most suitable candidates which could be used in designing enzyme-based sensors for detecting OP compounds. In the present work, a novel nanobiosensor for the detection of paraoxon was designed and fabricated. More specifically, OPH was covalently embedded onto chitosan and the enzyme-chitosan bioconjugate was then immobilized on negatively charged gold nanoparticles (AuNPs) electrostatically. The enzyme was immobilized on AuNPs without chitosan as well to compare the two systems in terms of detection limit and enzyme stability under different pH and temperature conditions. Coumarin 1, a competitive inhibitor of the enzyme, was used as a fluorogenic probe. The emission of coumarin 1 was effectively quenched by the immobilized Au-NPs when bound to the developed nanobioconjugates. However, in the presence of paraoxon, coumarin 1 left the nanobioconjugate leading to enhanced fluorescence intensity. Moreover, compared to the immobilized enzyme without chitosan, the chitosan-immobilized enzyme was found to possess decreased Km value by over 50%, increased Vmax and Kcat values by around 15% and 74%, respectively. Higher stability within a wider range of pH (2-12) and temperature (25-90°C) was also achieved. The method worked in the 0 to 1050 nM concentration ranges, and had a detection limit as low as 5 × 10(-11) M.
    Matched MeSH terms: Enzymes, Immobilized
  10. Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 1):633-47.
    PMID: 25911946 DOI: 10.1016/j.biotechadv.2015.04.007
    Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.
    Matched MeSH terms: Enzymes
  11. Aida AA, Che Man YB, Wong CM, Raha AR, Son R
    Meat Sci, 2005 Jan;69(1):47-52.
    PMID: 22062638 DOI: 10.1016/j.meatsci.2004.06.020
    A method for species identification from pork and lard samples using polymerase chain reaction (PCR) analysis of a conserved region in the mitochondrial (mt) cytochrome b (cyt b) gene has been developed. Genomic DNA of pork and lard were extracted using Qiagen DNeasy(®) Tissue Kits and subjected to PCR amplification targeting the mt cyt b gene. The genomic DNA from lard was found to be of good quality and produced clear PCR products on the amplification of the mt cyt b gene of approximately 360 base pairs. To distinguish between species, the amplified PCR products were cut with restriction enzyme BsaJI resulting in porcine-specific restriction fragment length polymorphisms (RFLP). The cyt b PCR-RFLP species identification assay yielded excellent results for identification of pig species. It is a potentially reliable technique for detection of pig meat and fat from other animals for Halal authentication.
    Matched MeSH terms: DNA Restriction Enzymes
  12. Jun LY, Mubarak NM, Yon LS, Bing CH, Khalid M, Jagadish P, et al.
    Sci Rep, 2019 02 18;9(1):2215.
    PMID: 30778111 DOI: 10.1038/s41598-019-39621-4
    Surface modified Multi-walled carbon nanotubes (MWCNTs) Buckypaper/Polyvinyl Alcohol (BP/PVA) composite membrane was synthesized and utilized as support material for immobilization of Jicama peroxidase (JP). JP was successfully immobilized on the BP/PVA membrane via covalent bonding by using glutaraldehyde. The immobilization efficiency was optimized using response surface methodology (RSM) with the face-centered central composite design (FCCCD) model. The optimum enzyme immobilization efficiency was achieved at pH 6, with initial enzyme loading of 0.13 U/mL and immobilization time of 130 min. The results of BP/PVA membrane showed excellent performance in immobilization of JP with high enzyme loading of 217 mg/g and immobilization efficiency of 81.74%. The immobilized system exhibited significantly improved operational stability under various parameters, such as pH, temperature, thermal and storage stabilities when compared with free enzyme. The effective binding of peroxidase on the surface of the BP/PVA membrane was evaluated and confirmed by Field emission scanning electron microscopy (FESEM) coupled with Energy Dispersive X-Ray Spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). This work reports the characterization results and performances of the surface modified BP/PVA membrane for peroxidase immobilization. The superior properties of JP-immobilized BP/PVA membrane make it promising new-generation nanomaterials for industrial applications.
    Matched MeSH terms: Enzymes, Immobilized
  13. Al Amin M, Mahfujur Rahman M, Razimi MSA, Chowdhury ZZ, Hussain MNM, Desa MNM
    J Food Compost Anal, 2020 Sep;92:103565.
    PMID: 32546895 DOI: 10.1016/j.jfca.2020.103565
    Determination of feline meat in food products is an important issue for social, health, economic and religious concern. Hence this paper documented the application of species specific polymerase chain reaction-restriction fragment length polymorphism (SP-PCR-RFLP) assay targeting a short-fragments (69 bp) of mitochondrial cytochrome b (cytb) gene to screen feline meat in commercial meat products using lab-on-a-chip. The SP-PCR assay proved its specificity theoretically and experimentally while testing with different common animal, aquatic and plant species of DNA. The feline specific (69 bp, 43- and 26-bp) characteristic molecular DNA pattern was observed by SP-PCR and RFLP analysis. For assay performance, it was tested in three different types of commercial dummy meat products such as frankfurters, nuggets and meatballs and digested with AluI-restriction enzyme. The highest sensitivity of the assay using lab-on-a-chip was as low as 0.1 pg or 0.01 % (w/w) in commercial dummy meat products. We have also applied this assay to screen three important commercial meat products of six different brand from six supermarket chains located at three different states of Malaysia. Thus total 378 samples were tested to validate the specificity, sensitivity, stability of the assay and utilization of it for commercial meat product screening.
    Matched MeSH terms: DNA Restriction Enzymes
  14. Misson M, Dai S, Jin B, Chen BH, Zhang H
    J Biotechnol, 2016 Mar 20;222:56-64.
    PMID: 26876609 DOI: 10.1016/j.jbiotec.2016.02.014
    The nanoenvironment of nanobiocatalysts, such as local hydrophobicity, pH and charge density, plays a significant role in optimizing the enzymatic selectivity and specificity. In this study, Kluyveromyces lactis β-galactosidase (Gal) was assembled onto polystyrene nanofibers (PSNFs) to form PSNF-Gal nanobiocatalysts. We proposed that local hydrophobicity on the nanofiber surface could expel water molecules so that the transgalactosylation would be preferable over hydrolysis during the bioconversion of lactose, thus improve the galacto-oligosaccharides (GOS) yield. PSNFs were fabricated by electro-spinning and the operational parameters were optimized to obtain the nanofibers with uniform size and ordered alignment. The resulting nanofibers were functionalized for enzyme immobilization through a chemical oxidation method. The functionalized PSNF improved the enzyme adsorption capacity up to 3100mg/g nanofiber as well as enhanced the enzyme stability with 80% of its original activity. Importantly, the functionalized PSNF-Gal significantly improved the GOS yield and the production rate was up to 110g/l/h in comparison with 37g/l/h by free β-galactosidase. Our research findings demonstrate that the localized nanoenvironment of the PSNF-Gal nanobiocatalysts favour transgalactosylation over hydrolysis in lactose bioconversion.
    Matched MeSH terms: Enzymes, Immobilized
  15. Blair D, McManus DP
    Mol Biochem Parasitol, 1989 Oct;36(3):201-8.
    PMID: 2552311
    Recognition sites for nine different restriction endonucleases were mapped on rDNA genes of fasciolid species. Southern blots of digested DNA from individual worms were probed sequentially with three different probes derived from rDNA of Schistosoma mansoni and known to span between them the entire rDNA repeat unit in that species. Eighteen recognition sites were mapped for Fasciola hepatica, and seventeen for Fasciola gigantica and Fascioloides magna. Each fasciolid species had no more than two unique recognition sites, the remainder being common to one or both of the other two species. No intraspecific variation in restriction sites was noted in F. hepatica (individuals from 11 samples studied; hosts were sheep, cattle and laboratory animals; geographical origins. Australia, New Zealand, Mexico, U.K., Hungary and Spain), or in F. gigantica (two samples; Indonesia and Malaysia). Only one sample of F. magna was available. One specimen of Fasciola sp. from Japan (specific identity regarded in the literature as uncertain) yielded a restriction map identical to that of F. gigantica. Almost all recognition sites occurred in or near the putative rRNA coding regions. The non-transcribed spacer region had few or no cut sites despite the fact that this region is up to about one half of the entire repeat unit in length. Length heterogeneity was noted in the non-transcribed spacer, even within individual worms.
    Matched MeSH terms: DNA Restriction Enzymes
  16. Shi H, Ishikawa R, Heh CH, Sasaki S, Taniguchi Y
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525366 DOI: 10.3390/ijms22031274
    MTH1 is an enzyme that hydrolyzes 8-oxo-dGTP, which is an oxidatively damaged nucleobase, into 8-oxo-dGMP in nucleotide pools to prevent its mis-incorporation into genomic DNA. Selective and potent MTH1-binding molecules have potential as biological tools and drug candidates. We recently developed 8-halogenated 7-deaza-dGTP as an 8-oxo-dGTP mimic and found that it was not hydrolyzed, but inhibited enzyme activity. To further increase MTH1 binding, we herein designed and synthesized 7,8-dihalogenated 7-deaza-dG derivatives. We successfully synthesized multiple derivatives, including substituted nucleosides and nucleotides, using 7-deaza-dG as a starting material. Evaluations of the inhibition of MTH1 activity revealed the strong inhibitory effects on enzyme activity of the 7,8-dihalogenated 7-deaza-dG derivatives, particularly 7,8-dibromo 7-daza-dGTP. Based on the results obtained on kinetic parameters and from computational docking simulating studies, these nucleotide analogs interacted with the active site of MTH1 and competitively inhibited the substrate 8-oxodGTP. Therefore, novel properties of repair enzymes in cells may be elucidated using new compounds.
    Matched MeSH terms: DNA Repair Enzymes/antagonists & inhibitors; DNA Repair Enzymes/metabolism; DNA Repair Enzymes/chemistry*
  17. Japning, J.R.R., Esa, Y.B.
    MyJurnal
    The need to detect genetic variation has fueled the development of novel marker systems in fisheries biology. In this study, a simple, fast and cost effective method was used to differentiate between species of freshwater fishes focusing on Malaysian freshwater fishes by employing
    Restriction Fragment Length Polymorphisms (RFLPs) analysis of a 470-bp cytochrome b mtDNA segment. RFLP analysis using six restriction enzymes (AluI, BamHI, BsuRI, Csp61, HpaII and SalI) found variations in the digestion profile among most of the fish samples analyzed. Diagnostic digestion profiles were observed among the Hampala fishes, especially between H. macrolepidota and the other Hampala species/forms (using BsuRI and Csp61). Diagnostic digestion profiles were also detected between H.
    bimaculata Type A and Type B (using AluI, BamHI, BsuRI and SalI), supporting their status as distinct species. Additionally, unique digestion profiles were observed in other species such as Leptobarbus hosii (Csp61), Osteocheilus hasseltii (Csp61), Osteocheilus sp. (Csp61), Puntioplites bulu (Csp61), Puntius bramoides (AluI), P. sealei (AluI) and Helostoma temmincki (AluI and Csp61), which can be used as genetic markers for discriminating these species. Overall, the RFLP analysis of the cytochrome
    b mtDNA segment has proven to be a considerably effective, fast and non-expensive technique to discriminate among several freshwater fish species in Malaysia.
    Matched MeSH terms: DNA Restriction Enzymes
  18. Alim S, Kafi AKM, Rajan J, Yusoff MM
    Int J Biol Macromol, 2019 Feb 15;123:1028-1034.
    PMID: 30465828 DOI: 10.1016/j.ijbiomac.2018.11.171
    This work reports on a novel glucose biosensor based on co-immobilization of glucose oxidase (GOx) and horseradish peroxidase with polymerized multiporous nanofiber (MPNFs) of SnO2 onto glassy carbon electrode with chitosan. Multiporous nanofibers of SnO2 were synthesized by electrospinning method from the tin precursor which possesses high surface area good electrical conductivity, and the nanofibers were polymerized with polyaniline (PANI). GOx and HRP were then co-immobilized with the nanofibers on the surface of the glassy carbon electrode by using chitosan. The polymerized nanofibers play a significant role in facilitating the direct electron transfer between the electroactive center of the immobilized enzyme and the electrode surface. The morphology of the nanofiber and polymerized nanofiber has been evaluated by field emission scanning electron microscopy (FESEM). Cyclic Voltammetry and amperometry were employed to study and optimize the performance of the fabricated biosensor. The PANI/SnO2-NF/GOx-HRP/Ch/GC biosensor displayed a linear amperometric response towards the glucose concentration range from 5 to 100 μM with a detection limit of 1.8 μM (S/N = 3). Also, the anti-interference study and real sample analysis was investigated. Furthermore, the biosensor reported in this work exhibited excellent stability, reproducibility, and repeatability.
    Matched MeSH terms: Enzymes, Immobilized
  19. Sahilah Abu Mutalib, Wan Sakeenah Wan Nazari, Safiyyah Shahimi, Norhayati Yaakob, Norrakiah Abdullah Sani, Aminah Abdullah, et al.
    Sains Malaysiana, 2012;41:199-204.
    A method of PCR-restriction fragment length polymorphism (RFLP) has been utilized to differentiate the mitochondrial genes of pork and wild boar meat (Sus scrofa). The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of these two meats. The amplification product of pork and wild boar using mt-12S rRNA gene successfully produced a single band with molecular size of 456 bp. Three restriction endonucleases (AluI, HindIII and BsaJI) were used to restrict the amplification products of the mitochondrial genes. The restriction enzymes of AluI and BsaJI were identified as potential restriction endonucleases to differentiate those meats. HindIII enzyme was unable to restrict the PCR product of both meats. The genetic differences within the cyt b gene among the two meats were successfully confirmed by PCR-RFLP analysis.
    Matched MeSH terms: DNA Restriction Enzymes
  20. Nik Mansor NN, Leong TT, Safitri E, Futra D, Ahmad NS, Nasuruddin DN, et al.
    Sensors (Basel), 2018 Feb 26;18(3).
    PMID: 29495352 DOI: 10.3390/s18030686
    A tri-enzyme system consisting of choline kinase/choline oxidase/horseradish peroxidase was used in the rapid and specific determination of the biomarker for bacterial sepsis infection, secretory phospholipase Group 2-IIA (sPLA2-IIA). These enzymes were individually immobilized onto the acrylic microspheres via succinimide groups for the preparation of an electrochemical biosensor. The reaction of sPLA2-IIA with its substrate initiated a cascading enzymatic reaction in the tri-enzyme system that led to the final production of hydrogen peroxide, which presence was indicated by the redox characteristics of potassium ferricyanide, K₃Fe(CN)₆. An amperometric biosensor based on enzyme conjugated acrylic microspheres and gold nanoparticles composite coated onto a carbon-paste screen printed electrode (SPE) was fabricated and the current measurement was performed at a low potential of 0.20 V. This enzymatic biosensor gave a linear range 0.01-100 ng/mL (R² = 0.98304) with a detection limit recorded at 5 × 10-3 ng/mL towards sPLA2-IIA. Moreover, the biosensor showed good reproducibility (relative standard deviation (RSD) of 3.04% (n = 5). The biosensor response was reliable up to 25 days of storage at 4 °C. Analysis of human serum samples for sPLA2-IIA indicated that the biosensor has potential for rapid bacterial sepsis diagnosis in hospital emergency department.
    Matched MeSH terms: Enzymes, Immobilized
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links