Displaying publications 1541 - 1560 of 3311 in total

Abstract:
Sort:
  1. Kosiha A, Lo KM, Parthiban C, Elango KP
    Mater Sci Eng C Mater Biol Appl, 2019 Jan 01;94:778-787.
    PMID: 30423764 DOI: 10.1016/j.msec.2018.10.021
    Three metal(II) complexes [CoLCl2], [CuLCl2] and [ZnL2Cl2] {L = 2‑chloro‑3‑((3‑dimethylamino)propylamino)naphthalene‑1,4‑dione} have been synthesized and characterized using analytical, thermal and spectral techniques (FT-IR, UV-Vis, ESR and ESI-MS). The structure of the L has been confirmed by single crystal XRD study. The complexes show good binding propensity to bovine serum albumin (BSA) having relatively higher binding constant values (104 M-1) than the ligand. Fluorescence spectral studies indicate that [CoLCl2] binds relatively stronger with CT DNA through intercalative mode, exhibiting higher binding constant (2.22 × 105 M-1). Agarose gel electrophoresis run on plasmid DNA (pUC18) prove that all the complexes showed efficient DNA cleavage via hydroxyl radical mechanism. The complexes were identified as potent anticancer agents against two human cancer cell lines (MCF7 and A549) by comparing with cisplatin. Co(II) complex demonstrated greater cytotoxicity against MCF7 and A549 cells with IC50 values at 19 and 22 μM, respectively.
    Matched MeSH terms: MCF-7 Cells; A549 Cells
  2. Tan SN, Sim SP, Khoo ASB
    BMC Mol. Biol., 2018 12 04;19(1):15.
    PMID: 30514321 DOI: 10.1186/s12867-018-0116-5
    BACKGROUND: Oxidative stress is known to be involved in most of the aetiological factors of nasopharyngeal carcinoma (NPC). Cells that are under oxidative stress may undergo apoptosis. We have previously demonstrated that oxidative stress-induced apoptosis could be a potential mechanism mediating chromosome breakages in nasopharyngeal epithelial cells. Additionally, caspase-activated DNase (CAD) may be the vital player in mediating the chromosomal breakages during oxidative stress-induced apoptosis. Chromosomal breakage occurs during apoptosis and chromosome rearrangement. Chromosomal breakages tend to cluster in certain regions, such as matrix association region/scaffold attachment region (MAR/SAR). We hypothesised that oxidative stress-induced apoptosis may result in chromosome breaks preferentially at the MAR/SAR sites. The AF9 gene at 9p22 was targeted in this study because 9p22 is a deletion site commonly found in NPC.

    RESULTS: By using MAR/SAR recognition signature (MRS), potential MAR/SAR sites were predicted in the AF9 gene. The predicted MAR/SAR sites precisely match to the experimentally determined MAR/SARs. Hydrogen peroxide (H2O2) was used to induce apoptosis in normal nasopharyngeal epithelial cells (NP69) and NPC cells (HK1). Nested inverse polymerase chain reaction was employed to identify the AF9 gene cleavages. In the SAR region, the gene cleavage frequency of H2O2-treated cells was significantly higher than that of the non-treated cells. A few chromosomal breakages were detected within the AF9 region which was previously found to be involved in the mixed lineage leukaemia (MLL)-AF9 translocation in an acute lymphoblastic leukaemia patient. As for the non-SAR region, no significant difference in the gene cleavage frequency was found between the untreated control and H2O2-treated cells. Furthermore, H2O2-induced cleavages within the SAR region were reduced by caspase-3 inhibitor, which indirectly inhibits CAD.

    CONCLUSIONS: These results reaffirm our previous findings that oxidative stress-induced apoptosis could be one of the potential mechanisms underlying chromosome breakages in nasopharyngeal epithelial cells. MAR/SAR may play a vital role in defining the location of chromosomal breakages mediated by oxidative stress-induced apoptosis, where CAD is the major nuclease.

    Matched MeSH terms: Epithelial Cells/metabolism*
  3. Fui LW, Lok MPW, Govindasamy V, Yong TK, Lek TK, Das AK
    J Tissue Eng Regen Med, 2019 12;13(12):2218-2233.
    PMID: 31648415 DOI: 10.1002/term.2966
    Mesenchymal stem cells (MSCs) transplantation seems to be a promising new therapy for diabetic wound healing (DWH), and currently, arrays of MSCs from various sources ranging from umbilical, adipose to dental sources are available as a treatment modality for this disease. However, it now appears that only a fraction of transplanted cells actually assimilate and survive in host tissues suggesting that the major mechanism by which stem cells participate in tissue repair are most likely related to their secretome level. These include a wide range of growth factors, cytokines, and chemokines, which can be found from the conditioned medium (CM) used to culture the cells. Basic studies and preclinical work confirm that the therapeutic effect of CMs are comparable with the application of stem cells. This review describes in detail the wound healing process in diabetes and the cellular and biological factors that influence the process. Subsequently, through a comprehensive literature search of studies related to wound healing in diabetics, we aim to provide an overview of scientific merits of using MSCs-CM in the treatment of diabetic wound as well as the significant caveats, which restricts its potential use in clinical set-ups. To our best knowledge, this is one of the first review papers that collect the importance of stem cells as an alternative treatment to the DWH. We anticipate that the success of this treatment will have a significant clinical impact on diabetic wounds.
    Matched MeSH terms: Mesenchymal Stromal Cells/metabolism*
  4. Yeap JS, Saad HM, Tan CH, Sim KS, Lim SH, Low YY, et al.
    J Nat Prod, 2019 11 22;82(11):3121-3132.
    PMID: 31642315 DOI: 10.1021/acs.jnatprod.9b00712
    A methanol extract of the stem bark of the Malayan Alstonia penangiana provided seven new bisindole alkaloids, comprising six macroline-sarpagine alkaloids (angustilongines E-K, 1-6) and one macroline-pleiocarpamine bisindole alkaloid (angustilongine L, 7). Analysis of the spectroscopic data (NMR and MS) of these compounds led to the proposed structures of these alkaloids. The macroline-sarpagine alkaloids (1-6) showed in vitro growth inhibitory activity against a panel of human cancer cell lines, inclusive of KB, vincristine-resistant KB, PC-3, LNCaP, MCF7, MDA-MB-231, HT-29, HCT 116, and A549 cells (IC50 values: 0.02-9.0 μM).
    Matched MeSH terms: HT29 Cells; A549 Cells
  5. Williams M, Valayannopoulos V, Altassan R, Chung WK, Heijboer AC, Keng WT, et al.
    J Inherit Metab Dis, 2019 01;42(1):147-158.
    PMID: 30740741 DOI: 10.1002/jimd.12036
    BACKGROUND: Transaldolase deficiency (TALDO-D) is a rare autosomal recessive inborn error of the pentose phosphate pathway. Since its first description in 2001, several case reports have been published, but there has been no comprehensive overview of phenotype, genotype, and phenotype-genotype correlation.

    METHODS: We performed a retrospective questionnaire and literature study of clinical, biochemical, and molecular data of 34 patients from 25 families with proven TALDO-D. In some patients, endocrine abnormalities have been found. To further evaluate these abnormalities, we performed biochemical investigations on blood of 14 patients.

    RESULTS AND CONCLUSIONS: Most patients (n = 22) had an early-onset presentation (prenatally or before 1 month of age); 12 patients had a late-onset presentation (3 months to 9 years). Main presenting symptoms were intrauterine growth restriction, dysmorphic facial features, congenital heart disease, anemia, thrombocytopenia, and hepato(spleno)megaly. An older sib of two affected patients was asymptomatic until the age of 9 years, and only after molecular diagnosis was hepatomegaly noted. In some patients, there was gonadal dysfunction with low levels of testosterone and secondary luteinizing hormone (LH) and follicle-stimulating hormone (FSH) abnormalities later in life. This overview provides information that can be helpful for managing patients and counseling families regarding prognosis. Diagnostic guidelines, possible genotype-phenotype correlations, treatment options, and pathophysiological disease mechanisms are proposed.

    Matched MeSH terms: Endocrine Cells/metabolism*
  6. Cheong PCH, Yong YS, Fatima A, Ng ST, Tan CS, Kong BH, et al.
    IUBMB Life, 2019 10;71(10):1579-1594.
    PMID: 31190445 DOI: 10.1002/iub.2101
    A lectin gene from the Tiger Milk Mushroom Lignosus rhinocerus TM02® was successfully cloned and expressed via vector pET28a in Escherichia coli BL21(DE3). The recombinant lectin, Rhinocelectin, with a predicted molecular mass of 22.8 kDa, was overexpressed in water-soluble form without signal peptide and purified via native affinity chromatography Ni-NTA agarose. Blast protein analysis indicated the lectin to be homologous to jacalin-related plant lectin. In its native form, Rhinocelectin exists as a homo-tetramer predicted with four chains of identical proteins consisting of 11 beta-sheet structures with only one alpha-helix structure. The antiproliferative activity of the Rhinocelectin against human cancer cell lines was concentration dependent and selective. The IC50 values against triple negative breast cancer cell lines MDA-MB-231 and breast cancer MCF-7 are 36.52 ± 13.55 μg mL-1 and 53.11 ± 22.30 μg mL-1 , respectively. Rhinocelectin is only mildly cytotoxic against the corresponding human nontumorigenic breast cell line 184B5 with IC50 value at 142.19 ± 36.34 μg mL-1 . The IC50 against human lung cancer cell line A549 cells is 46.14 ± 7.42 μg mL-1 while against nontumorigenic lung cell line NL20 is 41.33 ± 7.43 μg mL-1 . The standard anticancer drug, Doxorubicin exhibited IC50 values mostly below 1 μg mL-1 for the cell lines tested. Flow cytometry analysis showed the treated breast cancer cells were arrested at G0/G1 phase and apoptosis induced. Rhinocelectin agglutinated rat and rabbit erythrocytes at a minimal concentration of 3.125 μg mL-1 and 6.250 μg mL-1 , respectively.
    Matched MeSH terms: MCF-7 Cells; A549 Cells
  7. Morais C, Rajandram R, Blakeney JS, Iyer A, Suen JY, Johnson DW, et al.
    PLoS One, 2021;16(3):e0248983.
    PMID: 33765016 DOI: 10.1371/journal.pone.0248983
    Expression of the protease sensing receptor, protease activated receptor-2 (PAR2), is elevated in a variety of cancers and has been promoted as a potential therapeutic target. With the development of potent antagonists for this receptor, we hypothesised that they could be used to treat renal cell carcinoma (RCC). The expression of PAR2 was, therefore, examined in human RCC tissues and selected RCC cell lines. Histologically confirmed cases of RCC, together with paired non-involved kidney tissue, were used to produce a tissue microarray (TMA) and to extract total tissue RNA. Immunohistochemistry and qPCR were then used to assess PAR2 expression. In culture, RCC cell lines versus primary human kidney tubular epithelial cells (HTEC) were used to assess PAR2 expression by qPCR, immunocytochemistry and an intracellular calcium mobilization assay. The TMA revealed an 85% decrease in PAR2 expression in tumour tissue compared with normal kidney tissue. Likewise, qPCR showed a striking reduction in PAR2 mRNA in RCC compared with normal kidney. All RCC cell lines showed lower levels of PAR2 expression than HTEC. In conclusion, we found that PAR2 was reduced in RCC compared with normal kidney and is unlikely to be a target of interest in the treatment of this type of cancer.
    Matched MeSH terms: Epithelial Cells/metabolism
  8. Jong WW, Tan PJ, Kamarulzaman FA, Mejin M, Lim D, Ang I, et al.
    Chem Biodivers, 2013 Aug;10(8):1475-86.
    PMID: 23939795 DOI: 10.1002/cbdv.201200303
    Photodynamic therapy (PDT) is a medical treatment that involves the irradiation of an administered photosensitizing drug with light of a particular wavelength to activate the photosensitizer to kill abnormal cells. To date, only a small number of photosensitizers have been clinically approved for PDT, and researchers continue to look for new molecules that have more desirable properties for clinical applications. Natural products have long been important sources of pharmaceuticals, and there is a great potential for discovery of novel chemotypes from under-explored biodiversities in the world. The objective of this study is to mine the terrestrial plants in Sarawak, Borneo Island, for new photosensitizers for PDT. In a screening program from 2004 to 2008, we prepared and studied 2,400 extracts from 888 plants for their photosensitizing activities. This report details the bioprospecting process, preparation and testing of extracts, analysis of the active samples, fractionation of four samples, and isolation and characterization of photosensitizers.
    Matched MeSH terms: HL-60 Cells; K562 Cells
  9. Soopramanien M, Khan N, Neerooa BNHM, Sagathevan K, Siddiqui R
    Asian Pac J Cancer Prev, 2021 Mar 01;22(3):733-740.
    PMID: 33773536 DOI: 10.31557/APJCP.2021.22.3.733
    OBJECTIVES: The overall aim was to determine whether gut bacteria of Columbia livia are a potential source of antitumour molecules.

    METHODS: Faecal and gut microbiota of Columbia livia were isolated, identified and conditioned media were prepared containing metabolites. Growth inhibition, lactate dehydrogenase cytotoxicity and cell survival assays were accomplished against cervical cancer cells. Next, liquid-chromatography mass spectrometry was conducted to elucidate the molecules present.

    RESULTS: A plethora of bacteria from faecal matter and gastrointestinal tract were isolated. Selected conditioned media exhibited potent anticancer effects and displayed cytotoxicity to cervical cancer cells at IC50 concentration of 10.65 and 15.19 µg/ml. Moreover, cells treated with conditioned media exhibited morphological changes, including cell shrinking and rounding; indicative of apoptosis, when compared to untreated cells. A total of 111 and 71 molecules were revealed from these gut and faecal metabolites. The identity of 60 molecules were revealed including, dihydroxymelphalan. Nonetheless, 122 molecules remain unidentified and are the subject of future studies.

    CONCLUSION: These findings suggest that gut bacteria of Columbia livia possess molecules, which may have anticancer activities. Further in silico testing and/or high throughput screening will determine potential anticancer properties of these molecules.
    .

    Matched MeSH terms: HeLa Cells; MCF-7 Cells
  10. Ng KW, Salhimi SM, Majid AM, Chan KL
    Planta Med, 2010 Jun;76(9):935-40.
    PMID: 20112179 DOI: 10.1055/s-0029-1240813
    Angiogenesis plays an important role in tumor formation and proliferation. The development of anti-angiogenic agents to block new blood vessel growth will inhibit metastasis and induce apoptosis of the cancer cells. Nine medicinal plants, Strobilanthes crispus, Phyllanthus niruri, Phyllanthus pulcher, Phyllanthus urinaria, Ailanthus malabarica, Irvingia malayana, Smilax myosotiflora, Tinospora crispa and blumea balsamifera were screened for anti-angiogenic properties using the rat aortic ring assay. Of these, the methanol extracts of Phyllanthus species and Irvingia malayana exhibited the highest activity. At 100 microg/mL, P. pulcher, P. niruri, P. urinaria and I. malayana recorded an inhibition of 78.8 %, 59.5 %, 56.7 % and 46.4 %, respectively, against rat aortic vascular growth. Their activities were further investigated by the tube formation assay involving human umbilical vein endothelial cells (HUVEC) on Matrigel. I. malayana, P. niruri and P. urinaria showed a significant decrease of 45.5, 37.9 and 35.6 %, respectively, whilst P. pulcher showed a much lower decrease of 15.5 % when compared with that of the rat aortic ring assay. All the plant extracts were evaluated for cytotoxicity on a panel of human cancer cell lines using the MTT assay. None of them displayed acute cytotoxicity. The HPLC of P. niruri, P. urinaria and P. pulcher indicated the extracts contained some identical chromatographic peaks of lignans. Further fractionation of I. malayana yielded betulinic acid reported in this plant for the first time and at 100 microg/mL it exhibited a 67.3 % inhibition of vessel outgrowth and 46.5 % inhibition of tube formation.
    Matched MeSH terms: Endothelial Cells/drug effects*
  11. Mohd Nafis NS, Mat Zin AA
    Asian Pac J Cancer Prev, 2021 Oct 01;22(10):3261-3266.
    PMID: 34711003 DOI: 10.31557/APJCP.2021.22.10.3261
    Liquid-based preparation (LBP) cytology is commonly used in most laboratories these days due to its convenience and reliable results for the cervical cancer screening program. The PathTezt™ Liquid-based Pap smear is a second-generation LBP, which uses a filter-based concentration technique in processing the sample.

    OBJECTIVE: This study was done to evaluate the cellular fixation, morphology, quality of smear in gynae cytology, and diagnostic interpretation of cervical cytological smears produced by the PathTezt liquid-based processor.

    MATERIALS AND METHODS: A total of 400 pap smear samples were taken and processed using the PathTezt 2000 processor. The slides were evaluated in terms of sample adequacy, percentage of the circle covered by epithelial cells, cellular distribution, obscuring factors, and cell fixation.

    RESULTS: About 95.25% (381) of the samples were satisfactory for the evaluation. In 19 (4.75%) of the samples, epithelial cells covered less than 50% of the circle. A sample with good cellular distribution was seen in 92% of the cases, while 354 (88.5%) samples showed minimal inflammatory background. Almost all the smears (95.75%) had no erythrocytes in the background. All smears showed good quality fixation features toward nuclear, cytoplasm, and microorganisms. The total performance rate was 99%.

    CONCLUSION: Although the PathTezt liquid-based processor is still new compared to other first-generation LBP, the smears produced by this method were of high quality and it was cost-effective.

    Matched MeSH terms: Epithelial Cells/pathology
  12. Yunus U, Zulfiqar MA, Ajmal M, Bhatti MH, Chaudhry GE, Muhammad TST, et al.
    Biomed Mater, 2020 09 26;15(6):065004.
    PMID: 32442994 DOI: 10.1088/1748-605X/ab95e1
    Gemcitabine (GEM) is used to treat various cancers such as breast, pancreatic, non-small lung, ovarian, bladder, and cervical cancers. GEM, however, has the problem of non-selectivity. Water-soluble, fluorescent, and mono-dispersed carbon dots (CDs) were fabricated by ultrasonication of sucrose. The CDs were further conjugated with GEM through amide linkage. The physical and morphological properties of these carbon dot-gemcitabine (CD-GEM) conjugates were determined using different analytical techniques. In vitro cytotoxicity and apoptosis studies of CD-GEM conjugates were evaluated by various bioactivity assays on human cell lines, MCF-7 (human breast adenocarcinoma), and HeLa (cervical cancer) cell lines. The results of kinetic studies have shown a maximum drug loading efficacy of 17.0 mg of GEM per 50.0 mg of CDs. The CDs were found biocompatible, and the CD-GEM conjugates exhibited excellent bioactivity and exerted potent cytotoxicity against tumor cells with an IC50 value of 19.50 μg ml-1 in HeLa cells, which is lower than the IC50 value of pure GEM (∼20.10 μg ml-1). In vitro studies on CD-GEM conjugates demonstrated the potential to replace the conventional administration of GEM. CD-GEM conjugates are more stable, have a higher aqueous solubility, and are more cytotoxic as compared to GEM alone. The CD-GEM conjugates show reduced side effects in the normal cells along with excellent cellular uptake. Hence, CD-GEM conjugates are more selective toward cancerous cell lines as compared to non-cancerous cells. Also, the CD-GEM conjugates successfully induced early and late apoptosis in cancer cell lines and might be effective and safe to use for in vivo applications.
    Matched MeSH terms: HeLa Cells; MCF-7 Cells
  13. Kotaki R, Higuchi H, Ogiya D, Katahira Y, Kurosaki N, Yukihira N, et al.
    Int J Hematol, 2017 Dec;106(6):811-819.
    PMID: 28831750 DOI: 10.1007/s12185-017-2314-1
    miR-1 and miR-133 are clustered on the same chromosomal loci and are transcribed together as a single transcript that is positively regulated by ecotropic virus integration site-1 (EVI1). Previously, we described how miR-133 has anti-tumorigenic potential through repression of EVI1 expression. It has also been reported that miR-1 is oncogenic in the case of acute myeloid leukemia (AML). Here, we show that expression of miR-1 and miR-133, which have distinct functions, is differentially regulated between AML cell lines. Interestingly, the expression of miR-1 and EVI1, which binds to the promoter of the miR-1/miR-133 cluster, is correlative. The expression levels of TDP-43, an RNA-binding protein that has been reported to increase the expression, but inhibits the activity, of miR-1, were not correlated with expression levels of miR-1 in AML cells. Taken together, our observations raise the possibility that the balance of polycistronic miRNAs is regulated post-transcriptionally in a hierarchical manner possibly involving EVI1, suggesting that the deregulation of this balance may play some role in AML cells with high EVI1 expression.
    Matched MeSH terms: HL-60 Cells; U937 Cells
  14. Kamalludin MH, Garcia-Guerra A, Wiltbank MC, Kirkpatrick BW
    Biol Reprod, 2018 03 01;98(3):323-334.
    PMID: 29088317 DOI: 10.1093/biolre/iox133
    A major gene for bovine ovulation rate has been mapped to a 1.2 Mb region of chromosome 10. Screening of coding regions of positional candidate genes within this region failed to reveal a causative polymorphism, leading to the hypothesis that the phenotype results from differences in candidate gene expression rather than alteration of gene structure. This study tested differences in expression of positional candidate genes in granulosa cells between carriers and noncarriers of the high fecundity allele, as well as characterizing differences in the transcriptomic profile between genotypes. Five carriers and five noncarriers, female descendants of "Trio," a carrier of the high fecundity allele were initially used in an RNA-seq analysis of gene expression. Four of ten samples were contaminated with theca cells, so that six samples were used in the final analysis (three of each genotype). Of 14 973 genes expressed, 143 were differentially expressed (false discovery rate P < 0.05) in carriers versus noncarriers. Among the positional candidate genes, SMAD6 was 6.6-fold overexpressed in the carriers compared to noncarriers (P < 5 × 10-5). This result was replicated in an independent group of 12 females (7 carriers and 5 noncarriers) using quantitative real-time PCR; SMAD6 was 9.3-fold overexpressed in carriers versus noncarriers (P = 1.17 × 10-6). Association of overexpression of SMAD6, an inhibitor of the BMP/SMAD signaling pathway, with high ovulation rate corresponds well with disabling mutations in ligands (BMP15 and GDF9) and a receptor (BMPR1B) of this pathway that cause increased ovulation rate in sheep.
    Matched MeSH terms: Granulosa Cells/metabolism*
  15. See JX, Chandramathi S, Abdulla MA, Vadivelu J, Shankar EM
    PLoS Negl Trop Dis, 2017 Aug;11(8):e0005702.
    PMID: 28820897 DOI: 10.1371/journal.pntd.0005702
    BACKGROUND: Melioidosis is a neglected tropical disease endemic across South East Asia and Northern Australia. The etiological agent, Burkholderia pseudomallei (B.pseudomallei), is a Gram-negative, rod-shaped, motile bacterium residing in the soil and muddy water across endemic regions of the tropical world. The bacterium is known to cause persistent infections by remaining latent within host cells for prolonged duration. Reactivation of the recrudescent disease often occurs in elders whose immunity wanes. Moreover, recurrence rates in melioidosis patients can be up to ~13% despite appropriate antibiotic therapy, suggestive of bacterial persistence and inefficacy of antibiotic regimens. The mechanisms behind bacterial persistence in the host remain unclear, and hence understanding host immunity during persistent B. pseudomallei infections may help designing potential immunotherapy.

    METHODOLOGY/PRINCIPAL FINDINGS: A persistent infection was generated using a small-colony variant (SCV) and a wild-type (WT) B. pseudomallei in BALB/c mice via intranasal administration. Infected mice that survived for >60 days were sacrificed. Lungs, livers, spleens, and peripheral blood mononuclear cells were harvested for experimental investigations. Histopathological changes of organs were observed in the infected mice, suggestive of successful establishment of persistent infections. Moreover, natural killer (NK) cell frequency was increased in SCV- and WT-infected mice. We observed programmed death-1 (PD-1) upregulation on B cells of SCV- and WT-infected mice. Interestingly, PD-1 upregulation was only observed on NK cells and monocytes of SCV-infected mice. In contrast, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) downregulation was seen on NK cells of WT-infected mice, and on monocytes of SCV- and WT-infected mice.

    CONCLUSIONS/SIGNIFICANCE: The SCV and the WT of B. pseudomallei distinctly upregulated PD-1 expression on B cells, NK cells, and monocytes to dampen host immunity, which likely facilitates bacterial persistence. PD-1/PD-L1 pathway appears to play an important role in the persistence of B. pseudomallei in the host.

    Matched MeSH terms: Killer Cells, Natural/chemistry
  16. Al-Abboodi AS, Rasedee A, Abdul AB, Taufiq-Yap YH, Alkaby WAA, Ghaji MS, et al.
    Drug Des Devel Ther, 2017;11:3309-3319.
    PMID: 29200826 DOI: 10.2147/DDDT.S147626
    Introduction: Dentatin (DEN) (5-methoxy-2, 2-dimethyl-10-(1, 1-dimethyl-2propenyl) dipyran-2-one), a natural compound present in the roots of Clausena excavata Burm f, possesses pro-apoptotic and antiproliferative effects in various cancer cells. Because of its hydrophobicity, it is believed that its complexation with hydroxy-β-cyclodextrin (HPβCD) will make it a potent inhibitor of cancer cell growth. In the current work, the molecular mechanisms of apoptosis induced by DEN and DEN-HPβCD complex were demonstrated in human colon HT-29 cancer cells.

    Materials and methods: After the human colon HT-29 cancer cells were treated with DEN and DEN-HPβCD complex, their effects on the expression of apoptotic-regulated gene markers in mitochondria-mediated apoptotic and death receptor pathways were detected by Western blot analysis and reverse transcription polymerase chain reaction. These markers included caspases-9, 3, and 8, cytochrome c, poly (ADP-ribose) polymerase, p53, p21, cyclin A as well as the Bcl-2 family of proteins.

    Results: At 3, 6, 12, and 24 µg/mL exposure, DEN and DEN-HPβCD complex significantly affected apoptosis in HT-29 cells through the down-regulation of Bcl-2 and cyclin A in turn, and up-regulation of Bax, p53, p21, cytochrome c at both protein and mRNA levels. DEN and DEN-HPβCD complex also decreased cleaved poly (ADP-ribose) polymerase and induced caspases-3, -8, and -9.

    Conclusion: Results of this study indicate that the apoptotic pathway caused by DEN and DEN-HPβCD complex are mediated by the regulation of caspases and Bcl-2 families in human colon HT-29 cancer cells. The results also suggest that DEN-HPβCD complex may have chemotherapeutic benefits for colon cancer patients.

    Matched MeSH terms: Tumor Cells, Cultured; HT29 Cells
  17. MubarakAli D, LewisOscar F, Gopinath V, Alharbi NS, Alharbi SA, Thajuddin N
    Microb Pathog, 2018 Jan;114:323-327.
    PMID: 29229504 DOI: 10.1016/j.micpath.2017.11.043
    Chitosan is the second most abundant polymer obtained from the byproduct of seafood. Chitosan and its derivatives and chitosan loaded drugs are the recent area of interest against microbial pathogenesis. The cationic chitosan nanoparticles (ChNPs) interact with the anionic surfaces of the microbial cell membrane, which promotes antimicrobial activity. Although, ChNPs are potential against pathogenic microbes, selection of adaptable, suitable and cost effective synthesis method is much important. In the present study, ChNPs were synthesized adopting ionic gelation using sodium tripolyphosphate as a cross linking agent and characterized by FTIR, DLS, SEM and TEM analysis. ChNPs were investigated for antimicrobial activity against bacterial (Escherichia coli and Staphylococcus aureus) and fungal (Candida albicans) pathogens. ChNPs showed bactericidal activity at the lower minimum inhibitory concentration of about 40-80 μg mL-1. Interestingly, ChNPs exhibits biocompatible antioxidant property by inhibiting DPPH free radicals at 76% and also proven to be a potential candidate against the microbial pathogenesis with an inevitable applications in biomedicine.
    Matched MeSH terms: HeLa Cells/drug effects
  18. Vrzalikova K, Ibrahim M, Vockerodt M, Perry T, Margielewska S, Lupino L, et al.
    Leukemia, 2018 01;32(1):214-223.
    PMID: 28878352 DOI: 10.1038/leu.2017.275
    The Hodgkin/Reed-Sternberg cells of classical Hodgkin lymphoma (HL) are characterised by the aberrant activation of multiple signalling pathways. Here we show that a subset of HL displays altered expression of sphingosine-1-phosphate (S1P) receptors (S1PR)s. S1P activates phosphatidylinositide 3-kinase (PI3-K) in these cells that is mediated by the increased expression of S1PR1 and the decreased expression of S1PR2. We also showed that genes regulated by the PI3-K signalling pathway in HL cell lines significantly overlap with the transcriptional programme of primary HRS cells. Genes upregulated by the PI3-K pathway included the basic leucine zipper transcription factor, ATF-like 3 (BATF3), which is normally associated with the development of dendritic cells. Immunohistochemistry confirmed that BATF3 was expressed in HRS cells of most HL cases. In contrast, in normal lymphoid tissues, BATF3 expression was confined to a small fraction of CD30-positive immunoblasts. Knockdown of BATF3 in HL cell lines revealed that BATF3 contributed to the transcriptional programme of primary HRS cells, including the upregulation of S1PR1. Our data suggest that disruption of this potentially oncogenic feedforward S1P signalling loop could provide novel therapeutic opportunities for patients with HL.
    Matched MeSH terms: Tumor Cells, Cultured; HEK293 Cells
  19. Chan YS, Cheah YH, Chong PZ, Khor HL, Teh WS, Khoo KS, et al.
    Pak J Pharm Sci, 2018 Jan;31(1):119-127.
    PMID: 29348093
    This study was conducted to investigate the antifungal potential and cytotoxicity of selected medicinal plants from Malaysia. The extracts from the stem of Cissus quadrangularis and the leaves of Asplenium nidus, Pereskia bleo, Persicaria odorata and Sauropus androgynus were assayed against six fungi using p-iodonitrotetrazolium-based on colorimetric broth microdilution method. All the plant extracts were found to be fungicidal against at least one type of fungus. The strongest fungicidal activity (minimum fungicidal concentration=0.16 mg/mL) were exhibited by the hexane extract of C. quadrangularis, the hexane, chloroform, ethanol and methanol extracts of P. bleo, the hexane and ethyl acetate extracts of P. odorata, and the water extract of A. nidus. In terms of cytotoxicity on the African monkey kidney epithelial (Vero) cells, the chloroform extract of P. odorata produced the lowest 50% cytotoxic concentration (100.3 ± 4.2 μ g/mL). In contrast, none of the water extracts from the studied plants caused significant toxicity on the cells. The water extract of A. nidus warrants further investigation since it showed the strongest fungicidal activity and the highest total activity (179.22 L/g) against Issatchenkia orientalis, and did not cause any toxicity to the Vero cells.
    Matched MeSH terms: Vero Cells/drug effects
  20. Chua KB, Crameri G, Hyatt A, Yu M, Tompang MR, Rosli J, et al.
    Proc Natl Acad Sci U S A, 2007 Jul 03;104(27):11424-9.
    PMID: 17592121
    Respiratory infections constitute the most widespread human infectious disease, and a substantial proportion of them are caused by unknown etiological agents. Reoviruses (respiratory enteric orphan viruses) were first isolated from humans in the early 1950s and so named because they were not associated with any known disease. Here, we report a previously unknown reovirus (named "Melaka virus") isolated from a 39-year-old male patient in Melaka, Malaysia, who was suffering from high fever and acute respiratory disease at the time of virus isolation. Two of his family members developed similar symptoms approximately 1 week later and had serological evidence of infection with the same virus. Epidemiological tracing revealed that the family was exposed to a bat in the house approximately 1 week before the onset of the father's clinical symptoms. Genome sequence analysis indicated a close genetic relationship between Melaka virus and Pulau virus, a reovirus isolated in 1999 from fruit bats in Tioman Island, Malaysia. Screening of sera collected from human volunteers on the island revealed that 14 of 109 (13%) were positive for both Pulau and Melaka viruses. This is the first report of an orthoreovirus in association with acute human respiratory diseases. Melaka virus is serologically not related to the different types of mammalian reoviruses that were known to infect humans asymptomatically. These data indicate that bat-borne reoviruses can be transmitted to and cause clinical diseases in humans.
    Matched MeSH terms: Vero Cells/virology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links