Displaying publications 141 - 160 of 1101 in total

Abstract:
Sort:
  1. Pandrangi SL, Chittineedi P, Chalumuri SS, Meena AS, Neira Mosquera JA, Sánchez Llaguno SN, et al.
    Molecules, 2022 May 07;27(9).
    PMID: 35566360 DOI: 10.3390/molecules27093011
    Iron is a crucial element required for the proper functioning of the body. For instance, hemoglobin is the vital component in the blood that delivers oxygen to various parts of the body. The heme protein present in hemoglobin comprises iron in the form of a ferrous state which regulates oxygen delivery. Excess iron in the body is stored as ferritin and would be utilized under iron-deficient conditions. Surprisingly, cancer cells as well as cancer stem cells have elevated ferritin levels suggesting that iron plays a vital role in protecting these cells. However, apart from the cytoprotective role iron also has the potential to induce cell death via ferroptosis which is a non-apoptotic cell death dependent on iron reserves. Apoptosis a caspase-dependent cell death mechanism is effective on cancer cells however little is known about its impact on cancer stem cell death. This paper focuses on the molecular characteristics of apoptosis and ferroptosis and the importance of switching to ferroptosis to target cancer stem cells death thereby preventing cancer relapse. To the best of our knowledge, this is the first review to demonstrate the importance of intracellular iron in regulating the switching of tumor cells and therapy resistant CSCs from apoptosis to ferroptosis.
    Matched MeSH terms: Apoptosis
  2. Lau MF, Chua KH, Sabaratnam V, Kuppusamy UR
    Sci Prog, 2020;103(1):36850419886448.
    PMID: 31795844 DOI: 10.1177/0036850419886448
    Colorectal cancer is one of the most prevalent noncommunicable diseases worldwide. 5-Fluorouracil is the mainstay of chemotherapy for colorectal cancer. Previously, we have demonstrated that high glucose diminishes the cytotoxicity of 5-fluorouracil by promoting cell cycle progression. The synergistic impact of rosiglitazone on 5-fluorouracil-induced apoptosis was further investigated in this study. Besides control cell lines (CCD-18Co), two human colonic carcinoma cell lines (HCT 116 and HT 29) were exposed to different treatments containing 5-fluorouracil, rosiglitazone or 5-fluorouracil/rosiglitazone combination under normal glucose (5.5 mM) and high-glucose (25 mM) conditions. The cellular oxidative stress level was evaluated with biomarkers of nitric oxide, advanced oxidation protein products, and reduced glutathione. The cell apoptosis was assessed using flow cytometry technique. High glucose caused the production of reduced glutathione in HCT 116 and HT 29 cells. Correspondingly, high glucose suppressed the apoptotic effect of 5-fluorouracil and rosiglitazone. As compared to 5-fluorouracil alone (2 µg/mL), addition of rosiglitazone significantly enhanced the apoptosis (increment rate of 5-20%) in a dose-dependent manner at normal glucose and high glucose levels. This study indicates that high-glucose-induced reduced glutathione confers resistance to apoptosis, but it can be overcome upon treatment of 5-fluorouracil and 5-fluorouracil/rosiglitazone combination. Rosiglitazone may be a promising antidiabetic drug to reduce the chemotherapeutic dose of 5-fluorouracil for colorectal cancer complicated with hyperglycemia.
    Matched MeSH terms: Apoptosis
  3. Zhang H, Rios RS, Boursier J, Anty R, Chan WK, George J, et al.
    Chin Med J (Engl), 2023 Feb 05;136(3):341-350.
    PMID: 36848175 DOI: 10.1097/CM9.0000000000002603
    BACKGROUND: Liver biopsy for the diagnosis of non-alcoholic steatohepatitis (NASH) is limited by its inherent invasiveness and possible sampling errors. Some studies have shown that cytokeratin-18 (CK-18) concentrations may be useful in diagnosing NASH, but results across studies have been inconsistent. We aimed to identify the utility of CK-18 M30 concentrations as an alternative to liver biopsy for non-invasive identification of NASH.

    METHODS: Individual data were collected from 14 registry centers on patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD), and in all patients, circulating CK-18 M30 levels were measured. Individuals with a NAFLD activity score (NAS) ≥5 with a score of ≥1 for each of steatosis, ballooning, and lobular inflammation were diagnosed as having definite NASH; individuals with a NAS ≤2 and no fibrosis were diagnosed as having non-alcoholic fatty liver (NAFL).

    RESULTS: A total of 2571 participants were screened, and 1008 (153 with NAFL and 855 with NASH) were finally enrolled. Median CK-18 M30 levels were higher in patients with NASH than in those with NAFL (mean difference 177 U/L; standardized mean difference [SMD]: 0.87 [0.69-1.04]). There was an interaction between CK-18 M30 levels and serum alanine aminotransferase, body mass index (BMI), and hypertension ( P  

    Matched MeSH terms: Apoptosis
  4. Jena MK, Khan FB, Ali SA, Abdullah A, Sharma AK, Yadav V, et al.
    Artif Cells Nanomed Biotechnol, 2023 Dec;51(1):491-508.
    PMID: 37694522 DOI: 10.1080/21691401.2023.2252872
    The mammary gland is a dynamic organ with various physiological processes like cellular proliferation, differentiation, and apoptosis during the pregnancy-lactation-involution cycle. It is essential to understand the molecular changes during the lactogenic differentiation of mammary epithelial cells (MECs, the milk-synthesizing cells). The MECs are organized as luminal milk-secreting cells and basal myoepithelial cells (responsible for milk ejection by contraction) that form the alveoli. The branching morphogenesis and lactogenic differentiation of the MECs prepare the gland for lactation. This process is governed by many molecular mediators including hormones, growth factors, cytokines, miRNAs, regulatory proteins, etc. Interestingly, various signalling pathways guide lactation and understanding these molecular transitions from pregnancy to lactation will help researchers design further research. Manipulation of genes responsible for milk synthesis and secretion will promote augmentation of milk yield in dairy animals. Identifying protein signatures of lactation will help develop strategies for persistent lactation and shortening the dry period in farm animals. The present review article discusses in details the physiological and molecular changes occurring during lactogenic differentiation of MECs and the associated hormones, regulatory proteins, miRNAs, and signalling pathways. An in-depth knowledge of the molecular events will aid in developing engineered cellular models for studies related to mammary gland diseases of humans and animals.
    Matched MeSH terms: Apoptosis
  5. Zulpa AK, Barathan M, Iyadorai T, Mariappan V, Vadivelu J, Teh CSJ, et al.
    World J Microbiol Biotechnol, 2023 Oct 06;39(12):333.
    PMID: 37801157 DOI: 10.1007/s11274-023-03767-1
    pks+ Escherichia coli (E. coli) triggers genomic instability in normal colon cells which leads to colorectal cancer (CRC) tumorigenesis. Previously, we reported a significant presentation of pks+ E. coli strains in CRC patients' biopsies as compared to healthy cohorts. In this work, using an in vitro infection model, we further explored the ability of these strains in modulating cell cycle arrest and activation of apoptotic mediators in both primary colon epithelial cells (PCE) and CRC cells (HCT-116). Sixteen strains, of which eight tumours and the matching non-malignant tissues, respectively, from eight pks+ E. coli CRC patients were subjected to BrDU staining and cell cycle analysis via flow cytometry, while a subset of these strains underwent analysis of apoptotic mediators including caspase proteins, cellular reactive oxygen species (cROS) and mitochondrial membrane potential (MMP) via spectrophotometry as well as proinflammatory cytokines via flow cytometry. Data revealed that all strains exerted S-phase cell cycle blockade in both cells and G2/M phase in PCE cells only. Moreover, more significant upregulation of Caspase 9, cROS, proinflammatory cytokines and prominent downregulation of MMP were detected in HCT-116 cells indicating the potential role of pks related bacterial toxin as anticancer agent as compared to PCE cells which undergo cellular senescence leading to cell death without apparent upregulation of apoptotic mediators. These findings suggest the existence of discrepancies underlying the mechanism of action of pks+ E. coli on both cancer and normal cell lines. This work propounds the rationale to further understand the mechanism underlying pks+ E. coli-mediated CRC tumorigenesis and cancer killing.
    Matched MeSH terms: Apoptosis
  6. Marunganathan V, Kumar MSK, Kari ZA, Giri J, Shaik MR, Shaik B, et al.
    Mol Biol Rep, 2024 Jan 07;51(1):89.
    PMID: 38184807 DOI: 10.1007/s11033-023-09146-1
    BACKGROUND: Kappaphycus alvarezii, a marine red algae species, has gained significant attention in recent years due to its versatile bioactive compounds. Among these, κ-carrageenan (CR), a sulfated polysaccharide, exhibits remarkable antimicrobial properties. This study emphasizes the synergism attained by functionalizing zinc oxide nanoparticles (ZnO NPs) with CR, thereby enhancing its antimicrobial efficacy and target specificity against dental pathogens.

    METHODS: In this study, we synthesized ZnO-CR NPs and characterized them using SEM, FTIR, and XRD techniques to authenticate their composition and structural attributes. Moreover, our investigation revealed that ZnO-CR NPs possess better free radical scavenging capabilities, as evidenced by their effective activity in the DPPH and ABTS assay.

    RESULTS: The antimicrobial properties of ZnO-CR NPs were systematically assessed using a zone of inhibition assay against dental pathogens of S. aureus, S. mutans, E. faecalis, and C. albicans, demonstrating their substantial inhibitory effects at a minimal concentration of 50 μg/mL. We elucidated the interaction between CR and the receptors of dental pathogens to further understand their mechanism of action. The ZnO-CR NPs demonstrated a dose-dependent anticancer effect at concentrations of 5 μg/mL, 25 μg/mL, 50 μg/mL, and 100 μg/mL on KB cells, a type of Human Oral Epidermal Carcinoma. The mechanism by which ZnO-CA NPs induced apoptosis in KB cells was determined by observing an increase in the expression of the BCL-2, BAX, and P53 genes.

    CONCLUSION: Our findings unveil the promising potential of ZnO-CR NPs as a candidate with significant utility in dental applications. The demonstrated biocompatibility, potent antioxidant and antiapoptotic activity, along with impressive antimicrobial efficacy position these NPs as a valuable resource in the ongoing fight against dental pathogens and oral cancer.

    Matched MeSH terms: Apoptosis
  7. Rahman HS, Rasedee A, How CW, Zeenathul NA, Chartrand MS, Yeap SK, et al.
    Int J Nanomedicine, 2015;10:1649-66.
    PMID: 25767386 DOI: 10.2147/IJN.S67113
    Cancer nanotherapy is progressing rapidly with the introduction of many innovative drug delivery systems to replace conventional therapy. Although the antitumor activity of zerumbone (ZER) has been reported, there has been no information available on the effect of ZER-loaded nanostructured lipid carrier (NLC) (ZER-NLC) on murine leukemia cells. In this study, the in vitro and in vivo effects of ZER-NLC on murine leukemia induced with WEHI-3B cells were investigated. The results from 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Hoechst 33342, Annexin V, cell cycle, and caspase activity assays showed that the growth of leukemia cells in vitro was inhibited by ZER-NLC. In addition, outcomes of histopathology, transmission electron microscopy, and Tdt-mediated dUTP nick-end labeling analyses revealed that the number of leukemia cells in the spleen of BALB/c leukemia mice significantly decreased after 4 weeks of oral treatment with various doses of ZER-NLC. Western blotting and reverse-transcription quantitative polymerase chain reaction assays confirmed the antileukemia effects of ZER-NLC. In conclusion, ZER-NLC was shown to induce a mitochondrial-dependent apoptotic pathway in murine leukemia. Loading of ZER in NLC did not compromise the anticancer effect of the compound, suggesting ZER-NLC as a promising and effective delivery system for treatment of cancers.
    Matched MeSH terms: Apoptosis/drug effects
  8. Jaganathan SK, Balaji A, Vellayappan MV, Asokan MK, Subramanian AP, John AA, et al.
    Anticancer Agents Med Chem, 2015;15(1):48-56.
    PMID: 25052987
    Recent statistics revealed that cancer is one among the main reasons for death throughout the world. Several treatments are available but still there is no cure when it is detected at late stages. One of the treatment modes for cancer is chemotherapy which utilizes anticancer drugs in order to eradicate the cancer cells by apoptosis. Apoptosis is a programmed cell death through which body maintains homeostasis or kills cancer cells by utilizing its cell machinery. Recent researches have concluded that dietary agents have a putative role in instituting apoptosis of cancer cells. Honey, one of the victuals rich in antioxidants, has a long-standing exposure to humans and its role in cancer prevention and treatment is a topic of current interest. Various researchers have been experimenting honey against different cancers and provided valuable insights about the apoptosis induced by the honey. This review will highlight the recent findings of apoptotic mechanism involved in different cancer cells. Further it also reports antitumor activity of honey in some animal models. Hence it is high-time to initiate more preclinical trials as well as clinical experiments which would further add to the knowledge of anticancer nature of honey and also endorse honey as a potential candidate in the war against cancer.
    Matched MeSH terms: Apoptosis/drug effects*
  9. Rahman HS, Rasedee A, Yeap SK, Othman HH, Chartrand MS, Namvar F, et al.
    Biomed Res Int, 2014;2014:920742.
    PMID: 25025076 DOI: 10.1155/2014/920742
    Zerumbone (ZER) is a naturally occurring dietary compound, present in many natural foods consumed today. The compound derived from several plant species of the Zingiberaceae family that has been found to possess multiple biomedical properties, such as antiproliferative, antioxidant, anti-inflammatory, and anticancer activities. However, evidence of efficacy is sparse, pointing to the need for a more systematic review for assessing scientific evidence to support therapeutic claims made for ZER and to identify future research needs. This review provides an updated overview of in vitro and in vivo investigations of ZER, its cancer chemopreventive properties, and mechanisms of action. Therapeutic effects of ZER were found to be scientifically plausible and could be explained partially by in vivo and in vitro pharmacological activities. Much of the research outlined in this paper will serve as a foundation to explain ZER anticancer bioactivity, which will open the door for the development of strategies in the treatment of malignancies using ZER.
    Matched MeSH terms: Apoptosis/drug effects
  10. Yen HK, Fauzi AR, Din LB, McKelvey-Martin VJ, Meng CK, Inayat-Hussain SH, et al.
    PMID: 25107315 DOI: 10.1186/1472-6882-14-295
    Selective Alzheimer Disease Indicator-1 (or Seladin-1) is a multifunctional protein first discovered by downregulation of its expression in Alzheimer's disease. Interestingly, the expression of this protein is upregulated in several cancers, including primary bladder cancer. However, its role in cancer formation has yet to be discovered. Goniothalamin is a natural product that has been demonstrated to induce apoptosis in various cancer cell lines. In this study, we have elucidated the role of Seladin-1 in goniothalamin-induced cytotoxicity towards human urinary bladder cancer cell line RT4.
    Matched MeSH terms: Apoptosis/drug effects*
  11. Jothy SL, Oon CE, Sasidharan S
    Asian Pac J Cancer Prev, 2014;15(3):1501.
    PMID: 24606490
    Matched MeSH terms: Apoptosis/drug effects*
  12. Azmi MN, Gény C, Leverrier A, Litaudon M, Dumontet V, Birlirakis N, et al.
    Molecules, 2014;19(2):1732-47.
    PMID: 24492595 DOI: 10.3390/molecules19021732
    A phytochemical investigation of the methanolic extract of the bark of Endiandra kingiana led to the isolation of seven new tetracyclic endiandric acid analogues, kingianic acids A-G (1-7), together with endiandric acid M (8), tsangibeilin B (9) and endiandric acid (10). Their structures were determined by 1D- and 2D-NMR analysis in combination with HRMS experiments. The structure of compounds 9 and 10 were confirmed by single-crystal X-ray diffraction analysis. These compounds were screened for Bcl-xL and Mcl-1 binding affinities and cytotoxic activity on various cancer cell lines. Compound 5 showed moderate cytotoxic activity against human colorectal adeno-carcinoma (HT-29) and lung adenocarcinoma epithelial (A549) cell lines, with IC50 values in the range 15-17 µM, and compounds 3, 6 and 9 exhibited weak binding affinity for the anti-apoptotic protein Mcl-1.
    Matched MeSH terms: Apoptosis/drug effects
  13. Yunos NM, Mutalip SS, Jauri MH, Yu JQ, Huq F
    Anticancer Res, 2013 Oct;33(10):4365-71.
    PMID: 24123004
    Andrographolide (Andro) is a diterpenoid that is isolated from Andrographis paniculata and reported to be active against several cancer cell lines. However, few in-depth studies have been carried out on its effects on ovarian cancer cell lines alone or in combination with cisplatin (Cis), which is commonly used to treat ovarian cancer. The aim of this study was to determine the anti-proliferative and apoptotic effects of Andro administered alone and in combination with Cis in the ovarian A2780 and A2780(cisR) cancer cell lines using five different sequences of administration (Cis/Andro h): 0/0h, 4/0 h, 0/4 h, 24/0 h and 0/24 h. The results were evaluated in terms of medium-effect dose (Dm) and combination indices (CI) using the CalcuSyn software. Unlike Cis, whose activity was lower in the resistant A2780(cisR) cell line than in the parent A2780 cell line, Andro was found to be three times more active in the A2780(cisR) cell line as compared to that in A2780 cell line. Synergism was observed when Cis and Andro were administered using the sequences 0/4 h and 4/0 h. The percentage of apoptotic cell death was found to be greater for the 0/4 h combination of Andro and Cis as compared to those values from single-drug treatments. The results may be clinically significant if confirmed in vivo.
    Matched MeSH terms: Apoptosis/drug effects*
  14. Armania N, Yazan LS, Ismail IS, Foo JB, Tor YS, Ishak N, et al.
    Molecules, 2013;18(11):13320-39.
    PMID: 24172241 DOI: 10.3390/molecules181113320
    The present research was designed to evaluate the anticancer properties of Dillenia suffruticosa extract. Our focus was on the mode of cell death and cell cycle arrest induced in breast cancer cells by the active fractions (designated as D/F4, D/F5 and EA/P2) derived from chromatographic fractionation of D. suffruticosa extracts. The results showed that the active fractions are more cytotoxic towards MCF-7 (estrogen positive breast cancer cells) and MDA-MB-231 (estrogen negative breast cancer cells) as compared to other selected cancer cell lines that included HeLa, A459 and CaOV3. The induction of cell death through apoptosis by the active fractions on the breast cancer cells was confirmed by Annexin V-FITC and PI staining. Cell cycle analysis revealed that D/F4 and EA/P2 induced G2/M phase cell cycle arrest in MCF-7 cells. On the other hand, MDA-MB-231 cells treated with D/F4 and D/F5 accumulated in the sub-G1 phase without cell cycle arrest, suggesting the induction of cell death through apoptosis. The data suggest that the active fractions of D. suffruticosa extract eliminated breast cancer cells through induction of apoptosis and cell cycle arrest. The reason why MCF-7 was more sensitive towards the treatment than MDA-MB-231 remains unclear. This warrants further work, especially on the role of hormones in response towards cytotoxic agents. In addition, more studies on the mechanisms underlying the induction of apoptosis and cell cycle arrest by the plant extract also need to be carried out.
    Matched MeSH terms: Apoptosis/drug effects
  15. Molouki A, Yusoff K
    Virol J, 2012;9:179.
    PMID: 22935147 DOI: 10.1186/1743-422X-9-179
    Recently it was shown that following infection of HeLa cells with Newcastle disease virus (NDV), the matrix (M) protein binds to Bax and subsequently the intrinsic pathway of apoptosis is activated. Moreover, there was very little alteration on mRNA and protein levels of Bax and Bcl-2 after infection with NDV.
    Matched MeSH terms: Apoptosis*
  16. Alabsi AM, Bakar SA, Ali R, Omar AR, Bejo MH, Ideris A, et al.
    Int J Mol Sci, 2011;12(12):8645-60.
    PMID: 22272097 DOI: 10.3390/ijms12128645
    Newcastle disease virus (NDV) is used as an antineoplastic agent in clinical tumor therapy. It has prompted much interest as an anticancer agent because it can replicate up to 10,000 times better in human cancer cells than in most normal cells. This study was carried out to determine the oncolytic potential of NDV strain AF2240 and V4-UPM on WEHI-3B leukemia cell line. Results from MTT cytotoxicity assay showed that the CD(50) values for both strains were 2 and 8 HAU for AF2240 and V4-UPM, respectively. In addition, bromodeoxyuridine (BrdU) and trypan blue dye exclusion assays showed inhibition in cell proliferation after different periods. Increase in the cellular level of caspase-3 and detection of DNA laddering using agarose gel electrophoresis on treated cells with NDV confirmed that the mode of cell death was apoptosis. In addition, flow-cytometry analysis of cellular DNA content showed that the virus caused an increase in the sub-G1 region (apoptosis peaks). In conclusion, NDV strains AF2240 and V4-UPM caused cytolytic effects against WEHI-3B leukemic cell line.
    Matched MeSH terms: Apoptosis*
  17. Lim SW, Ting KN, Bradshaw TD, Zeenathul NA, Wiart C, Khoo TJ, et al.
    J Ethnopharmacol, 2011 Nov 18;138(2):616-23.
    PMID: 22008878 DOI: 10.1016/j.jep.2011.10.005
    The seeds of Acalypha wilkesiana have been used empirically by traditional healers in Southwest Nigeria together with other plants as a powder mixture to treat patients with breast tumours and inflammation.
    Matched MeSH terms: Apoptosis/drug effects*
  18. Roslie H, Chan KM, Rajab NF, Velu SS, Kadir SA, Bunyamin I, et al.
    J Toxicol Sci, 2012 Feb;37(1):13-21.
    PMID: 22293408
    A series of 22 stilbene derivatives based on resveratrol were synthesized incorporating acetoxy-, benzyloxy-, carboxy-, chloro-, hydroxy- and methoxy functional groups. We examined the cytotoxicity of these 22 stilbenes in human K562 chronic myelogenous leukemia cells. Only four compounds were cytotoxic namely 4'-hydroxy-3-methoxystilbene (15), 3'-acetoxy-4-chlorostilbene (19), 4'-hydroxy-3,5-dimethoxystilbene or pterostilbene (3) and 3,5-dibenzyloxy-4'-hydroxystilbene (28) with IC(50)s of 78 µM, 38 µM, 67 µM and 19.5 µM respectively. Further apoptosis assessment on the most potent compound, 28, confirmed that the cells underwent apoptosis based on phosphatidylserine externalization and loss of mitochondrial membrane potential. Importantly, we observed a concentration-dependent activation of caspase-9 as early as 2 hr with resultant caspase-3 cleavage in 28-induced apoptosis. Additionally, a structure-activity relationship (SAR) study proposed a possible mechanism of action for compound 28. Taken together, our data suggests that the pro-apoptotic effects of 28 involve the intrinsic mitochondrial pathway characterized by an early activation of caspase-9.
    Matched MeSH terms: Apoptosis/drug effects*
  19. Abdelwahab SI, Abdul AB, Mohan S, Taha MM, Syam S, Ibrahim MY, et al.
    Leuk. Res., 2011 Feb;35(2):268-71.
    PMID: 20708800 DOI: 10.1016/j.leukres.2010.07.025
    Zerumbone (ZER) is a potential anticancer natural compound, isolated from Zingiber zerumbet Smith. In this investigation, the anticancer properties of ZER were evaluated on cancer cells of T-acute lymphoblastic leukemia, CEM-ss. The results showed that ZER has cytotoxic effect against CEM-ss cells with an IC(50) of 8.4 ± 1.9 μg/ml (coefficient of variation < 30%). Comparatively, 5-fluorouracil (positive control), imposed an inhibitory effect on CEM-ss cells with an IC(50) of 1.94 ± 0.06 μg/ml. Scanning electron microscopy (SEM) results revealed abnormalities such as membrane blebbing, holes and cytoplasmic extrusions, all of which are characteristics of apoptosis. In addition, ZER has increased the number of TUNEL-positive stain and the cellular level of caspase-3, the hallmarks of apoptosis, on treated CEM-ss cells. It could be concluded that, ZER was able to produce apoptosis on T-acute lymphoblastic leukemia, CEM-ss. The current findings suggest that ZER might be helpful for improving the usefulness of anticancer agents in the therapy of leukemia.
    Matched MeSH terms: Apoptosis/drug effects*
  20. Ooi KL, Muhammad TS, Sulaiman SF
    J Ethnopharmacol, 2010 Mar 2;128(1):92-9.
    PMID: 20045455 DOI: 10.1016/j.jep.2009.12.032
    The decoction of the whole plant of Physalis minima L. is traditionally consumed to treat cancer. Its anticancer property has been previously verified (using in vitro cytotoxicity assays) against NCI-H23 lung, CORL23 lung and MCF7 breast cancer cell lines but the mechanism underlying the anticancer potency towards ovarian carcinoma cells remain unclear.
    Matched MeSH terms: Apoptosis/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links