Displaying publications 121 - 140 of 289 in total

Abstract:
Sort:
  1. Mambou SJ, Maresova P, Krejcar O, Selamat A, Kuca K
    Sensors (Basel), 2018 Aug 25;18(9).
    PMID: 30149621 DOI: 10.3390/s18092799
    Women's breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models.
    Matched MeSH terms: Machine Learning*
  2. Sahu R, Dash SR, Cacha LA, Poznanski RR, Parida S
    J Integr Neurosci, 2020 Mar 30;19(1):1-9.
    PMID: 32259881 DOI: 10.31083/j.jin.2020.01.24
    Electroencephalography is the recording of brain electrical activities that can be used to diagnose brain seizure disorders. By identifying brain activity patterns and their correspondence between symptoms and diseases, it is possible to give an accurate diagnosis and appropriate drug therapy to patients. This work aims to categorize electroencephalography signals on different channels' recordings for classifying and predicting epileptic seizures. The collection of the electroencephalography recordings contained in the dataset attributes 179 information and 11,500 instances. Instances are of five categories, where one is the symptoms of epilepsy seizure. We have used traditional, ensemble methods and deep machine learning techniques highlighting their performance for the epilepsy seizure detection task. One dimensional convolutional neural network, ensemble machine learning techniques like bagging, boosting (AdaBoost, gradient boosting, and XG boosting), and stacking is implemented. Traditional machine learning techniques such as decision tree, random forest, extra tree, ridge classifier, logistic regression, K-Nearest Neighbor, Naive Bayes (gaussian), and Kernel Support Vector Machine (polynomial, gaussian) are used for classifying and predicting epilepsy seizure. Before using ensemble and traditional techniques, we have preprocessed the data set using the Karl Pearson coefficient of correlation to eliminate irrelevant attributes. Further accuracy of classification and prediction of the classifiers are manipulated using k-fold cross-validation methods and represent the Receiver Operating Characteristic Area Under the Curve for each classifier. After sorting and comparing algorithms, we have found the convolutional neural network and extra tree bagging classifiers to have better performance than all other ensemble and traditional classifiers.
    Matched MeSH terms: Machine Learning*
  3. Acharya UR, Koh JEW, Hagiwara Y, Tan JH, Gertych A, Vijayananthan A, et al.
    Comput Biol Med, 2018 03 01;94:11-18.
    PMID: 29353161 DOI: 10.1016/j.compbiomed.2017.12.024
    Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
    Matched MeSH terms: Machine Learning*
  4. Ansari M, Othman F, Abunama T, El-Shafie A
    Environ Sci Pollut Res Int, 2018 Apr;25(12):12139-12149.
    PMID: 29455350 DOI: 10.1007/s11356-018-1438-z
    The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R2) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.
    Matched MeSH terms: Machine Learning*
  5. Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibé D, Meriaudeau F
    Biomed Eng Online, 2017 Jun 07;16(1):68.
    PMID: 28592309 DOI: 10.1186/s12938-017-0352-9
    BACKGROUND: Spectral domain optical coherence tomography (OCT) (SD-OCT) is most widely imaging equipment used in ophthalmology to detect diabetic macular edema (DME). Indeed, it offers an accurate visualization of the morphology of the retina as well as the retina layers.

    METHODS: The dataset used in this study has been acquired by the Singapore Eye Research Institute (SERI), using CIRRUS TM (Carl Zeiss Meditec, Inc., Dublin, CA, USA) SD-OCT device. The dataset consists of 32 OCT volumes (16 DME and 16 normal cases). Each volume contains 128 B-scans with resolution of 1024 px × 512 px, resulting in more than 3800 images being processed. All SD-OCT volumes are read and assessed by trained graders and identified as normal or DME cases based on evaluation of retinal thickening, hard exudates, intraretinal cystoid space formation, and subretinal fluid. Within the DME sub-set, a large number of lesions has been selected to create a rather complete and diverse DME dataset. This paper presents an automatic classification framework for SD-OCT volumes in order to identify DME versus normal volumes. In this regard, a generic pipeline including pre-processing, feature detection, feature representation, and classification was investigated. More precisely, extraction of histogram of oriented gradients and local binary pattern (LBP) features within a multiresolution approach is used as well as principal component analysis (PCA) and bag of words (BoW) representations.

    RESULTS AND CONCLUSION: Besides comparing individual and combined features, different representation approaches and different classifiers are evaluated. The best results are obtained for LBP[Formula: see text] vectors while represented and classified using PCA and a linear-support vector machine (SVM), leading to a sensitivity(SE) and specificity (SP) of 87.5 and 87.5%, respectively.

    Matched MeSH terms: Machine Learning*
  6. Albadr MAA, Tiun S, Ayob M, Al-Dhief FT, Omar K, Hamzah FA
    PLoS One, 2020;15(12):e0242899.
    PMID: 33320858 DOI: 10.1371/journal.pone.0242899
    The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.
    Matched MeSH terms: Machine Learning*
  7. Suhaimi NS, Mountstephens J, Teo J
    Comput Intell Neurosci, 2020;2020:8875426.
    PMID: 33014031 DOI: 10.1155/2020/8875426
    Emotions are fundamental for human beings and play an important role in human cognition. Emotion is commonly associated with logical decision making, perception, human interaction, and to a certain extent, human intelligence itself. With the growing interest of the research community towards establishing some meaningful "emotional" interactions between humans and computers, the need for reliable and deployable solutions for the identification of human emotional states is required. Recent developments in using electroencephalography (EEG) for emotion recognition have garnered strong interest from the research community as the latest developments in consumer-grade wearable EEG solutions can provide a cheap, portable, and simple solution for identifying emotions. Since the last comprehensive review was conducted back from the years 2009 to 2016, this paper will update on the current progress of emotion recognition using EEG signals from 2016 to 2019. The focus on this state-of-the-art review focuses on the elements of emotion stimuli type and presentation approach, study size, EEG hardware, machine learning classifiers, and classification approach. From this state-of-the-art review, we suggest several future research opportunities including proposing a different approach in presenting the stimuli in the form of virtual reality (VR). To this end, an additional section devoted specifically to reviewing only VR studies within this research domain is presented as the motivation for this proposed new approach using VR as the stimuli presentation device. This review paper is intended to be useful for the research community working on emotion recognition using EEG signals as well as for those who are venturing into this field of research.
    Matched MeSH terms: Machine Learning/trends*
  8. Ganasegeran K, Abdul Manaf MR, Safian N, Waller LA, Mustapha FI, Abdul Maulud KN, et al.
    J Epidemiol Glob Health, 2024 Mar;14(1):169-183.
    PMID: 38315406 DOI: 10.1007/s44197-023-00185-2
    Accurate assessments of epidemiological associations between health outcomes and routinely observed proximal and distal determinants of health are fundamental for the execution of effective public health interventions and policies. Methods to couple big public health data with modern statistical techniques offer greater granularity for describing and understanding data quality, disease distributions, and potential predictive connections between population-level indicators with areal-based health outcomes. This study applied clustering techniques to explore patterns of diabetes burden correlated with local socio-economic inequalities in Malaysia, with a goal of better understanding the factors influencing the collation of these clusters. Through multi-modal secondary data sources, district-wise diabetes crude rates from 271,553 individuals with diabetes sampled from 914 primary care clinics throughout Malaysia were computed. Unsupervised machine learning methods using hierarchical clustering to a set of 144 administrative districts was applied. Differences in characteristics of the areas were evaluated using multivariate non-parametric test statistics. Five statistically significant clusters were identified, each reflecting different levels of diabetes burden at the local level, each with contrasting patterns observed under the influence of population-level characteristics. The hierarchical clustering analysis that grouped local diabetes areas with varying socio-economic, demographic, and geographic characteristics offer opportunities to local public health to implement targeted interventions in an attempt to control the local diabetes burden.
    Matched MeSH terms: Unsupervised Machine Learning*
  9. Lai CQ, Ibrahim H, Abdullah MZ, Abdullah JM, Suandi SA, Azman A
    Comput Intell Neurosci, 2019;2019:7895924.
    PMID: 31281339 DOI: 10.1155/2019/7895924
    Biometric is an important field that enables identification of an individual to access their sensitive information and asset. In recent years, electroencephalography- (EEG-) based biometrics have been popularly explored by researchers because EEG is able to distinct between two individuals. The literature reviews have shown that convolutional neural network (CNN) is one of the classification approaches that can avoid the complex stages of preprocessing, feature extraction, and feature selection. Therefore, CNN is suggested to be one of the efficient classifiers for biometric identification. Conventionally, input to CNN can be in image or matrix form. The objective of this paper is to explore the arrangement of EEG for CNN input to investigate the most suitable input arrangement of EEG towards the performance of EEG-based identification. EEG datasets that are used in this paper are resting state eyes open (REO) and resting state eyes close (REC) EEG. Six types of data arrangement are compared in this paper. They are matrix of amplitude versus time, matrix of energy versus time, matrix of amplitude versus time for rearranged channels, image of amplitude versus time, image of energy versus time, and image of amplitude versus time for rearranged channels. It was found that the matrix of amplitude versus time for each rearranged channels using the combination of REC and REO performed the best for biometric identification, achieving validation accuracy and test accuracy of 83.21% and 79.08%, respectively.
    Matched MeSH terms: Machine Learning*
  10. Pillay AB, Pathmanathan D, Dabo-Niang S, Abu A, Omar H
    Sci Rep, 2024 Jul 06;14(1):15579.
    PMID: 38971911 DOI: 10.1038/s41598-024-66246-z
    This work proposes a functional data analysis approach for morphometrics in classifying three shrew species (S. murinus, C. monticola, and C. malayana) from Peninsular Malaysia. Functional data geometric morphometrics (FDGM) for 2D landmark data is introduced and its performance is compared with classical geometric morphometrics (GM). The FDGM approach converts 2D landmark data into continuous curves, which are then represented as linear combinations of basis functions. The landmark data was obtained from 89 crania of shrew specimens based on three craniodental views (dorsal, jaw, and lateral). Principal component analysis and linear discriminant analysis were applied to both GM and FDGM methods to classify the three shrew species. This study also compared four machine learning approaches (naïve Bayes, support vector machine, random forest, and generalised linear model) using predicted PC scores obtained from both methods (a combination of all three craniodental views and individual views). The analyses favoured FDGM and the dorsal view was the best view for distinguishing the three species.
    Matched MeSH terms: Machine Learning*
  11. Knechtle B, Weiss K, Valero D, Villiger E, Nikolaidis PT, Andrade MS, et al.
    PLoS One, 2024;19(8):e0303960.
    PMID: 39172797 DOI: 10.1371/journal.pone.0303960
    The present study intended to determine the nationality of the fastest 100-mile ultra-marathoners and the country/events where the fastest 100-mile races are held. A machine learning model based on the XG Boost algorithm was built to predict the running speed from the athlete's age (Age group), gender (Gender), country of origin (Athlete country) and where the race occurred (Event country). Model explainability tools were then used to investigate how each independent variable influenced the predicted running speed. A total of 172,110 race records from 65,392 unique runners from 68 different countries participating in races held in 44 different countries were used for analyses. The model rates Event country (0.53) as the most important predictor (based on data entropy reduction), followed by Athlete country (0.21), Age group (0.14), and Gender (0.13). In terms of participation, the United States leads by far, followed by Great Britain, Canada, South Africa, and Japan, in both athlete and event counts. The fastest 100-mile races are held in Romania, Israel, Switzerland, Finland, Russia, the Netherlands, France, Denmark, Czechia, and Taiwan. The fastest athletes come mostly from Eastern European countries (Lithuania, Latvia, Ukraine, Finland, Russia, Hungary, Slovakia) and also Israel. In contrast, the slowest athletes come from Asian countries like China, Thailand, Vietnam, Indonesia, Malaysia, and Brunei. The difference among male and female predictions is relatively small at about 0.25 km/h. The fastest age group is 25-29 years, but the average speeds of groups 20-24 and 30-34 years are close. Participation, however, peaks for the age group 40-44 years. The model predicts the event location (country of event) as the most important predictor for a fast 100-mile race time. The fastest race courses were occurred in Romania, Israel, Switzerland, Finland, Russia, the Netherlands, France, Denmark, Czechia, and Taiwan. Athletes and coaches can use these findings for their race preparation to find the most appropriate racecourse for a fast 100-mile race time.
    Matched MeSH terms: Machine Learning*
  12. Kasim S, Amir Rudin PNF, Malek S, Ibrahim KS, Wan Ahmad WA, Fong AYY, et al.
    Sci Rep, 2024 May 29;14(1):12378.
    PMID: 38811643 DOI: 10.1038/s41598-024-61151-x
    The accurate prediction of in-hospital mortality in Asian women after ST-Elevation Myocardial Infarction (STEMI) remains a crucial issue in medical research. Existing models frequently neglect this demographic's particular attributes, resulting in poor treatment outcomes. This study aims to improve the prediction of in-hospital mortality in multi-ethnic Asian women with STEMI by employing both base and ensemble machine learning (ML) models. We centred on the development of demographic-specific models using data from the Malaysian National Cardiovascular Disease Database spanning 2006 to 2016. Through a careful iterative feature selection approach that included feature importance and sequential backward elimination, significant variables such as systolic blood pressure, Killip class, fasting blood glucose, beta-blockers, angiotensin-converting enzyme inhibitors (ACE), and oral hypoglycemic medications were identified. The findings of our study revealed that ML models with selected features outperformed the conventional Thrombolysis in Myocardial Infarction (TIMI) Risk score, with area under the curve (AUC) ranging from 0.60 to 0.93 versus TIMI's AUC of 0.81. Remarkably, our best-performing ensemble ML model was surpassed by the base ML model, support vector machine (SVM) Linear with SVM selected features (AUC: 0.93, CI: 0.89-0.98 versus AUC: 0.91, CI: 0.87-0.96). Furthermore, the women-specific model outperformed a non-gender-specific STEMI model (AUC: 0.92, CI: 0.87-0.97). Our findings demonstrate the value of women-specific ML models over standard approaches, emphasizing the importance of continued testing and validation to improve clinical care for women with STEMI.
    Matched MeSH terms: Machine Learning*
  13. Raihan MJ, Labib MI, Jim AAJ, Tiang JJ, Biswas U, Nahid AA
    Sensors (Basel), 2024 Aug 19;24(16).
    PMID: 39205045 DOI: 10.3390/s24165351
    Sign language is undoubtedly a common way of communication among deaf and non-verbal people. But it is not common among hearing people to use sign language to express feelings or share information in everyday life. Therefore, a significant communication gap exists between deaf and hearing individuals, despite both groups experiencing similar emotions and sentiments. In this paper, we developed a convolutional neural network-squeeze excitation network to predict the sign language signs and developed a smartphone application to provide access to the ML model to use it. The SE block provides attention to the channel of the image, thus improving the performance of the model. On the other hand, the smartphone application brings the ML model close to people so that everyone can benefit from it. In addition, we used the Shapley additive explanation to interpret the black box nature of the ML model and understand the models working from within. Using our ML model, we achieved an accuracy of 99.86% on the KU-BdSL dataset. The SHAP analysis shows that the model primarily relies on hand-related visual cues to predict sign language signs, aligning with human communication patterns.
    Matched MeSH terms: Machine Learning*
  14. Kafy AA, Dey NN, Saha M, Altuwaijri HA, Fattah MA, Rahaman ZA, et al.
    J Environ Manage, 2024 Nov;370:122427.
    PMID: 39305877 DOI: 10.1016/j.jenvman.2024.122427
    Climate change and rapid urbanization are dramatically altering coastal ecosystems worldwide, with significant implications for land surface temperatures (LST) and carbon stock concentration (CSC). This study investigates the impacts of day and night time LST dynamics on CSC in Cox's Bazar, Bangladesh, from 1996 to 2021, with future projections to 2041. Using Landsat and MODIS imagery, we found that mean daytime LST increased by 3.57 °C over the 25-year period, while nighttime LST showed a slight decrease of 0.05 °C. Concurrently, areas with no carbon storage increased by 355.78%, while high and very high CSC zones declined by 14.15% and 47.78%, respectively. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model estimated a 28.64 km2 reduction in high CSC areas from 1996 to 2021. Statistical analysis revealed strong negative correlations between LST and vegetation indices (R2 = -0.795 to -0.842, p 32 °C, while areas with LST <24 °C may decrease to 1.68%. These observations underscore the pressing necessity for sustainable strategies in urban planning and conservation in swiftly evolving coastal areas, especially considering the challenges posed by climate change and population growth.
    Matched MeSH terms: Machine Learning*
  15. Blonder B, Both S, Jodra M, Majalap N, Burslem D, Teh YA, et al.
    Ecology, 2019 Nov;100(11):e02844.
    PMID: 31336398 DOI: 10.1002/ecy.2844
    The data set contains images of leaf venation networks obtained from tree species in Malaysian Borneo. The data set contains 726 leaves from 295 species comprising 50 families, sampled from eight forest plots in Sabah. Image extents are approximately 1 × 1 cm, or 50 megapixels. All images contain a region of interest in which all veins have been hand traced. The complete data set includes over 30 billion pixels, of which more than 600 million have been validated by hand tracing. These images are suitable for morphological characterization of these species, as well as for training of machine-learning algorithms that segment biological networks from images. Data are made available under the Open Data Commons Attribution License. You are free to copy, distribute, and use the database; to produce works from the database; and to modify, transform, and build upon the database. You must attribute any public use of the database, or works produced from the database, in the manner specified in the license. For any use or redistribution of the database, or works produced from it, you must make clear to others the license of the database and keep intact any notices on the original database.
    Matched MeSH terms: Machine Learning
  16. Kheirollahpour MM, Danaee MM, Merican AFAF, Shariff AAAA
    ScientificWorldJournal, 2020;2020:4194293.
    PMID: 32508538 DOI: 10.1155/2020/4194293
    The importance of eating behavior risk factors in the primary prevention of obesity has been established. Researchers mostly use the linear model to determine associations among these risk factors. However, in reality, the presence of nonlinearity among these factors causes a bias in the prediction models. The aim of this study was to explore the potential of a hybrid model to predict the eating behaviors. The hybrid model of structural equation modelling (SEM) and artificial neural networks (ANN) was applied to evaluate the prediction model. The SEM analysis was used to check the relationship of the emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) and their effect on different categories of eating behavior patterns (EBP). In the second step, the input and output required for ANN analysis were obtained from SEM analysis and were applied in the neural network model. 340 university students participated in this study. The hybrid model (SEM-ANN) was conducted using multilayer perceptron (MLP) with feed-forward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The tangent/sigmoid function was used for the input layer, while the linear function was applied for the output layer. The coefficient of determination (R2) and mean square error (MSE) were calculated. Using the hybrid model, the optimal network happened at MLP 3-17-8. It was proved that the hybrid model was superior to SEM methods because the R2 of the model was increased by 27%, while the MSE was decreased by 9.6%. Moreover, it was found that BSC, BAS, and EES significantly affected healthy and unhealthy eating behavior patterns. Thus, a hybrid approach could be suggested as a significant methodological contribution from a machine learning standpoint, and it can be implemented as software to predict models with the highest accuracy.
    Matched MeSH terms: Machine Learning
  17. Naqvi SF, Ali SSA, Yahya N, Yasin MA, Hafeez Y, Subhani AR, et al.
    Sensors (Basel), 2020 Aug 07;20(16).
    PMID: 32784531 DOI: 10.3390/s20164400
    Mental stress has been identified as a significant cause of several bodily disorders, such as depression, hypertension, neural and cardiovascular abnormalities. Conventional stress assessment methods are highly subjective and tedious and tend to lack accuracy. Machine-learning (ML)-based computer-aided diagnosis systems can be used to assess the mental state with reasonable accuracy, but they require offline processing and feature extraction, rendering them unsuitable for real-time applications. This paper presents a real-time mental stress assessment approach based on convolutional neural networks (CNNs). The CNN-based approach afforded real-time mental stress assessment with an accuracy as high as 96%, the sensitivity of 95%, and specificity of 97%. The proposed approach is compared with state-of-the-art ML techniques in terms of accuracy, time utilisation, and quality of features.
    Matched MeSH terms: Machine Learning
  18. Wu M, Lu Y, Yang W, Wong SY
    Front Comput Neurosci, 2020;14:564015.
    PMID: 33469423 DOI: 10.3389/fncom.2020.564015
    Cardiovascular diseases (CVDs) are the leading cause of death today. The current identification method of the diseases is analyzing the Electrocardiogram (ECG), which is a medical monitoring technology recording cardiac activity. Unfortunately, looking for experts to analyze a large amount of ECG data consumes too many medical resources. Therefore, the method of identifying ECG characteristics based on machine learning has gradually become prevalent. However, there are some drawbacks to these typical methods, requiring manual feature recognition, complex models, and long training time. This paper proposes a robust and efficient 12-layer deep one-dimensional convolutional neural network on classifying the five micro-classes of heartbeat types in the MIT- BIH Arrhythmia database. The five types of heartbeat features are classified, and wavelet self-adaptive threshold denoising method is used in the experiments. Compared with BP neural network, random forest, and other CNN networks, the results show that the model proposed in this paper has better performance in accuracy, sensitivity, robustness, and anti-noise capability. Its accurate classification effectively saves medical resources, which has a positive effect on clinical practice.
    Matched MeSH terms: Machine Learning
  19. Yaseen ZM, Ali M, Sharafati A, Al-Ansari N, Shahid S
    Sci Rep, 2021 Feb 09;11(1):3435.
    PMID: 33564055 DOI: 10.1038/s41598-021-82977-9
    A noticeable increase in drought frequency and severity has been observed across the globe due to climate change, which attracted scientists in development of drought prediction models for mitigation of impacts. Droughts are usually monitored using drought indices (DIs), most of which are probabilistic and therefore, highly stochastic and non-linear. The current research investigated the capability of different versions of relatively well-explored machine learning (ML) models including random forest (RF), minimum probability machine regression (MPMR), M5 Tree (M5tree), extreme learning machine (ELM) and online sequential-ELM (OSELM) in predicting the most widely used DI known as standardized precipitation index (SPI) at multiple month horizons (i.e., 1, 3, 6 and 12). Models were developed using monthly rainfall data for the period of 1949-2013 at four meteorological stations namely, Barisal, Bogra, Faridpur and Mymensingh, each representing a geographical region of Bangladesh which frequently experiences droughts. The model inputs were decided based on correlation statistics and the prediction capability was evaluated using several statistical metrics including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R), Willmott's Index of agreement (WI), Nash Sutcliffe efficiency (NSE), and Legates and McCabe Index (LM). The results revealed that the proposed models are reliable and robust in predicting droughts in the region. Comparison of the models revealed ELM as the best model in forecasting droughts with minimal RMSE in the range of 0.07-0.85, 0.08-0.76, 0.062-0.80 and 0.042-0.605 for Barisal, Bogra, Faridpur and Mymensingh, respectively for all the SPI scales except one-month SPI for which the RF showed the best performance with minimal RMSE of 0.57, 0.45, 0.59 and 0.42, respectively.
    Matched MeSH terms: Machine Learning
  20. Goh CC, Kamarudin LM, Zakaria A, Nishizaki H, Ramli N, Mao X, et al.
    Sensors (Basel), 2021 Jul 21;21(15).
    PMID: 34372192 DOI: 10.3390/s21154956
    This paper presents the development of a real-time cloud-based in-vehicle air quality monitoring system that enables the prediction of the current and future cabin air quality. The designed system provides predictive analytics using machine learning algorithms that can measure the drivers' drowsiness and fatigue based on the air quality presented in the cabin car. It consists of five sensors that measure the level of CO2, particulate matter, vehicle speed, temperature, and humidity. Data from these sensors were collected in real-time from the vehicle cabin and stored in the cloud database. A predictive model using multilayer perceptron, support vector regression, and linear regression was developed to analyze the data and predict the future condition of in-vehicle air quality. The performance of these models was evaluated using the Root Mean Square Error, Mean Squared Error, Mean Absolute Error, and coefficient of determination (R2). The results showed that the support vector regression achieved excellent performance with the highest linearity between the predicted and actual data with an R2 of 0.9981.
    Matched MeSH terms: Machine Learning
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links