Displaying publications 121 - 140 of 648 in total

Abstract:
Sort:
  1. Othman JAS, Ilyas RA, Nordin AH, Ngadi N, Alkbir MFM
    Int J Biol Macromol, 2024 Oct;277(Pt 3):134451.
    PMID: 39102907 DOI: 10.1016/j.ijbiomac.2024.134451
    The research interest in sustainable and eco-friendly materials based on natural sources has increased dramatically due to their recyclability, biodegradability, compatibility, and nontoxic behavior. Recently, nanocellulose-based green composites are under extensive exploration and have gained popularity among researchers owing to their lightweight, lost cost, low density, excellent mechanical and physical characteristics. This review provides a comprehensive overview of the recent advancements in the extraction, modification, and application of bamboo nanocellulose as a high-performance bioadsorbent. Bamboo, a rapidly renewable resource, offers an eco-friendly alternative to traditional materials due to its abundant availability and unique structural properties. Significantly, bamboo comprises a considerable amount of cellulose, approximately 40 % to 50%, rendering it a valuable source of cellulose fiber for the fabrication of cellulose nanocrystals. The review highlights different various modification techniques which enhance the adsorption capacities and selectivity of bamboo nanocellulose. Furthermore, the integration of bamboo nanocellulose into novel composite materials and its performance in removing contaminants such as heavy metals, dyes, and organic pollutants from wastewater are critically analyzed. Emphasis is placed on the mechanisms of adsorption, regeneration potential, and the economic and environmental benefits of using bamboo-based bioadsorbents. The findings underscore the potential of bamboo nanocellulose to play a pivotal role in developing sustainable wastewater treatment technologies, offering a promising pathway towards cleaner water and a greener future.
    Matched MeSH terms: Nanoparticles/chemistry
  2. Javed M, Akbar N, Khan AA, Masood A, Ahmed N, Khan MJ, et al.
    Environ Sci Pollut Res Int, 2024 Aug;31(40):53532-53551.
    PMID: 39192152 DOI: 10.1007/s11356-024-34753-1
    Worldwide environmental challenges pose critical problems with the growth of the global economy. Addressing these issues requires the development of an eco-friendly and sustainable catalyst for degrading organic dye pollutants. In this study, copper-doped magnesium aluminates (CuxMg1-xAl2O4) with x = 0.0-0.8 were synthesized using a citrate-based combustion route. The inclusion of Cu(II) significantly impacted the structural, microstructural, optical, and photocatalytic activity of the catalyst. Rietveld analysis of X-ray diffraction powder profiles revealed single-phase spinels crystallized in the face-centered cubic unit cell with Fd 3 ¯ m space group. Chemical states of the ions, surface morphology, and elemental investigation were analyzed by X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy, respectively. UV-visible and diffuse reflectance spectroscopies confirmed the reduction of the band gap due to Cu(II) doping, validated by first-principle investigations using the WIEN2k code. The catalyst with x = 0.8 showed higher photocatalytic efficacy (90% and 93%) for removing two azo organic dye pollutants, rhodamine B and methyl orange, respectively, within 120 min. Degradation kinetics followed a pseudo-first-order mechanism. The doped (0.8) sample was structurally and morphologically stable and reusable under visible irradiation, retaining performance after three runs. Scavenger studies confirmed hydroxyl and superoxide radicals' involvement in the degradation. This work presents an effective approach to enhancing CuxMg1-xAl2O4 catalysts' photodegradation performance, with potential applications in pharmaceuticals and wastewater remediation.
    Matched MeSH terms: Nanoparticles/chemistry
  3. Misson M, Zhang H, Jin B
    J R Soc Interface, 2015 Jan 06;12(102):20140891.
    PMID: 25392397 DOI: 10.1098/rsif.2014.0891
    The nanobiocatalyst (NBC) is an emerging innovation that synergistically integrates advanced nanotechnology with biotechnology and promises exciting advantages for improving enzyme activity, stability, capability and engineering performances in bioprocessing applications. NBCs are fabricated by immobilizing enzymes with functional nanomaterials as enzyme carriers or containers. In this paper, we review the recent developments of novel nanocarriers/nanocontainers with advanced hierarchical porous structures for retaining enzymes, such as nanofibres (NFs), mesoporous nanocarriers and nanocages. Strategies for immobilizing enzymes onto nanocarriers made from polymers, silicas, carbons and metals by physical adsorption, covalent binding, cross-linking or specific ligand spacers are discussed. The resulting NBCs are critically evaluated in terms of their bioprocessing performances. Excellent performances are demonstrated through enhanced NBC catalytic activity and stability due to conformational changes upon immobilization and localized nanoenvironments, and NBC reutilization by assembling magnetic nanoparticles into NBCs to defray the high operational costs associated with enzyme production and nanocarrier synthesis. We also highlight several challenges associated with the NBC-driven bioprocess applications, including the maturation of large-scale nanocarrier synthesis, design and development of bioreactors to accommodate NBCs, and long-term operations of NBCs. We suggest these challenges are to be addressed through joint collaboration of chemists, engineers and material scientists. Finally, we have demonstrated the great potential of NBCs in manufacturing bioprocesses in the near future through successful laboratory trials of NBCs in carbohydrate hydrolysis, biofuel production and biotransformation.
    Matched MeSH terms: Nanoparticles/chemistry; Metal Nanoparticles/chemistry*
  4. Toh PY, Ng BW, Ahmad AL, Chieh DC, Lim J
    Nanoscale, 2014 Nov 7;6(21):12838-48.
    PMID: 25227473 DOI: 10.1039/c4nr03121k
    Successful application of a magnetophoretic separation technique for harvesting biological cells often relies on the need to tag the cells with magnetic nanoparticles. This study investigates the underlying principle behind the attachment of iron oxide nanoparticles (IONPs) onto microalgal cells, Chlorella sp. and Nannochloropsis sp., in both freshwater and seawater, by taking into account the contributions of various colloidal forces involved. The complex interplay between van der Waals (vdW), electrostatic (ES) and Lewis acid-base interactions (AB) in dictating IONP attachment was studied under the framework of extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis. Our results showed that ES interaction plays an important role in determining the net interaction between the Chlorella sp. cells and IONPs in freshwater, while the AB and vdW interactions play a more dominant role in dictating the net particle-to-cell interaction in high ionic strength media (≥100 mM NaCl), such as seawater. XDLVO predicted effective attachment between cells and surface functionalized IONPs (SF-IONPs) with an estimated secondary minimum of -3.12 kT in freshwater. This prediction is in accordance with the experimental observation in which 98.89% of cells can be magnetophoretically separated from freshwater with SF-IONPs. We have observed successful magnetophoretic separation of microalgal cells from freshwater and/or seawater for all the cases as long as XDLVO analysis predicts particle attachment. For both the conditions, no pH adjustment is required for particle-to-cell attachment.
    Matched MeSH terms: Nanoparticles/chemistry*; Metal Nanoparticles/chemistry
  5. Samrot AV, Sahithya CS, Selvarani A J, Pachiyappan S, Kumar S S
    Int J Nanomedicine, 2019;14:8105-8119.
    PMID: 31632021 DOI: 10.2147/IJN.S214236
    Background: Super-paramagnetic iron oxide nanoparticles (SPIONs) are widely used metal nanoparticles for various applications for its magnetic property and biocompatibility. In recent years, pollution of our environment especially with heavy metals in waterbodies has become a major threat and has left us very minimal sources of freshwater to drink. SPIONs or surface modified SPIONs can be used to remove these heavy metals.

    Methods: SPIONs were synthesized by co-precipitation method and further coated with a biopolymer, chitosan. Chromium solution was treated with the synthesized SPIONs to study the efficiency of chromium removal by surface adsorption. Later, the adsorption was analysed by direct and indirect analysis methods using UV-VIS spectrophotometry and isotherm studies.

    Results: Stable chitosan-coated SPIONs were synthesized and they adsorbed chromium better than the uncoated SPIONs, where it was adsorbing up to 100 ppm. Adsorption was found to be increasing with decrease in pH.

    Conclusion: The surface-modified SPIONs expressed cumulative adsorption action. Even after the adsorption studies, chitosan-coated SPIONs were possessing magnetic property. Thus, the surface-modified SPIONs can become an ideal nanotechnology tool to remove the chromium from groundwater.

    Matched MeSH terms: Nanoparticles/chemistry; Magnetite Nanoparticles/chemistry*
  6. Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, et al.
    Int J Pharm, 2020 Jul 30;585:119556.
    PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556
    In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
    Matched MeSH terms: Nanoparticles/chemistry*; Metal Nanoparticles/chemistry
  7. Dabbagh A, Abdullah BJ, Abu Kasim NH, Abdullah H, Hamdi M
    Int J Hyperthermia, 2015 Jun;31(4):375-85.
    PMID: 25716769 DOI: 10.3109/02656736.2015.1006268
    The aim of this paper was to introduce a new mechanism of thermal sensitivity in nanocarriers that results in a relatively low drug release at physiological temperature and rapid release of the encapsulated drug at hyperthermia and thermal ablation temperature range (40-60 °C).
    Matched MeSH terms: Nanoparticles/chemistry*
  8. Ahmadipourroudposht M, Fallahiarezoudar E, Yusof NM, Idris A
    Mater Sci Eng C Mater Biol Appl, 2015 May;50:234-41.
    PMID: 25746266 DOI: 10.1016/j.msec.2015.02.008
    Magnetic nanofibers are composed of good dispersion of magnetic nanoparticles along an organic material. Magnetic nanofibers are potentially useful for composite reinforcement, bio-medical and tissue engineering. Nanofibers with the thinner diameter have to result in higher rigidity and tensile strength due to better alignments of lamellae along the fiber axis. In this study, the performance of electrospinning process was explained using response surface methodology (RSM) during fabrication of magnetic nanofibers using polyvinyl alcohol (PVA) as a shelter for (γ-Fe2O3) nanoparticles where the parameters investigated were flow rate, applied voltage, distance between needle and collector and collector rotating speed. The response variable was diameter distribution. The two parameters flow rate and applied voltage in primary evaluation were distinguished as significant factors. Central composite design was applied to optimize the variable of diameter distribution. Quadratic estimated model developed for diameter distribution indicated the optimum conditions to be flow rate of 0.25 ml/h at voltage of 45 kV while the distance and rotating speed are at 8 cm and 1500 rps respectively. The obtained model was verified successfully by the confirmation experiments.
    Matched MeSH terms: Nanoparticles/chemistry*
  9. Sajahan NA, Wan Ibrahim WM
    ScientificWorldJournal, 2014;2014:275984.
    PMID: 25383364 DOI: 10.1155/2014/275984
    Due to similarity in composition to the mineral component of bones and human hard tissues, hydroxyapatite with chemical formula Ca10(PO4)6(OH)2 has been widely used in medical field. Both chicken and duck eggshells are mainly composed of calcium carbonate. An attempt has been made to fabricate nanohydroxyapatite (nHA) by chicken (CES) and duck eggshells (DES) as calcium carbonate source (CaCO3). CES and DES were reacted with diammonium hydrogen [(NH4)2HPO4] solution and subjected to microwave heating at 15 mins. Under the effect of microwave irradiation, nHA was produced directly in the solution and involved in crystallographic transformation. Sample characterization was done using by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM).
    Matched MeSH terms: Nanoparticles/chemistry
  10. Yarmand H, Gharehkhani S, Kazi SN, Sadeghinezhad E, Safaei MR
    ScientificWorldJournal, 2014;2014:369593.
    PMID: 25254236 DOI: 10.1155/2014/369593
    Thermal characteristics of turbulent nanofluid flow in a rectangular pipe have been investigated numerically. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The symmetrical rectangular channel is heated at the top and bottom at a constant heat flux while the sides walls are insulated. Four different types of nanoparticles Al2O3, ZnO, CuO, and SiO2 at different volume fractions of nanofluids in the range of 1% to 5% are considered in the present investigation. In this paper, effect of different Reynolds numbers in the range of 5000 < Re < 25000 on heat transfer characteristics of nanofluids flowing through the channel is investigated. The numerical results indicate that SiO2-water has the highest Nusselt number compared to other nanofluids while it has the lowest heat transfer coefficient due to low thermal conductivity. The Nusselt number increases with the increase of the Reynolds number and the volume fraction of nanoparticles. The results of simulation show a good agreement with the existing experimental correlations.
    Matched MeSH terms: Nanoparticles/chemistry*
  11. Kumar A, Hegde G, Manaf SA, Ngaini Z, Sharma KV
    Chem Commun (Camb), 2014 Oct 28;50(84):12702-5.
    PMID: 25100105 DOI: 10.1039/c4cc04378b
    Porous Carbon Nanoparticles (PCNs) with well-developed microporosity were obtained from bio-waste oil palm leaves (OPL) using single step pyrolysis in nitrogen atmosphere at 500-600 °C in tube-furnace without any catalysis support. The key approach was using silica (SiO2) bodies of OPL as a template in the synthesis of microporous carbon nanoparticles with very small particle sizes of 35-85 nm and pore sizes between 1.9-2 nm.
    Matched MeSH terms: Nanoparticles/chemistry*
  12. Arafat MM, Haseeb AS, Akbar SA
    Sensors (Basel), 2014;14(8):13613-27.
    PMID: 25072346 DOI: 10.3390/s140813613
    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor.
    Matched MeSH terms: Nanoparticles/chemistry*
  13. Ramimoghadam D, Bagheri S, Abd Hamid SB
    Biomed Res Int, 2014;2014:205636.
    PMID: 25126547 DOI: 10.1155/2014/205636
    Anatase titanium dioxide nanoparticles (TiO2-NPs) were synthesized by sol-gel method using rice straw as a soft biotemplate. Rice straw, as a lignocellulosic waste material, is a biomass feedstock which is globally produced in high rate and could be utilized in an innovative approach to manufacture a value-added product. Rice straw as a reliable biotemplate has been used in the sol-gel method to synthesize ultrasmall sizes of TiO2-NPs with high potential application in photocatalysis. The physicochemical properties of titanium dioxide nanoparticles were investigated by a number of techniques such as X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, thermogravimetric analysis (TGA), ultraviolet visible spectra (UV-Vis), and surface area and pore size analysis. All results consensually confirmed that particle sizes of synthesized titanium dioxide were template-dependent, representing decrease in the nanoparticles sizes with increase of biotemplate concentration. Titanium dioxide nanoparticles as small as 13.0 ± 3.3 nm were obtained under our experimental conditions. Additionally, surface area and porosity of synthesized TiO2-NPs have been enhanced by increasing rice straw amount which results in surface modification of nanoparticles and potential application in photocatalysis.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  14. Lee HV, Hamid SB, Zain SK
    ScientificWorldJournal, 2014;2014:631013.
    PMID: 25247208 DOI: 10.1155/2014/631013
    Lignocellulosic biomass is a complex biopolymer that is primary composed of cellulose, hemicellulose, and lignin. The presence of cellulose in biomass is able to depolymerise into nanodimension biomaterial, with exceptional mechanical properties for biocomposites, pharmaceutical carriers, and electronic substrate's application. However, the entangled biomass ultrastructure consists of inherent properties, such as strong lignin layers, low cellulose accessibility to chemicals, and high cellulose crystallinity, which inhibit the digestibility of the biomass for cellulose extraction. This situation offers both challenges and promises for the biomass biorefinery development to utilize the cellulose from lignocellulosic biomass. Thus, multistep biorefinery processes are necessary to ensure the deconstruction of noncellulosic content in lignocellulosic biomass, while maintaining cellulose product for further hydrolysis into nanocellulose material. In this review, we discuss the molecular structure basis for biomass recalcitrance, reengineering process of lignocellulosic biomass into nanocellulose via chemical, and novel catalytic approaches. Furthermore, review on catalyst design to overcome key barriers regarding the natural resistance of biomass will be presented herein.
    Matched MeSH terms: Nanoparticles/chemistry*
  15. Hussein-Al-Ali SH, El Zowalaty ME, Hussein MZ, Geilich BM, Webster TJ
    Int J Nanomedicine, 2014;9:3801-14.
    PMID: 25143729 DOI: 10.2147/IJN.S61143
    Because of their magnetic properties, magnetic nanoparticles (MNPs) have numerous diverse biomedical applications. In addition, because of their ability to penetrate bacteria and biofilms, nanoantimicrobial agents have become increasingly popular for the control of infectious diseases. Here, MNPs were prepared through an iron salt coprecipitation method in an alkaline medium, followed by a chitosan coating step (CS-coated MNPs); finally, the MNPs were loaded with ampicillin (amp) to form an amp-CS-MNP nanocomposite. Both the MNPs and amp-CS-MNPs were subsequently characterized and evaluated for their antibacterial activity. X-ray diffraction results showed that the MNPs and nanocomposites were composed of pure magnetite. Fourier transform infrared spectra and thermogravimetric data for the MNPs, CS-coated MNPs, and amp-CS-MNP nanocomposite were compared, which confirmed the CS coating on the MNPs and the amp-loaded nanocomposite. Magnetization curves showed that both the MNPs and the amp-CS-MNP nanocomposites were superparamagnetic, with saturation magnetizations at 80.1 and 26.6 emu g(-1), respectively. Amp was loaded at 8.3%. Drug release was also studied, and the total release equilibrium for amp from the amp-CS-MNPs was 100% over 400 minutes. In addition, the antimicrobial activity of the amp-CS-MNP nanocomposite was determined using agar diffusion and growth inhibition assays against Gram-positive bacteria and Gram-negative bacteria, as well as Candida albicans. The minimum inhibitory concentration of the amp-CS-MNP nanocomposite was determined against bacteria including Mycobacterium tuberculosis. The synthesized nanocomposites exhibited antibacterial and antifungal properties, as well as antimycobacterial effects. Thus, this study introduces a novel β-lactam antibacterial-based nanocomposite that can decrease fungus activity on demand for numerous medical applications.
    Matched MeSH terms: Magnetite Nanoparticles/chemistry*
  16. Alqasaimeh M, Heng LY, Ahmad M, Raj AS, Ling TL
    Sensors (Basel), 2014 Jul 22;14(7):13186-209.
    PMID: 25054632 DOI: 10.3390/s140713186
    A new silica-gel nanospheres (SiO2NPs) composition was formulated, followed by biochemical surface functionalization to examine its potential in urea biosensor development. The SiO2NPs were basically synthesized based on sol-gel chemistry using a modified Stober method. The SiO2NPs surfaces were modified with amine (-NH2) functional groups for urease immobilization in the presence of glutaric acid (GA) cross-linker. The chromoionophore pH-sensitive dye ETH 5294 was physically adsorbed on the functionalized SiO2NPs as pH transducer. The immobilized urease determined urea concentration reflectometrically based on the colour change of the immobilized chromoionophore as a result of the enzymatic hydrolysis of urea. The pH changes on the biosensor due to the catalytic enzyme reaction of immobilized urease were found to correlate with the urea concentrations over a linear response range of 50-500 mM (R2 = 0.96) with a detection limit of 10 mM urea. The biosensor response time was 9 min with reproducibility of less than 10% relative standard deviation (RSD). This optical urea biosensor did not show interferences by Na+, K+, Mg2+ and NH4+ ions. The biosensor performance has been validated using urine samples in comparison with a non-enzymatic method based on the use of p-dimethylaminobenzaldehyde (DMAB) reagent and demonstrated a good correlation between the two different methods (R2 = 0.996 and regression slope of 1.0307). The SiO2NPs-based reflectometric urea biosensor showed improved dynamic linear response range when compared to other nanoparticle-based optical urea biosensors.
    Matched MeSH terms: Nanoparticles/chemistry*
  17. Liew KH, Loh PL, Juan JC, Yarmo MA, Yusop RM
    ScientificWorldJournal, 2014;2014:796196.
    PMID: 25054185 DOI: 10.1155/2014/796196
    Cross-linked resin-captured palladium (XL-QPPd) was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4-10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity.
    Matched MeSH terms: Nanoparticles/chemistry*
  18. Lee SY, Hairul Bahara NH, Choong YS, Lim TS, Tye GJ
    J Colloid Interface Sci, 2014 Nov 01;433:183-188.
    PMID: 25129336 DOI: 10.1016/j.jcis.2014.07.033
    DNA-templated silver nanoclusters (AgNC) are a class of subnanometer sized fluorophores with good photostability and brightness. It has been applied as a diagnostic tool mainly for deoxyribonucleic acid (DNA) detection. Integration of DNA oligomers to generate AgNCs is interesting as varying DNA sequences can result in different fluorescence spectra. This allows a simple fluorescence shifting effect to occur upon DNA hybridization with the hybridization efficiency being a pronominal factor for successful shifting. The ability to shift the fluorescence spectra as a result of hybridization overcomes the issue of background intensities in most fluorescent based assays. Here we describe an optimized method for the detection of single-stranded and double-stranded synthetic forkhead box P3 (FOXP3) target by hybridization with the DNA fluorescence shift sensor. The system forms a three-way junction by successful hybridization of AgNC, G-rich strand (G-rich) to the target DNA, which generated a shift in fluorescence spectra with a marked increase in fluorescence intensity. The DNA fluorescence shift sensor presents a rapid and specific alternative to conventional DNA detection.
    Matched MeSH terms: Metal Nanoparticles/chemistry*
  19. Ishaka A, Umar Imam M, Mahamud R, Zuki AB, Maznah I
    Int J Nanomedicine, 2014;9:2261-9.
    PMID: 24872689 DOI: 10.2147/IJN.S56999
    Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects; however, it has a bioavailability of less than 10%. Therefore, there is a need to improve its bioavailability, and one of the ways of doing this is by nanoemulsion formulation. Different droplet size distributions are usually achieved when emulsions are formed, which solely depends on the preparation method used. Mostly, emulsions are intended for better delivery with maintenance of the characteristics and properties of the leading components. In this study, policosanol was extracted from rice bran wax, its composition was determined by gas chromatography mass spectrophotometry, nanoemulsion was made, and the physical stability characteristics were determined. The results showed that policosanol nanoemulsion has a nanosize particle distribution below 100 nm (92.56-94.52 nm), with optimum charge distribution (-55.8 to -45.12 mV), pH (6.79-6.92) and refractive index (1.50); these were monitored and found to be stable for 8 weeks. The stability of policosanol nanoemulsion confers the potential to withstand long storage times.
    Matched MeSH terms: Nanoparticles/chemistry*
  20. Woo JO, Misran M, Lee PF, Tan LP
    ScientificWorldJournal, 2014;2014:205703.
    PMID: 24578624 DOI: 10.1155/2014/205703
    Lipid nanoparticles are colloidal carrier systems that have extensively been investigated for controlled drug delivery, cosmetic and pharmaceutical applications. In this work, a cost effective stearic acid-oleic acid nanoparticles (SONs) with high loading of salicylic acid, was prepared by melt emulsification method combined with ultrasonication technique. The physicochemical properties, thermal analysis and encapsulation efficiency of SONs were studied. TEM micrographs revealed that incorporation of oleic acid induces the formation of elongated spherical particles. This observation is in agreement with particle size analysis which also showed that the mean particle size of SONs varied with the amount of OA in the mixture but with no effect on their zeta potential values. Differential scanning calorimetry analysis showed that the SONs prepared in this method have lower crystallinity as compared to pure stearic acid. Different amount of oleic acid incorporated gave different degree of perturbation to the crystalline matrix of SONs and hence resulted in lower degrees of crystallinity, thereby improving their encapsulation efficiencies. The optimized SON was further incorporated in cream and its in vitro release study showed a gradual release for 24 hours, denoting the incorporation of salicylic acid in solid matrix of SON and prolonging the in vitro release.
    Matched MeSH terms: Nanoparticles/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links