OBJECTIVE: Our objective was to systematically review the published cost-effectiveness studies of insulin analogues for the treatment of patients with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM).
METHODS: We searched major databases and health technology assessment agency reports for economic evaluation studies published up until 30 September 2015. Two reviewers performed data extraction and assessed the quality of the data using the CHEERS (Consolidated Health Economic Evaluation Reporting Standards) guidelines.
RESULTS: Seven of the included studies assessed short-acting insulin analogues, 12 assessed biphasic insulin analogues, 30 assessed long-acting insulin analogues and one assessed a combination of short- and long-acting insulin analogues. Only 17 studies involved patients with T1DM, all were modelling studies and 12 were conducted in Canada. The incremental cost-effectiveness ratios (ICERs) for short-acting insulin analogues ranged from dominant to $US435,913 per quality-adjusted life-year (QALY) gained, the ICERs for biphasic insulin analogues ranged from dominant to $US57,636 per QALY gained and the ICERs for long-acting insulin analogues ranged from dominant to $US599,863 per QALY gained. A total of 15 studies met all the CHEERS guidelines reporting quality criteria. Only 26 % of the studies assessed heterogeneity in their analyses.
CONCLUSION: Current evidence indicates that insulin analogues are cost effective for T1DM; however, evidence for their use in T2DM is not convincing. Additional evidence regarding compliance and efficacy is required to support the broader use of long-acting and biphasic insulin analogues in T2DM. The value of insulin analogues depends strongly on reductions in hypoglycaemia event rates and its efficacy in lowering glycated haemoglobin (HbA1c).
Objectives: The objective of this study was to utilize a chitosan-based nanoparticle system as the delivery carrier for glutamic acid, a model for encapsulated biomolecules to visualize the in vitro release and accumulation of the encapsulated glutamic acid from chitosan nanoparticle (CNP) systems.
Methods: CNP was synthesized via ionic gelation routes utilizing tripolyphosphate (TPP) as a cross-linker. In order to track glutamic acid release, the glutamic acid was fluorescently-labeled with fluorescein isothiocyanate prior encapsulation into CNP.
Results: Light Scattering data concluded the successful formation of small-sized and mono-dispersed CNP at a specific volume ratio of chitosan to TPP. Encapsulation of glutamic acid as a model cargo into CNP led to an increase in particle size to >100 nm. The synthesized CNP exhibited spherical shape under Electron Microscopy. The formation of CNP was reflected by the reduction in free amine groups of chitosan following ionic crosslinking reactions. The encapsulation of glutamic acid was further confirmed by Fourier Transform Infrared (FTIR) analysis. Cell viability assay showed 70% cell viability at the maximum concentration of 0.5 mg/mL CS and 0.7 mg/mL TPP used, indicating the low inherent toxicity property of this system. In vitro release study using fluorescently-tagged glutamic acids demonstrated the release and accumulation of the encapsulated glutamic acids at 6 hours post treatment. A significant accumulation was observed at 24 hours and 48 hours later. Flow cytometry data demonstrated a gradual increase in intracellular fluorescence signal from 30 minutes to 48 hours post treatment with fluorescently-labeled glutamic acids encapsulated CNP.
Conclusion: These results therefore suggested the potential of CNP system towards enhancing the intracellular delivery and release of the encapsulated glutamic acids. This CNP system thus may serves as a potential candidate vector capable to improve the therapeutic efficacy for drugs and biomolecules in medical as well as pharmaceutical applications through the enhanced intracellular release and accumulation of the encapsulated cargo.
OBJECTIVE: The objective of this paper is to review the recent literature on vesicular drug delivery systems containing curcumin.
METHODS: We have collated and summarized various recent attempts made to develop different controlled release drug delivery systems containing curcumin which would be of great interest for herbal, formulation and biological scientists. There are several vesicular nanotechnological techniques involving curcumin which have been studied recently, targeting pulmonary diseases.
RESULTS: Different vesicular systems containing curcumin are being studied for their therapeutic potential in different respiratory diseases. There has been a renewed interest in formulations containing curcumin recently, primarily owing to the broad spectrum therapeutic potential of this miracle substance. Various types of formulations, containing curcumin, targeting different bodily systems have recently emerged and, nevertheless, the search for newer frontiers with this drug goes on.
CONCLUSION: This mini review, in this direction, tries to highlight the key research interventions employing vesicular systems of drug delivery with curcumin.
SETTING: An academic medical center.
METHODS: Weight changes of patients who received weight loss medications after bariatric surgery from 2012 to 2015 at a single center were studied.
RESULTS: Weight loss medications prescribed for 209 patients were phentermine (n = 156, 74.6%), phentermine/topiramate extended release (n = 25, 12%), lorcaserin (n = 18, 8.6%), and naltrexone slow-release/bupropion slow-release (n = 10, 4.8%). Of patients, 37% lost>5% of their total weight 1 year after pharmacotherapy was prescribed. There were significant differences in weight loss at 1 year in gastric banding versus sleeve gastrectomy patients (4.6% versus .3%, P = .02) and Roux-en-Y gastric bypass versus sleeve gastrectomy patients (2.8% versus .3%, P = .01).There was a significant positive correlation between body mass index at the start of adjuvant pharmacotherapy and total weight loss at 1 year (P = .025).
CONCLUSION: Adjuvant weight loss medications halted weight regain in patients who underwent bariatric surgery. More than one third achieved>5% weight loss with the addition of weight loss medication. The observed response was significantly better in gastric bypass and gastric banding patients compared with sleeve gastrectomy patients. Furthermore, adjuvant pharmacotherapy was more effective in patients with higher body mass index. Given the low risk of medications compared with revisional surgery, it can be a reasonable option in the appropriate patients. Further studies are necessary to determine the optimal medication and timing of adjuvant pharmacotherapy after bariatric surgery.