AREAS COVERED: Literature was searched in different resources for eligible studies. The pooled risk ratio was measured using RevMan software, with p<0.05 (two-sided) set as statistically significant.
EXPERT OPINION: The ABCB1 C3435T homozygous mutant (TT) was associated with significantly increased risk of MACE compared to either wild type genotype (CC) or the combination of wild type and heterozygous genotypes (TT vs. CC: RR 1.33; 95% CI 1.06-1.68; p=0.02; TT vs. CC+CT: RR 1.32; 95% CI 1.10-1.60; p=0.004). Safety outcomes, i.e. bleeding events were not significantly different between the genetic models investigated (TT vs. CC: RR 1.93; 95% CI 0.86-4.35; p=0.11; TT vs. CC+CT: RR 1.36; 95% CI 0.89-2.09; p=0.16; CT+TT vs. CC: RR 1.20; 95% CI 0.59-2.44; p=0.61). It is suggested that ABCB1 C3435T genotype should be tested for ACS/CAD patients undergoing PCI to ensure optimum therapy of clopidogrel.
METHODS: We measured 20 plasma markers i.e. IFN-γ, IL-10, granzyme-B, CX3CL1, IP-10, RANTES, CXCL8, CXCL6, VCAM, ICAM, VEGF, HGF, sCD25, IL-18, LBP, sCD14, sCD163, MIF, MCP-1 and MIP-1β in 141 dengue patients in over 230 specimens and correlate the levels of these plasma markers with the development of dengue without warning signs (DWS-), dengue with warning signs (DWS+) and severe dengue (SD).
RESULTS: Our results show that the elevation of plasma levels of IL-18 at both febrile and defervescence phase was significantly associated with DWS+ and SD; whilst increase of sCD14 and LBP at febrile phase were associated with severity of dengue disease. By using receiver operating characteristic (ROC) analysis, the IL-18, LBP and sCD14 were significantly predicted the development of more severe form of dengue disease (DWS+/SD) (AUC = 0.768, P
MATERIALS AND METHODS: In this study, aptamer-antibody complementation was implemented on a multiwalled carbon nanotube-gold conjugated sensing surface with a dielectrode to detect pandemic pdmH1N1. Preliminary biomolecular and dielectrode surface analyses were performed by molecular and microscopic methods. A stable anti-pdmH1N1 aptamer sequence interacted with hemagglutinin (HA) and was compared with the antibody interaction. Both aptamer and antibody attachments on the surface as the basic molecule attained the saturation at nanomolar levels.
RESULTS: Aptamers were found to have higher affinity and electric response than antibodies against HA of pdmH1N1. Linear regression with aptamer-HA interaction displays sensitivity in the range of 10 fM, whereas antibody-HA interaction shows a 100-fold lower level (1 pM). When sandwich-based detection of aptamer-HA-antibody and antibody-HA-aptamer was performed, a higher response of current was observed in both cases. Moreover, the detection strategy with aptamer clearly discriminated the closely related HA of influenza B/Tokyo/53/99 and influenza A/Panama/2007/1999 (H3N2).
CONCLUSION: The high performance of the abovementioned detection methods was supported by the apparent specificity and reproducibility by the demonstrated sensing system.