Displaying publications 121 - 140 of 701 in total

Abstract:
Sort:
  1. Delom F, Mohtar MA, Hupp T, Fessart D
    Am. J. Physiol., Cell Physiol., 2020 01 01;318(1):C40-C47.
    PMID: 31644305 DOI: 10.1152/ajpcell.00532.2018
    The anterior gradient-2 (AGR2) is an endoplasmic reticulum (ER)-resident protein belonging to the protein disulfide isomerase family that mediates the formation of disulfide bonds and assists the protein quality control in the ER. In addition to its role in proteostasis, extracellular AGR2 is responsible for various cellular effects in many types of cancer, including cell proliferation, survival, and metastasis. Various OMICs approaches have been used to identify AGR2 binding partners and to investigate the functions of AGR2 in the ER and outside the cell. Emerging data showed that AGR2 exists not only as monomer, but it can also form homodimeric structure and thus interact with different partners, yielding different biological outcomes. In this review, we summarize the AGR2 "interactome" and discuss the pathological and physiological role of such AGR2 interactions.
    Matched MeSH terms: Signal Transduction*
  2. Harikrishnan H, Jantan I, Alagan A, Haque MA
    Inflammopharmacology, 2020 Feb;28(1):1-18.
    PMID: 31792765 DOI: 10.1007/s10787-019-00671-9
    The causal and functional connection between inflammation and cancer has become a subject of much research interest. Modulation of cell signaling pathways, such as those involving mitogen activated protein kinases (MAPKs), nuclear factor kappa β (NF-κB), phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt), and Wnt, and their outcomes play a fundamental role in inflammation and cancer. Activation of these cell signaling pathways can lead to various aspects of cancer-related inflammation. Hence, compounds able to modulate inflammation-related molecular targets are sought after in anticancer drug development programs. In recent years, plant extracts and their metabolites have been documented with potential in the prevention and treatment of cancer and inflammatory ailments. Plants possessing anticancer and anti-inflammatory properties due to their bioactive constituents have been reported to modulate the molecular and cellular pathways which are related to inflammation and cancer. In this review we focus on the flavonoids (astragalin, kaempferol, quercetin, rutin), lignans (phyllanthin, hypophyllanthin, and niranthin), tannins (corilagin, geraniin, ellagic acid, gallic acid), and triterpenes (lupeol, oleanolic acid, ursolic acid) of Phyllanthus amarus, which exert various anticancer and anti-inflammatory activities via perturbation of the NF-κB, MAPKs, PI3K/Akt, and Wnt signaling networks. Understanding the underlying mechanisms involved may help future research to develop drug candidates for prevention and new treatment for cancer and inflammatory diseases.
    Matched MeSH terms: Signal Transduction/drug effects*
  3. Chong ZX, Yeap SK, Ho WY
    Pathol Res Pract, 2021 Mar;219:153326.
    PMID: 33601152 DOI: 10.1016/j.prp.2020.153326
    MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
    Matched MeSH terms: Signal Transduction/physiology
  4. Tan ML, Ooi JP, Ismail N, Moad AI, Muhammad TS
    Pharm Res, 2009 Jul;26(7):1547-60.
    PMID: 19407932 DOI: 10.1007/s11095-009-9895-1
    Apoptosis and autophagic cell deaths are programmed cell deaths and they play essential roles in cell survival, growth and development and tumorigenesis. The huge increase of publications in both apoptosis and autophagic signaling pathways has contributed to the wealth of knowledge in facilitating the understanding of cancer pathogenesis. Deciphering the molecular pathways and molecules involved in these pathways has helped scientists devise and develop targeted strategies against cancer. Various drugs targeting the apoptotic TRAIL, Bcl-2 and proteasome pathways are already in Phase II/III clinical trials. The first mTOR inhibitor, temsirolimus has already been approved by the FDA, USA for the treatment of advanced renal cell carcinoma and more mTOR inhibitors are expected to be in the market in a few years time. Strategizing against aberrant autophagy activities in various cancers by using either pro-autophagics or autophagy inhibitors are currently been investigated. This review aims to discuss the most recent antitumor strategies targeting the apoptosis and autophagy signaling pathways and the latest outcome of clinical trials of the above drugs.
    Matched MeSH terms: Signal Transduction/drug effects*
  5. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium
    Nat Neurosci, 2015 Feb;18(2):199-209.
    PMID: 25599223 DOI: 10.1038/nn.3922
    Genome-wide association studies (GWAS) of psychiatric disorders have identified multiple genetic associations with such disorders, but better methods are needed to derive the underlying biological mechanisms that these signals indicate. We sought to identify biological pathways in GWAS data from over 60,000 participants from the Psychiatric Genomics Consortium. We developed an analysis framework to rank pathways that requires only summary statistics. We combined this score across disorders to find common pathways across three adult psychiatric disorders: schizophrenia, major depression and bipolar disorder. Histone methylation processes showed the strongest association, and we also found statistically significant evidence for associations with multiple immune and neuronal signaling pathways and with the postsynaptic density. Our study indicates that risk variants for psychiatric disorders aggregate in particular biological pathways and that these pathways are frequently shared between disorders. Our results confirm known mechanisms and suggest several novel insights into the etiology of psychiatric disorders.
    Matched MeSH terms: Signal Transduction/genetics*
  6. Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A
    Mol Neurobiol, 2021 May;58(5):2407-2422.
    PMID: 33421016 DOI: 10.1007/s12035-020-02227-3
    Neuroinflammation, an inflammatory response within the nervous system, has been shown to be implicated in the progression of various neurodegenerative diseases. Recent in vivo studies showed that lipopolysaccharide (LPS) preconditioning provides neuroprotection by activating Toll-like receptor 4 (TLR4), one of the members for pattern recognition receptor (PRR) family that play critical role in host response to tissue injury, infection, and inflammation. Pre-exposure to low dose of LPS could confer a protective state against cellular apoptosis following subsequent stimulation with LPS at higher concentration, suggesting a role for TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. However, the precise molecular mechanism associated with this protective effect is not well understood. In this article, we provide an overall review of the current state of our knowledge about LPS preconditioning in attenuating apoptosis mechanism and conferring neuroprotection via TLR4 signaling pathway.
    Matched MeSH terms: Signal Transduction/drug effects*
  7. Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, et al.
    Cells, 2021 08 25;10(9).
    PMID: 34571842 DOI: 10.3390/cells10092194
    Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
    Matched MeSH terms: Signal Transduction/drug effects
  8. Ubuka T, Son YL, Tsutsui K
    Gen Comp Endocrinol, 2016 Feb 1;227:27-50.
    PMID: 26409890 DOI: 10.1016/j.ygcen.2015.09.009
    Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that was isolated from the brains of Japanese quail in 2000, which inhibited luteinizing hormone release from the anterior pituitary gland. Here, we summarize the following fifteen years of researches that investigated on the mechanism of GnIH actions at molecular, cellular, morphological, physiological, and behavioral levels. The unique molecular structure of GnIH peptide is in its LPXRFamide (X=L or Q) motif at its C-terminal. The primary receptor for GnIH is GPR147. The cell signaling pathway triggered by GnIH is initiated by inhibiting adenylate cyclase and decreasing cAMP production in the target cell. GnIH neurons regulate not only gonadotropin synthesis and release in the pituitary, but also regulate various neurons in the brain, such as GnRH1, GnRH2, dopamine, POMC, NPY, orexin, MCH, CRH, oxytocin, and kisspeptin neurons. GnIH and GPR147 are also expressed in gonads and they may regulate steroidogenesis and germ cell maturation in an autocrine/paracrine manner. GnIH regulates reproductive development and activity. In female mammals, GnIH may regulate estrous or menstrual cycle. GnIH is also involved in the regulation of seasonal reproduction, but GnIH may finely tune reproductive activities in the breeding seasons. It is involved in stress responses not only in the brain but also in gonads. GnIH may inhibit male socio-sexual behavior by stimulating the activity of cytochrome P450 aromatase in the brain and stimulates feeding behavior by modulating the activities of hypothalamic and central amygdala neurons.
    Matched MeSH terms: Signal Transduction/physiology*
  9. Siar CH, Kawakami T, Buery RR, Nakano K, Tomida M, Tsujigiwa H, et al.
    Eur J Med Res, 2011 Nov 10;16(11):501-6.
    PMID: 22027644
    Notch signaling is an evolutionarily conserved mechanism that enables adjacent cells to adopt different fates. Ghost cells (GCs) are anucleate cells with homogeneous pale eosinophilic cytoplasm and very pale to clear central areas (previous nucleus sites). Although GCs are present in a variety of odontogenic lesions notably the calcifying cystic odontogenic tumor (CCOT), their nature and process of formation remains elusive. The aim of this study was to investigate the role of Notch signaling in the cell fate specification of GCs in CCOT. Immunohistochemical staining for four Notch receptors (Notch1, Notch2, Notch3 and Notch4) and three ligands (Jagged1, Jagged2 and Delta1) was performed on archival tissues of five CCOT cases. Level of positivity was quantified as negative (0), mild (+), moderate (2+) and strong (3+). Results revealed that GCs demonstrated overexpression for Notch1 and Jagged1 suggesting that Notch1-Jagged1 signaling might serve as the main transduction mechanism in cell fate decision for GCs in CCOT. Protein localizations were largely membranous and/or cytoplasmic. Mineralized GCs also stained positive implicating that the calcification process might be associated with upregulation of these molecules. The other Notch receptors and ligands were weak to absent in GCs and tumoral epithelium. Stromal endothelium and fibroblasts were stained variably positive.
    Matched MeSH terms: Signal Transduction*
  10. Melling GE, Flannery SE, Abidin SA, Clemmens H, Prajapati P, Hinsley EE, et al.
    Carcinogenesis, 2018 05 28;39(6):798-807.
    PMID: 29506142 DOI: 10.1093/carcin/bgy032
    The dissemination of cancer cells to local and distant sites depends on a complex and poorly understood interplay between malignant cells and the cellular and non-cellular components surrounding them, collectively termed the tumour microenvironment. One of the most abundant cell types of the tumour microenvironment is the fibroblast, which becomes corrupted by locally derived cues such as TGF-β1 and acquires an altered, heterogeneous phenotype (cancer-associated fibroblasts, CAF) supportive of tumour cell invasion and metastasis. Efforts to develop new treatments targeting the tumour mesenchyme are hampered by a poor understanding of the mechanisms underlying the development of CAF. Here, we examine the contribution of microRNA to the development of experimentally-derived CAF and correlate this with changes observed in CAF derived from tumours. Exposure of primary normal human fibroblasts to TGF-β1 resulted in the acquisition of a myofibroblastic CAF-like phenotype. This was associated with increased expression of miR-145, a miRNA predicted in silico to target multiple components of the TGF-β signalling pathway. miR-145 was also overexpressed in CAF derived from oral cancers. Overexpression of miR-145 blocked TGF-β1-induced myofibroblastic differentiation and reverted CAF towards a normal fibroblast phenotype. We conclude that miR-145 is a key regulator of the CAF phenotype, acting in a negative feedback loop to dampen acquisition of myofibroblastic traits, a key feature of CAF associated with poor disease outcome.
    Matched MeSH terms: Signal Transduction/physiology
  11. Break MKB, Hossan MS, Khoo Y, Qazzaz ME, Al-Hayali MZK, Chow SC, et al.
    Fitoterapia, 2018 Mar;125:161-173.
    PMID: 29355749 DOI: 10.1016/j.fitote.2018.01.006
    Cardamonin is a natural chalcone that has been shown to exhibit high anticancer activity. In an attempt to discover analogues of cardamonin with enhanced anticancer activity, 19 analogues were synthesized and tested against A549 and HK1 cell lines. Results of the MTS cell viability assay showed that several derivatives possessed cytotoxic activities that were several-fold more potent than cardamonin. SAR analysis showed the importance of the ketone and alkene groups for bioactivity, while substituting cardamonin's phenolic groups with more polar moieties resulted in activity enhancement. As part of the SAR study and further exploration of chemical space, the effect of metal coordination on cytotoxicity was also investigated, but it was only possible to successfully obtain the Cu (II) complex of cardamonin (19). Compound 19 was the most active analogue possessing IC50 values of 13.2μM and 0.7μM against A549 and HK1 cells, corresponding to a 5- and 32-fold increase in activity, respectively. It was also able to significantly inhibit the migration of A549 and HK1 cells. Further mode of action studies have shown that the most active analogue, 19, induced DNA damage resulting in G2/M-phase cell- cycle arrest in both cell lines. These events further led to the induction of apoptosis by the compound via caspase-3/7 and caspase-9 activation, PARP cleavage and downregulation of Mcl-1 expression. Moreover, 19 inhibited the expression levels of p-mTOR and p-4EBP1, which indicated that it exerted its anticancer activity, at least in part, via inhibition of the mTOR signalling pathway.
    Matched MeSH terms: Signal Transduction/drug effects*
  12. Sio YY, Gan WL, Ng WS, Matta SA, Say YH, Teh KF, et al.
    Int Arch Allergy Immunol, 2023;184(10):1010-1021.
    PMID: 37336194 DOI: 10.1159/000530960
    INTRODUCTION: Previous studies have indicated the ERBB2 genetic variants in the 17q12 locus might be associated with asthma; however, the functional effects of these variants on asthma risk remain inconclusive. This study aimed to characterize the functional roles of asthma-associated ERBB2 single nucleotide polymorphisms (SNPs) in asthma pathogenesis by performing genetic association and functional analysis studies.

    METHODS: This study belongs to a part of an ongoing Singapore/Malaysia cross-sectional genetics and epidemiological study (SMCSGES). Genotype-phenotype associations were assessed by performing a genotyping assay on n = 4,348 ethnic Chinese individuals from the SMCSGES cohort. The phosphorylation levels of receptors and signaling proteins in the MAPK signaling cascades, including ErbB2, EGFR, and ERK1/2, were compared across the genotypes of asthma-associated SNPs through in vitro and ex vivo approaches.

    RESULTS: The ERBB2 tag-SNP rs1058808 was significantly associated with allergic asthma, with the allele "G" identified as protective against the disease (adjusted logistic p = 6.56 × 10-9, OR = 0.625, 95% CI: 0.544-0.718). The allele "G" of rs1058808 resulted in a Pro1170Ala mutation that results in lower phosphorylation levels of ErbB2 in HaCat cells (p < 0.001), whereas the overall ERBB2 mRNA expression and the phosphorylation levels of EGFR remained unaffected. In the SMCSGES cohort, individuals carrying the genotype "GG" of rs1058808 had lower phosphorylated ERK1/2 proteins in the MAPK signaling cascade. A lower phosphorylation level of ERK1/2 was also associated with reduced asthma risk.

    CONCLUSIONS: The present findings highlighted the involvement of a functional exonic variant of ERBB2 in asthma development via modulating the MAPK signaling cascade.

    Matched MeSH terms: Signal Transduction/physiology
  13. Razali RA, Lokanathan Y, Yazid MD, Ansari AS, Saim AB, Hj Idrus RB
    Int J Mol Sci, 2019 Jul 16;20(14).
    PMID: 31315241 DOI: 10.3390/ijms20143492
    Epithelial-mesenchymal transition (EMT) is a significant dynamic process that causes changes in the phenotype of epithelial cells, changing them from their original phenotype to the mesenchymal cell phenotype. This event can be observed during wound healing process, fibrosis and cancer. EMT-related diseases are usually caused by inflammation that eventually leads to tissue remodeling in the damaged tissue. Prolonged inflammation causes long-term EMT activation that can lead to tissue fibrosis or cancer. Due to activation of EMT by its signaling pathway, therapeutic approaches that modulate that pathway should be explored. Olea europaea (OE) is well-known for its anti-inflammatory effects and abundant beneficial active compounds. These properties are presumed to modulate EMT events. This article reviews recent evidence of the effects of OE and its active compounds on EMT events and EMT-related diseases. Following evidence from the literature, it was shown that OE could modulate TGFβ/SMAD, AKT, ERK, and Wnt/β-catenin pathways in EMT due to a potent active compound that is present therein.
    Matched MeSH terms: Signal Transduction/drug effects
  14. Koosha S, Alshawsh MA, Looi CY, Seyedan A, Mohamed Z
    Int J Med Sci, 2016;13(5):374-85.
    PMID: 27226778 DOI: 10.7150/ijms.14485
    Colorectal cancer (CRC) is the third most common type of cancer in the world, causing thousands of deaths annually. Although chemotherapy is known to be an effective treatment to combat colon cancer, it produces severe side effects. Natural products, on the other hand, appear to generate fewer side effects than do chemotherapeutic drugs. Flavonoids are polyphenolic compounds found in various fruits and vegetables known to possess antioxidant activities, and the literature shows that several of these flavonoids have anti-CRC propertiesFlavonoids are classified into five main subclasses: flavonols, flavanones, flavones, flavan-3-ols, and flavanonols. Of these subclasses, the flavanonols have a minimum effect against CRC, whereas the flavones play an important role. The main targets for the inhibitory effect of flavonoids on CRC signaling pathways are caspase; nuclear factor kappa B; mitogen-activated protein kinase/p38; matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9; p53; β-catenin; cyclin-dependent kinase (CDK)2 and CDK4; and cyclins A, B, D, and E. In this review article, we summarize the in vitro and in vivo studies that have been performed since 2000 on the anti-CRC properties of flavonoids. We also describe the signaling pathways affected by flavonoids that have been found to be involved in CRC. Some flavonoids have the potential to be an effective alternative to chemotherapeutic drugs in the treatment of colon cancer; well-controlled clinical studies should, however, be conducted to support this proposal.
    Matched MeSH terms: Signal Transduction/drug effects
  15. Bouyahya A, El Allam A, Zeouk I, Taha D, Zengin G, Goh BH, et al.
    Molecules, 2022 Jan 03;27(1).
    PMID: 35011516 DOI: 10.3390/molecules27010284
    Grifolin is a volatile compound contained in essential oils of several medicinal plants. Several studies show that this substance has been the subject of numerous pharmacological investigations, which have yielded interesting results. Grifolin demonstrated beneficial effects for health via its multiple pharmacological activities. It has anti-microbial properties against bacteria, fungi, and parasites. In addition, grifolin exhibited remarkable anti-cancer effects on different human cancer cells. The anticancer action of this molecule is related to its ability to act at cellular and molecular levels on different checkpoints controlling the signaling pathways of human cancer cell lines. Grifolin can induce apoptosis, cell cycle arrest, autophagy, and senescence in these cells. Despite its major pharmacological properties, grifolin has only been investigated in vitro and in vivo. Therefore, further investigations concerning pharmacodynamic and pharmacokinetic tests are required for any possible pharmaceutical application of this substance. Moreover, toxicological tests and other investigations involving humans as a study model are required to validate the safety and clinical applications of grifolin.
    Matched MeSH terms: Signal Transduction/drug effects*
  16. Draman MS, Zhang L, Dayan C, Ludgate M
    PMID: 34899596 DOI: 10.3389/fendo.2021.739994
    Graves' orbitopathy (GO) is a complex and poorly understood disease in which extensive remodeling of orbital tissue is dominated by adipogenesis and hyaluronan production. The resulting proptosis is disfiguring and underpins the majority of GO signs and symptoms. While there is strong evidence for the thyrotropin receptor (TSHR) being a thyroid/orbit shared autoantigen, the insulin-like growth factor 1 receptor (IGF1R) is also likely to play a key role in the disease. The pathogenesis of GO has been investigated extensively in the last decade with further understanding of some aspects of the disease. This is mainly derived by using in vitro and ex vivo analysis of the orbital tissues. Here, we have summarized the features of GO pathogenesis involving target autoantigens and their signaling pathways.
    Matched MeSH terms: Signal Transduction/physiology*
  17. Lee JW, Ong TG, Samian MR, Teh AH, Watanabe N, Osada H, et al.
    Sci Rep, 2021 Dec 17;11(1):24148.
    PMID: 34921163 DOI: 10.1038/s41598-021-03490-7
    Ageing-related proteins play various roles such as regulating cellular ageing, countering oxidative stress, and modulating signal transduction pathways amongst many others. Hundreds of ageing-related proteins have been identified, however the functions of most of these ageing-related proteins are not known. Here, we report the identification of proteins that extended yeast chronological life span (CLS) from a screen of ageing-related proteins. Three of the CLS-extending proteins, Ptc4, Zwf1, and Sme1, contributed to an overall higher survival percentage and shorter doubling time of yeast growth compared to the control. The CLS-extending proteins contributed to thermal and oxidative stress responses differently, suggesting different mechanisms of actions. The overexpression of Ptc4 or Zwf1 also promoted rapid cell proliferation during yeast growth, suggesting their involvement in cell division or growth pathways.
    Matched MeSH terms: Signal Transduction*
  18. Yang C, Li X, Wang C, Fu S, Li H, Guo Z, et al.
    J Mol Histol, 2016 Dec;47(6):541-554.
    PMID: 27650519
    N-cadherin is a calcium-sensitive cell adhesion molecule that plays an important role in the formation of the neural circuit and the development of the nervous system. In the present study, we investigated the function of N-cadherin in cell-cell connection in vitro with HEK293T cells, and in commissural axon projections in the developing chicken spinal cord using in ovo electroporation. Cell-cell connections increased with N-cadherin overexpression in HEK293T cells, while cell contacts disappeared after co-transfection with an N-cadherin-shRNA plasmid. The knockdown of N-cadherin caused the accumulation of β-catenin in the nucleus, supporting the notion that N-cadherin regulates β-catenin signaling in vitro. Furthermore, N-cadherin misexpression perturbed commissural axon projections in the spinal cord. The overexpression of N-cadherin reduced the number of axons that projected alongside the contralateral margin of the floor plate, and formed intermediate longitudinal commissural axons. In contrast, the knockdown of N-cadherin perturbed commissural axon projections significantly, affecting the projections alongside the contralateral margin of the floor plate, but did not affect intermediate longitudinal commissural axons. Taken together, these findings suggest that N-cadherin regulates commissural axon projections in the developing chicken spinal cord.
    Matched MeSH terms: Signal Transduction*
  19. Du Y, Lin X, Shao X, Zhao J, Xu H, de Cruz CR, et al.
    Front Immunol, 2024;15:1319698.
    PMID: 38646543 DOI: 10.3389/fimmu.2024.1319698
    This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.
    Matched MeSH terms: Signal Transduction*
  20. Yao S, Lu H, Zhou T, Jiang Q, Jiang C, Hu W, et al.
    Food Funct, 2024 Apr 22;15(8):4490-4502.
    PMID: 38566566 DOI: 10.1039/d3fo04527g
    High-fat diet (HFD) has been associated with certain negative bone-related outcomes, such as bone metabolism disruption and bone loss. Sciadonic acid (SC), one of the main nutritional and functional components of Torreya grandis seed oil, is a unique Δ5-unsaturated-polymethylene-interrupted fatty acid (Δ5-UPIFA) that has been claimed to counteract such disorders owing to some of its physiological effects. However, the role of SC in ameliorating bone metabolism disorders due to HFD remains unclear. In the present investigation, we observed that SC modulates the OPG/RANKL/RANK signaling pathway by modifying the lipid metabolic state and decreasing inflammation in mice. In turn, it could balance bone resorption and formation as well as calcium and phosphorus levels, enhance bone strength and bone mineral density (BMD), and improve its microstructure. In addition, SC could inhibit fat vacuoles in bone, reverse the phenomenon of reduced numbers and poor continuity of bone trabeculae, and promote orderly arrangement of collagen fibers and cartilage repair. This study provides some theoretical basis for SC as a dietary intervention agent to enhance bone nutrition.
    Matched MeSH terms: Signal Transduction/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links