Displaying publications 141 - 160 of 654 in total

Abstract:
Sort:
  1. Zakaria ZA, Kamisan FH, Mohd Nasir N, Teh LK, Salleh MZ
    Nutrients, 2019 Dec 04;11(12).
    PMID: 31817058 DOI: 10.3390/nu11122945
    This study aimed to determine the antioxidant and hepatoprotective activities of semi-purified aqueous partition obtained from the methanol extract of Dicranopteris linearis (AQDL) leaves against paracetamol (PCM)-induced liver intoxication in rats. The test solutions, AQDL (50, 250, and 500 mg/kg), were administered orally to rats (n = 6) once daily for seven consecutive days followed by the hepatotoxicity induction using 3 g/kg PCM (p.o.). Blood was collected for serum biochemical parameters analysis while the liver was collected for histopathological examination and endogenous antioxidant enzymes analysis. AQDL was also subjected to antioxidant determination and phytochemical analysis. Results obtained show that AQDL possessed high total phenolic content (TPC) value and remarkable radical scavenging activities. AQDL also significantly (p < 0.05) reduced the liver weight/body weight (LW/BW) ratio or serum level of ALT, AST, and total bilirubin while significantly (p < 0.05) increase the level of superoxide dismutase (SOD) and catalase (CAT) without affecting the malondialdehyde (MDA) in the liver indicating its hepatoprotective effect. Phytoconstituents analyses showed only the presence of saponins and triterpenes, but lack of flavonoids. In conclusion, AQDL exerts hepatoprotective activity via its high antioxidant potential and ability to modulate the endogenous enzymatic antioxidant defense system possibly via the synergistic action of saponins and triterpenes.
    Matched MeSH terms: Antioxidants/pharmacology*
  2. Kamal DAM, Salamt N, Yusuf ANM, Kashim MIAM, Mokhtar MH
    Nutrients, 2021 Sep 07;13(9).
    PMID: 34579002 DOI: 10.3390/nu13093126
    Curcumin is one of the main polyphenolic compounds in the turmeric rhizome. It possesses antioxidant, anti-inflammatory, anti-cancer, anti-arthritis, anti-asthmatic, anti-microbial, anti-viral and anti-fungal properties. This review aims to provide an overview of the potential health benefits of curcumin to treat female reproductive disorders, including polycystic ovary syndrome (PCOS), ovarian failure and endometriosis. Comprehensive information on curcumin was retrieved from electronic databases, which were MEDLINE via EBSCOhost, Scopus and Google Scholar. The available evidence showed that curcumin reduced the high level of androgen in PCOS. Studies in rodents suggest that curcumin resulted in the disappearance of cysts and the appearance of healthy follicles and corpora lutea. Furthermore, animal studies showed curcumin improved the overall function of the ovary in ovarian diseases and reversed the disturbance in oxidative stress parameters. Meanwhile, in vitro and in vivo studies reported the positive effects of curcumin in alleviating endometriosis through anti-inflammatory, anti-proliferative, anti-angiogenic and pro-apoptotic mechanisms. Thus, curcumin possesses various effects on PCOS, ovarian diseases and endometriosis. Some studies found considerable therapeutic effects, whereas others found no effect. However, none of the investigations found curcumin to be harmful. Curcumin clinical trials in endometriosis and ovarian illness are still scarce; thus, future studies need to be conducted to confirm the safety and efficacy of curcumin before it could be offered as a complementary therapy agent.
    Matched MeSH terms: Antioxidants/pharmacology
  3. De Rubis G, Paudel KR, Manandhar B, Singh SK, Gupta G, Malik R, et al.
    Nutrients, 2023 Feb 17;15(4).
    PMID: 36839377 DOI: 10.3390/nu15041019
    Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1β, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.
    Matched MeSH terms: Antioxidants/pharmacology
  4. Cheng MZSZ, Amin FAZ, Zawawi N, Chan KW, Ismail N, Ishak NA, et al.
    Nutrients, 2023 Jun 22;15(13).
    PMID: 37447162 DOI: 10.3390/nu15132835
    Diabetes is associated with an imbalance between oxidants and antioxidants, leading to oxidative stress. This imbalance contributes to the development and progression of diabetic complications. Similarly, renal and liver diseases are characterised by oxidative stress, where an excess of oxidants overwhelms the antioxidant defense mechanisms, causing tissue damage and dysfunction. Restoring the oxidant-antioxidant balance is essential for mitigating oxidative stress-related damage under these conditions. In this current study, the efficacy of stingless bee honey (SBH) and its phenolic-rich extract (PRE) in controlling the oxidant-antioxidant balance in high-fat diet- and streptozotocin/nicotinamide-induced diabetic rats was investigated. The administration of SBH and PRE improved systemic antioxidant defense and oxidative stress-related measures without compromising liver and renal functioning. Analyses of the liver, skeletal muscle and adipose tissues revealed differences in their capacities to scavenge free radicals and halt lipid peroxidation. Transcriptional alterations hypothesised tissue-specific control of KEAP1-NRF2 signalling by upregulation of Nrf2, Ho1 and Sod1 in a tissue-specific manner. In addition, hepatic translational studies demonstrated the stimulation of downstream antioxidant-related protein with upregulated expression of SOD-1 and HOD-1 protein. Overall, the results indicated that PRE and SBH can be exploited to restore the oxidant-antioxidant imbalance generated by diabetes via regulating the KEAP1-NRF2 signalling pathway.
    Matched MeSH terms: Antioxidants/pharmacology
  5. Pang KL, Chin KY
    Nutrients, 2018 May 06;10(5).
    PMID: 29734791 DOI: 10.3390/nu10050570
    Oleocanthal is a minor constituent of olive oil with strong anti-inflammatory activities. Since the pathogenesis of many chronic diseases involves inflammatory and oxidative components, oleocanthal is a promising agent to prevent these conditions. This review aimed to summarise the current beneficial health effects of oleocanthal and the molecular basis of its biological actions. The anti-inflammatory, antioxidative, antimicrobial, anticancer and neuroprotective activities of oleocanthal have been examined by previous studies. Of these, studies on the anticancer effects have been the most extensive. Oleocanthal was reported to suppress melanoma, breast, liver, and colon cancer cells. Neurological studies focused on the effects of oleocanthal against Alzheimer’s disease. Oleocanthal improved clearance of the amyloid beta protein from neurons and reduced the inflammation of astrocytes. Despite the positive results, validation of the biological effects of oleocanthal in animal disease models is limited and should be emphasized in the future. As a conclusion, oleocanthal may act together with other bioactive compounds in olive oil to achieve its therapeutic potential. The use of oleocanthal alone as a single therapeutic measure awaits validation from future studies.
    Matched MeSH terms: Antioxidants/pharmacology*
  6. Pang LW, Hamzah S, Tan SLJ, Mah SH, Yow HY
    Neurochem Res, 2023 Dec;48(12):3485-3511.
    PMID: 37578655 DOI: 10.1007/s11064-023-04005-8
    Xanthones are natural secondary metabolites that possess great potential as neuroprotective agents due to their prominent biological effects on Alzheimer's disease (AD). However, their underlying mechanisms in AD remain unclear. This study aimed to systematically review the effects and mechanisms of xanthones in cell culture and animal studies, gaining a better understanding of their roles in AD. A comprehensive literature search was conducted in the Medline and Scopus databases using specific keywords to identify relevant articles published up to June 2023. After removing duplicates, all articles were imported into the Rayyan software. The article titles were screened based on predefined inclusion and exclusion criteria. Relevant full-text articles were assessed for biases using the OHAT tool. The results were presented in tables. Xanthones have shown various pharmacological effects towards AD from the 21 preclinical studies included. Cell culture studies demonstrated the anti-cholinesterase activity of xanthones, which protects against the loss of acetylcholine. Xanthones exhibited neuroprotective effects by promoting cell viability, reducing the accumulation of β-amyloid and tau aggregation. The administration of xanthones in animal models resulted in a reduction in neuronal inflammation by decreasing microglial and astrocyte burden. In terms of molecular mechanisms, xanthones prevented neuroinflammation through the modulation of signaling pathways, including TLR4/TAK1/NF-κB and MAPK pathways. Mechanisms such as activation of caspase-3 and -9 and suppression of endoplasmic reticulum stress were also reported. Despite the various neuroprotective effects associated with xanthones, there are limited studies reported on their underlying mechanisms in AD. Further studies are warranted to fully understand their potential roles in AD.
    Matched MeSH terms: Antioxidants/pharmacology
  7. Paudel KR, Clarence DD, Panth N, Manandhar B, De Rubis G, Devkota HP, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2024 Apr;397(4):2465-2483.
    PMID: 37851060 DOI: 10.1007/s00210-023-02760-7
    The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1β and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.
    Matched MeSH terms: Antioxidants/pharmacology
  8. Abedin MZ, Karim AA, Latiff AA, Gan CY, Ghazali FC, Barzideh Z, et al.
    Nat Prod Res, 2014;28(16):1302-5.
    PMID: 24670209 DOI: 10.1080/14786419.2014.900617
    The molecular mass distribution, amino acid composition and radical-scavenging activity of collagen hydrolysates prepared from collagen isolated from the sea cucumber Stichopus vastus were investigated. β and α1 chains of the collagen were successfully hydrolysed by trypsin. The molecular mass distribution of the hydrolysates ranged from 5 to 25 kDa, and they were rich in glycine, alanine, glutamate, proline and hydroxyproline residues. The hydrolysates exhibited excellent radical-scavenging activity. These results indicate that collagen hydrolysates from S. vastus can be used as a functional ingredient in food and nutraceutical products.
    Matched MeSH terms: Antioxidants/pharmacology*
  9. Saleem H, Htar TT, Naidu R, Zengin G, Ahmad I, Ahemad N
    Nat Prod Res, 2020 Sep;34(18):2602-2606.
    PMID: 30600720 DOI: 10.1080/14786419.2018.1543684
    In this study, phytochemical composition, antioxidant, enzyme inhibition and cytotoxic activities of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (B. glabra) flowers were investigated. Methanol extract was found to have higher total bioactive contents and UHPLC-MS analysis of methanol extract revealed the presence of well-known phenolic and flavonoid compounds. Antioxidant activities were performed by radical scavenging (DPPH and ABTS), reducing power (FRAP and CUPRAC), phosphomolybdenum (TAC) and metal chelating assays. From our result, we observed that methanol extract had many antioxidant compounds. The DCM extract exhibited higher cholinesterases and α-glucosidase enzyme inhibition, while methanol extract showed significant urease inhibition. Both extracts exhibited strong to moderate cytotoxicity against MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480 cancer cells with IC50 values ranging from 88.49 to 304.7 µg/mL. The findings showed the B. glabra to possess considerable antioxidant, enzyme inhibition and cytotoxic potentials and therefore has potential to discover novel bioactive molecules.
    Matched MeSH terms: Antioxidants/pharmacology
  10. Assaw S, Mohd Amir MIH, Khaw TT, Bakar K, Mohd Radzi SA, Mazlan NW
    Nat Prod Res, 2020 Aug;34(16):2403-2406.
    PMID: 30600710 DOI: 10.1080/14786419.2018.1538220
    Mangrove plants are endowed with various biologically active compounds which have potent antibacterial and antioxidant properties. In present study, a bioactivity-guided fractionation for antibacterial and antioxidant active metabolites from the twigs of Avicennia officinalis collected from Kuala Selangor Nature Park, Selangor, Malaysia gave 13 major fractions. The antibacterial activity of A. officinalis fractions using well-diffusion showed strong selectivity on the Gram-positive bacteria (Staphylococcus epidermidis, S. aureus and Bacillus subtilis) with minimum inhibition concentration (MIC) values of 0.156-5.00 mg/mL. However, no antibacterial activities were observed on the Gram-negative bacteria (Vibrio cholera, Enterobacter cloacae and Escherichia coli). The active antibacterial fractions were further isolated using several chromatographic techniques to give two naphthofuranquinones, namely, avicenol C (1) and stenocarpoquinone B (2). Meanwhile, the antioxidant activity of A. officinalis fractions were evaluated using DPPH radical scavenging assay exhibited low antioxidant activities. Molecular structure of the naphthofuranquinones was elucidated using 1 D and 2 D NMR spectroscopy.
    Matched MeSH terms: Antioxidants/pharmacology
  11. Saleem H, Zengin G, Khan KU, Ahmad I, Waqas M, Mahomoodally FM, et al.
    Nat Prod Res, 2021 Feb;35(4):664-668.
    PMID: 30919661 DOI: 10.1080/14786419.2019.1587427
    This study sets out to probe into total bioactive contents, UHPLC-MS secondary metabolites profiling, antioxidant (DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating) and enzyme inhibitory (acetylcholinesterase- AChE, butyrylcholinesterase- BChE, α-amylase, α glucosidase, and tyrosinase) activities of methanol extract of Aerva javanica, also known as desert cotton or Kapok bush. Aerva javanica contains considerable phenolic (44.79 ± 3.12 mg GAE/g) and flavonoid (28.86 ± 0.12 mg QE/g) contents which tends to correlate with its significant antioxidant potential for ABTS, FRAP and CUPRAC assays with values of 101.41 ± 1.18, 124.10 ± 1.71 and 190.22 ± 5.70 mg TE/g, respectively. The UHPLC-MS analysis identified the presence of 45 phytochemicals belonging to six major groups: phenolic, flavonoids, lignin, terpenes, glycoside and alkaloid. Moreover, the plant extract also showed potent inhibitory action against AChE (3.73 ± 0.22 mg GALAE/g), BChE (3.31 ± 0.19 mg GALAE/g) and tyrosinase (126.05 ± 1.77 mg KAE/g). The observed results suggest A. javanica could be further explored as a natural source of bioactive compounds.
    Matched MeSH terms: Antioxidants/pharmacology*
  12. Abu Bakar AR, Manaharan T, Merican AF, Mohamad SB
    Nat Prod Res, 2018 Feb;32(4):473-476.
    PMID: 28391727 DOI: 10.1080/14786419.2017.1312393
    Ficus deltoidea leaves extract are known to have good therapeutic properties such as antioxidant, anti-inflammatory and anti-diabetic. We showed that 50% ethanol-water extract of F. deltoidea leaves and its pungent compounds vitexin and isovitexin exhibited significant (p 
    Matched MeSH terms: Antioxidants/pharmacology
  13. Eseyin OA, Daniel A, Paul TS, Attih E, Emmanuel E, Ekarika J, et al.
    Nat Prod Res, 2018 Feb;32(4):444-447.
    PMID: 28361553 DOI: 10.1080/14786419.2017.1308366
    The 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical, nitric oxide, reducing power, hydrogen peroxide scavenging, and total antioxidant activities of the methanol extract, n-hexane, dichloromethane, ethyl acetate, butanol and aqueous fractions of the seed of Telfairia occidentalis were evaluated. Total phenolic content was determined using the Folin-Ciocalteu method. The dichloromethane fraction exhibited the highest DPPH radical scavenging, reducing power and total antioxidant activities. Two pure compounds which were identified by FTIR, H-and 2D NMR and Mass spectroscopy as 9-octadecenoic acid (TOS B) and 10-hydroxyoctadecanoic acid (TOS C) and four oily isolates, TOS A, TOS D, TOS E and TOS F were obtained from the dichloromethane fraction. TOS E had the highest DPPH radical scavening activity comparable to that of ascorbic acid. GC-MS analysis revealed the major compounds in TOS E as 4-(2,2-Dimethyl-6-methylene cyclohexylidene)-2-butanol; 3-(3-hydroxybutyl)-2,4,4-trimethyl-2-cyclohexene-1-one and 1,2-Benzenedicarboxylic acid disooctyl ester. Thus, the seed of T. occidentalis can be consumed for its antioxidant property.
    Matched MeSH terms: Antioxidants/pharmacology*
  14. Khan MZI, Zahra SS, Ahmed M, Fatima H, Mirza B, Haq IU, et al.
    Nat Prod Res, 2019 Jul;33(14):2099-2104.
    PMID: 29873254 DOI: 10.1080/14786419.2018.1482551
    Ipomoea carnea Jacq. is an important folklore medicinal plant, assessed for its underexplored biological potential. Antioxidant, cytotoxic, antiproliferative and polyphenolic profile of whole plant was evaluated using various techniques. Maximum extract recovery (29% w/w), phenolic [13.54 ± 0.27 μg GAE/mg dry weight (DW)] and flavonoid (2.11 ± 0.10 μg QE /mg DW) content were recorded in methanol-distilled water (1:1) flower extract. HPLC-DAD analysis quantified substantial amount of six different polyphenols ranging from 0.081 to 37.95 μg/mg extract. Maximum total antioxidant and reducing potential were documented in methanol-distilled water and acetone-distilled water flower extracts (42.62 ± 0.47 and 24.38 ± 0.39 μg AAE/mg DW) respectively. Ethanol-chloroform root extract manifested highest free radical scavenging (IC50 of 61.22 μg/mL) while 94.64% of the extracts showed cytotoxicity against brine shrimps. Ethanol leaf extract exhibited remarkable activity against THP-1 cell line (IC50 = 8 ± 0.05 μg/mL) and protein kinases (31 mm phenotype bald zone).
    Matched MeSH terms: Antioxidants/pharmacology*
  15. Azad AK, Laboni FR, Rashid H, Ferdous S, Rashid SS, Kamal N, et al.
    Nat Prod Res, 2020 Aug;34(16):2394-2397.
    PMID: 30475649 DOI: 10.1080/14786419.2018.1538216
    The key purpose of this experiment was to evaluate the thrombolytic, antioxidant, membrane stabilizing and antimicrobial potentials of crude ethanol extracts (CEE) of whole plant, organic and aqueous soluble fractions (OF & AQSF). CEE showed the highest (44.63%) clot lysis activity compared to streptokinase (64.35%). In DPPH study, petroleum ether soluble fraction (PSF) has exhibited IC50 of 18.83 μg/mL while the standard ascorbic acid was 2.48 µg/mL. AQSF profoundly inhibited the lysis of erythrocytes (66.20%) which was insignificantly different (p > 0.05) to acetylsalicylic acid (71.98%), the reference. However, AQSF showed a significantly stronger level of protection against heat-induced hemolysis (64.80%) as compared with the acetylsalicylic acid (78.90%). CEE, OF and AQSF have displayed reasonable growth of inhibition of tested bacteria compared to negative control and standard drug (77.50 mg of GAE/g).
    Matched MeSH terms: Antioxidants/pharmacology*
  16. Kam WJ, Abas F, Hussain N, Mirhosseini H
    Nat Prod Res, 2020 Jul;34(13):1937-1941.
    PMID: 30691284 DOI: 10.1080/14786419.2018.1564296
    The objective of this study was to compare the antioxidant activity and cytotoxicity of Durio zibethinus M. (Durian) leaf extract from two extraction methods. Ultrasound-assisted extraction and Accelerated-solvent extraction were used to produce crude extract. The results revealed that UAE achieved 3× higher in total phenolic content in the leaf extract compared to ASE. DPPH radical scavenging activity was 4.6× higher in leaf extract from ASE. No significant differences reported in ferric reducing power, and total flavonoid content of the leaf extract between the two methods. Cytotoxicity via MTT assay demonstrated no significant differences in cell viability upon exposure to the leaf extract from both methods. This suggested that they were appropriate in producing Durio zibethinus M. leaf extract for end use application in food related product. Both ensured similar level of safety in Durio zibethinus M. leaf extract as a new potential ingredient for the food industry.
    Matched MeSH terms: Antioxidants/pharmacology
  17. Vafaei A, Bin Mohamad J, Karimi E
    Nat Prod Res, 2019 Sep;33(17):2531-2535.
    PMID: 29527930 DOI: 10.1080/14786419.2018.1448810
    In this study the antioxidant and cytotoxicity activity of the Adonidia merrillii fruits were investigated using different solvent polarities (methanol, ethyl acetate and water). The results showed that the total phenolic and flavonoid contents of the methanolic extract was higher compare with other extract with respective values of 17.80 ± 0.45 mg gallic acid equivalents/g dry weight (DW) and 5.43 ± 0.33 mg rutin equivalents/g DW. Beside that The RP-HPLC analyses indicated the presence of gallic acid, pyrogallol, caffeic acid, vanillic acid, syringic acid, naringin and rutin. In the DPPH, NO2 and ABTS scavenging assays, the methanolic extract exhibited higher antioxidant activity as compared to the ethyl acetate and water extracts. The extracts exhibited moderate to weak cytotoxic activity in the assays using human hepatocytes (Chang liver cells) and NIH/3T3 (fibroblasts cell) cell lines. The findings showed the Adonidia merrillii fruit extracts to possess considerable antioxidant and cytotoxicity properties. The fruit, therefore, is a potential candidate for further work to discover antioxidant and cytotoxic drugs from natural sources.
    Matched MeSH terms: Antioxidants/pharmacology
  18. Hashim NS, Tan ML, Ooi KL, Sulaiman SF
    Nat Prod Res, 2023 Jun;37(12):2009-2012.
    PMID: 35997235 DOI: 10.1080/14786419.2022.2112038
    Cashew (Anacardium occidentale L.) leaf is traditionally used to treat skin infections. Although many flavonols have been identified from its leaf extract, their inhibitory effects on skin pathogens are not yet determined. The aims of this study were to determine the antimicrobial (against skin pathogenic microbes) and antioxidant activities of four flavonol glycosides from the crude extract and three flavonol aglycones from the hydrolyzed extract. The hydrolyzed extract was found to show higher activities than the crude extract. Myricetin showed the highest activity against all the tested bacteria and yeast with the lowest Minimum Inhibition Concentration (MIC) of 7.81 μg/mL on Corynebacterium minutissimum ATCC23348. Myricetin also exhibited good primary antioxidant activities with the effective concentration with 50% of activity (EC50) values ranged between 2.23 μg/mL and 6.40 μg/mL. The highest secondary antioxidant activity was indicated by myricetin-3-O-rhamnoside. Thus, myricetin can be considered as a bioactive compound of the hydrolyzed extract.
    Matched MeSH terms: Antioxidants/pharmacology
  19. Hashim SE, Sirat HM, Yen KH, Ismail IS, Matsuki SN
    Nat Prod Commun, 2015 Sep;10(9):1561-3.
    PMID: 26594759
    Seven compounds were isolated from the n-hexane and chloroform extracts of the flowers and leaves of four Hornstedtia species and their structures were identified using spectroscopic techniques as 3,7,4'-trimethylkaempferol (1), 3,7-dimethylkaempferol (2), 7,4'-dimethylkaempferol (3), 3,5-dimethylkaempferol (4), 3-methylkaempferol (5), stigmast-4-en-3-one (6), and 6-hydroxy-stigmast-4-en-3-one (7). Compounds 1 to 7 were isolated from these species for the first time. They were assayed for free radical scavenging and α-glucosidase inhibition activities. The DPPH assay showed that 3-methylkaempferol (5) was the most potent antioxidant agent with an IC50 value 78.6 µM, followed by 7,4'-dimethylkaempferol (3) (IC50 = 86.1 µM). For α-glucosidase inhibition activity, 3-methylkaempferol (5) exhibited significant inhibitory activity with an IC50 value 21.0 µM. The present study revealed that Hornstedtia species have potential activities as antioxidant and α-glucosidase inhibitors.
    Matched MeSH terms: Antioxidants/pharmacology*
  20. Din WM, Chu J, Clarke G, Jin KT, Bradshaw TD, Fry JR, et al.
    Nat Prod Commun, 2013 Mar;8(3):375-80.
    PMID: 23678815
    In the annals of biomedical theory perhaps no single class of natural product has enjoyed more ingenious speculation than antioxidants formally aimed at counteracting oxidative insults which are involved in the pathophysiology of Alzheimer's and Parkinson's disease, cancer, amyotrophic lateral sclerosis, skin ageing and wound healing. In pursuing our study of Malaysian traditional medicines with antioxidant properties, we became interested in Acalypha wilkesiana var. macafeana hort., used traditionally to heal wounds. To examine whether Acalypha wilkesiana var. macafeana hort. could suppress oxidation an ethanol extract was tested by conventional chemical in vitro assays i.e., ferric reducing antioxidant potential assay (FRAP), DPPH scavenging assay and beta-carotene bleaching (BCB) assay. To explore whether Acalypha wilkesiana var. macafeana hort. protected cells against oxidative injuries, we exposed human hepatocellular liver carcinoma (HepG2) cells to tert-butylhydroperoxide (t-BHP). In all the aforementioned experiments, the ethanol extracts elicited potent antioxidant and cytoprotective activities. To gain a better understanding of the phytochemical nature of the antioxidant principle involved, five fractions (F1-F5) obtained from the ethanol extract were tested using FRAP, DPPH and BCB assays. Our results provided evidence that F5 was the most active fraction with antioxidant potentials equal to 2.090 +/- 0.307 microg/mL, 0.532 +/- 0.041 microg/mL, 0.032 +/- 0.025 microg/mL in FRAP, DPPH and BCB assay, respectively. Interestingly, F5 protected HepG2 against t-BHP oxidative insults. To further define the chemical identity of the antioxidant principle, we first performed a series of phytochemical tests, followed by liquid-chromatography and mass spectrometry (LC/MS) profiling which showed that the major compound contained in F5 was geraniin. To the best of our knowledge, this is the first report showing that the wound healing property of Acalypha wilkesiana var. macafeana hort. is mediated by a geraniin containing extract. Furthermore, our data leads us to conclude that geraniin could be used as a potential pharmaceutical and/or cosmetic topical agent.
    Matched MeSH terms: Antioxidants/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links