Displaying publications 141 - 160 of 793 in total

Abstract:
Sort:
  1. Roza S, Junainah S, Izzuna MMG, Ku Nurhasni KAR, Yusof MAM, Noormah MD, et al.
    PMID: 30864531 DOI: 10.1017/S0266462319000023
    OBJECTIVES: The aim of this study was to provide a comprehensive overview of the evolution of health technology assessment (HTA) in Malaysia over the past decade.

    METHODS: We described the evolution of HTA program in Malaysia based on review of administrative data, publicly available information and quantitative description of impact evaluation.

    RESULTS: Health Technology Assessment HTA was formalized in Malaysia in 1995 as a central structure within the Ministry of Health, Malaysia in 1995. Expansion of activities demonstrated over the years including Horizon Scanning of health technologies and implementation of evidence-based Clinical Practice Guidelines. Improvement on the processes in terms of types of report, quality, monitoring, and impact evaluation as well as accessibility was also carried out. Examples of impact/influence of the reports have also been demonstrated.

    CONCLUSIONS: HTA program in Malaysia has evolved over the past decades. Its role in policy formulation and decision making of health technologies has become more significant over the years and is foreseen to be bigger in the future. As a trusted source of evidence, HTA in Malaysia will continue to strengthen the health system by advocating informed decision making and value-based medicine. As other countries in this region is trying to establish their own HTA processes and procedures, this review on the evolution of the HTA program in Malaysia might give some insights on developing a sustainable HTA program.

    Matched MeSH terms: Technology Assessment, Biomedical/organization & administration*
  2. Mohammed KI, Zaidan AA, Zaidan BB, Albahri OS, Alsalem MA, Albahri AS, et al.
    J Med Syst, 2019 Jun 11;43(7):223.
    PMID: 31187288 DOI: 10.1007/s10916-019-1362-x
    Remotely monitoring a patient's condition is a serious issue and must be addressed. Remote health monitoring systems (RHMS) in telemedicine refers to resources, strategies, methods and installations that enable doctors or other medical professionals to work remotely to consult, diagnose and treat patients. The goal of RHMS is to provide timely medical services at remote areas through telecommunication technologies. Through major advancements in technology, particularly in wireless networking, cloud computing and data storage, RHMS is becoming a feasible aspect of modern medicine. RHMS for the prioritisation of patients with multiple chronic diseases (MCDs) plays an important role in sustainably providing high-quality healthcare services. Further investigations are required to highlight the limitations of the prioritisation of patients with MCDs over a telemedicine environment. This study introduces a comprehensive and inclusive review on the prioritisation of patients with MCDs in telemedicine applications. Furthermore, it presents the challenges and open issues regarding patient prioritisation in telemedicine. The findings of this study are as follows: (1) The limitations and problems of existing patients' prioritisation with MCDs are presented and emphasised. (2) Based on the analysis of the academic literature, an accurate solution for remote prioritisation in a large scale of patients with MCDs was not presented. (3) There is an essential need to produce a new multiple-criteria decision-making theory to address the current problems in the prioritisation of patients with MCDs.
    Matched MeSH terms: Wireless Technology*
  3. Kamaruzaman HF, Ku Abd Rahim KN, Mohamed Ghazali IM, Mohd Yusof MA
    PMID: 33745482 DOI: 10.1017/S0266462321000118
    Patient and public involvement (PPI) in health technology assessment (HTA) is widely promoted to ensure that all health-related decisions are made after taking into consideration the viewpoints of important stakeholders. In Malaysia, patients or their representatives have been involved in the development of HTA and Clinical Practice Guidelines (CPG) since 2009 and their influences have been growing steadily over the years. This paper aimed to describe the journey, achievements, challenges, and future direction of the PPI throughout all stages of the development and implementation of HTA and CPG in Malaysia. Currently, in Malaysia, patients or their representatives are mainly involved during the initial development of HTA and CPG drafts as well as during the internal and external reviews. Additionally, they are also encouraged to be involved during the implementation of HTA and CPG recommendations. Although their involvement in this aspect has slowly increased over time, challenges remain in the form of limited representativeness of selected patients or carers, uncertainty on the level of patient involvement allowed during the HTA/CPG development processes, and limited health literacy, which affect their ability to contribute meaningfully throughout the processes. Continuous improvement in these processes is important as patients or their representatives play a pivotal role in ensuring transparency, accountability, and credibility throughout the HTA/CPG development and decision-making processes.
    Matched MeSH terms: Technology Assessment, Biomedical*
  4. Almomani E, Alabbadi I, Fasseeh A, Al-Qutob R, Al-Sharu E, Hayek N, et al.
    Value Health Reg Issues, 2021 Sep;25:126-134.
    PMID: 34015521 DOI: 10.1016/j.vhri.2021.01.003
    OBJECTIVES: Health technology assessment (HTA) can increase the appropriateness and transparency of pricing and reimbursement decisions. Jordan is still in the early phase of its HTA implementation, although the country has very limited public resources for the coverage of healthcare technologies. The study objective was to explore and validate priorities in the HTA road map for Jordan and propose to facilitate the preferred HTA status.

    METHODS: Health policy experts from the public and private sectors were asked to participate in a survey to explore the current and future status of HTA implementation in Jordan. Semistructured interviews with senior policy makers supported by literature review were conducted to validate survey results and make recommendations for specific actions.

    RESULTS: Survey and interview results indicated a need for increased HTA training, including both short courses and academic programs and gradually increasing public funding for technology assessment and appraisal. Multiple HTA bodies with central coordination can be the most feasible format of HTA institutionalization. The weight of cost-effectiveness criterion based on local data with published reports and explicit decision thresholds should be increased in policy decisions of pharmaceutical and nonpharmaceutical technologies.

    CONCLUSION: Currently, HTA has limited impact on health policy decisions in Jordan, and when it is used to support pharmaceutical reimbursement decisions, it is mainly based on results from other countries without considering transferability of international evidence. Policy makers should facilitate HTA institutionalization and use in policy decisions by increasing the weight of local evidence in HTA recommendations.

    Matched MeSH terms: Technology Assessment, Biomedical*
  5. Youssouf AS, Hasbullah NF, Saidin N, Habaebi MH, Parthiban R, Bin Mohamed Zin MR, et al.
    PLoS One, 2021;16(12):e0259649.
    PMID: 34972119 DOI: 10.1371/journal.pone.0259649
    This paper provides the details of a study on the effects of electron radiation on the Performance of Inters-satellite Optical Wireless Communication (IsOWC). Academia and industry focus on solutions that can improve performance and reduce the cost of IsWOC systems. Spacecraft, space stations, satellites, and astronauts are exposed to an increased level of radiation when in space, so it is essential to evaluate the risks and performance effects associated with extended radiation exposures in missions and space travel in general. This investigation focuses on LEO, especially in the near-equatorial radiation environment. Radiation experiments supported with simulations have made it possible to obtain and evaluate the electron radiation impact on optoelectronics at the device level and system level performances. The electron radiation has induced a system degradation of 70%. This result demonstrates the importance of such an investigation to predict and take necessary and suitable reliable quality service for future space missions.
    Matched MeSH terms: Wireless Technology*
  6. Rokunuzzaman M, Islam MT, Rowe WS, Kibria S, Jit Singh M, Misran N
    PLoS One, 2016;11(8):e0161293.
    PMID: 27533470 DOI: 10.1371/journal.pone.0161293
    A semi-circle looped vertically omnidirectional radiation (VOR) patterned tag antenna for UHF (919-923 MHz for Malaysia) frequency is designed to overcome the impedance mismatch issue in this paper. Two impedance matching feeding strips are used in the antenna structure to tune the input impedance of the antenna. Two dipole shaped meandered lines are used to achieve a VOR pattern. The proposed antenna is designed for 23-j224 Ω chip impedance. The antenna is suitable for 'place and tag' application. A small size of 77.68×35.5 mm2 is achieved for a read range performance of 8.3 meters using Malaysia regulated maximum power transfer of 2.0 W effective radiated power (ERP).
    Matched MeSH terms: Wireless Technology/instrumentation*
  7. Rajakumar MK
    Singapore Med J, 1984 Feb;25(1):1-5.
    PMID: 6463657
    Dr Rajakumar delivered this lecture at the 14th SMA National Medical Convention on 16.4.1983
    Republished in: Republished in: Teng CL, Khoo EM, Ng CJ (editors). Family Medicine, Healthcare and Society: Essays by Dr M K Rajakumar, Second Edition. Kuala Lumpur: Academy of Family Physicians of Malaysia, 2019: 83-90
    Matched MeSH terms: Technology*
  8. Brown C, Boyd DS, Sjögersten S, Vane CH
    PLoS One, 2023;18(3):e0280187.
    PMID: 36989287 DOI: 10.1371/journal.pone.0280187
    Tropical peatlands are important carbon stores that are vulnerable to drainage and conversion to agriculture. Protection and restoration of peatlands are increasingly recognised as key nature based solutions that can be implemented as part of climate change mitigation. Identification of peatland areas that are important for protection and restauration with regards to the state of their carbon stocks, are therefore vital for policy makers. In this paper we combined organic geochemical analysis by Rock-Eval (6) pyrolysis of peat collected from sites with different land management history and optical remote sensing products to assess if remotely sensed data could be used to predict peat conditions and carbon storage. The study used the North Selangor Peat Swamp forest, Malaysia, as the model system. Across the sampling sites the carbon stocks in the below ground peat was ca 12 times higher than the forest (median carbon stock held in ground vegetation 114.70 Mg ha-1 and peat soil 1401.51 Mg ha-1). Peat core sub-samples and litter collected from Fire Affected, Disturbed Forest, and Managed Recovery locations (i.e. disturbed sites) had different decomposition profiles than Central Forest sites. The Rock-Eval pyrolysis of the upper peat profiles showed that surface peat layers at Fire Affected, Disturbed Forest, and Managed Recovery locations had lower immature organic matter index (I-index) values (average I-index range in upper section 0.15 to -0.06) and higher refractory organic matter index (R -index) (average R-index range in upper section 0.51 to 0.65) compared to Central Forest sites indicating enhanced decomposition of the surface peat. In the top 50 cm section of the peat profile, carbon stocks were negatively related to the normalised burns ratio (NBR) (a satellite derived parameter) (Spearman's rho = -0.664, S = 366, p-value = <0.05) while there was a positive relationship between the hydrogen index and the normalised burns ratio profile (Spearman's rho = 0.7, S = 66, p-value = <0.05) suggesting that this remotely sensed product is able to detect degradation of peat in the upper peat profile. We conclude that the NBR can be used to identify degraded peatland areas and to support identification of areas for conversation and restoration.
    Matched MeSH terms: Remote Sensing Technology*
  9. Wu H, Sang S, Weng P, Pan D, Wu Z, Yang J, et al.
    Compr Rev Food Sci Food Saf, 2023 Nov;22(6):4217-4241.
    PMID: 37583298 DOI: 10.1111/1541-4337.13217
    Starch-based materials have viscoelasticity, viscous film-forming, dough pseudoplasticity, and rheological properties, which possess the structural characteristics (crystal structure, double helix structure, and layered structure) suitable for three-dimensional (3D) food printing inks. 3D food printing technology has significant advantages in customizing personalized and precise nutrition, expanding the range of ingredients, designing unique food appearances, and simplifying the food supply chain. Precision nutrition aims to consider individual nutritional needs and individual differences, which include special food product design and personalized precise nutrition, thus expanding future food resources, then simplifying the food supply chain, and attracting extensive attention in food industry. Different types of starch-based materials with different structures and rheological properties meet different 3D food printing technology requirements. Starch-based materials suitable for 3D food printing technology can accurately deliver and release active substances or drugs. These active substances or drugs have certain regulatory effects on the gut microbiome and diabetes, so as to maintain personalized and accurate nutrition.
    Matched MeSH terms: Food Technology/methods
  10. Jucker T, Caspersen J, Chave J, Antin C, Barbier N, Bongers F, et al.
    Glob Chang Biol, 2017 Jan;23(1):177-190.
    PMID: 27381364 DOI: 10.1111/gcb.13388
    Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able - for the first time - to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed - specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the world's forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large-scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.
    Matched MeSH terms: Remote Sensing Technology*
  11. Schepaschenko D, Chave J, Phillips OL, Lewis SL, Davies SJ, Réjou-Méchain M, et al.
    Sci Data, 2019 10 10;6(1):198.
    PMID: 31601817 DOI: 10.1038/s41597-019-0196-1
    Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
    Matched MeSH terms: Remote Sensing Technology*
  12. Mustapha T, Misni N, Ithnin NR, Daskum AM, Unyah NZ
    PMID: 35055505 DOI: 10.3390/ijerph19020674
    Silver nanoparticles are one of the most extensively studied nanomaterials due to their high stability and low chemical reactivity in comparison to other metals. They are commonly synthesized using toxic chemical reducing agents which reduce metal ions into uncharged nanoparticles. However, in the last few decades, several efforts were made to develop green synthesis methods to avoid the use of hazardous materials. The natural biomolecules found in plants such as proteins/enzymes, amino acids, polysaccharides, alkaloids, alcoholic compounds, and vitamins are responsible for the formation of silver nanoparticles. The green synthesis of silver nanoparticles is an eco-friendly approach, which should be further explored for the potential of different plants to synthesize nanoparticles. In the present review we describe the green synthesis of nanoparticles using plants, bacteria, and fungi and the role of plant metabolites in the synthesis process. Moreover, the present review also describes some applications of silver nanoparticles in different aspects such as antimicrobial, biomedicine, mosquito control, environment and wastewater treatment, agricultural, food safety, and food packaging.
    Matched MeSH terms: Green Chemistry Technology/methods
  13. Kc S, Lin LW, Bayani DBS, Zemlyanska Y, Adler A, Ahn J, et al.
    PMID: 37579427 DOI: 10.34172/ijhpm.2023.6858
    BACKGROUND: Globally, there is increasing interest in the use of real-world data (RWD) and real-world evidence (RWE) to inform health technology assessment (HTA) and reimbursement decision-making. Using current practices and case studies shared by eleven health systems in Asia, a non-binding guidance that seeks to align practices for generating and using RWD/RWE for decision-making in Asia was developed by the REAL World Data In ASia for HEalth Technology Assessment in Reimbursement (REALISE) Working Group, addressing a current gap and needs among HTA users and generators.

    METHODS: The guidance document was developed over two face-to-face workshops, in addition to an online survey, a face-to-face interview and pragmatic search of literature. The specific focus was on what, where and how to collect RWD/ RWE.

    RESULTS: All 11 REALISE member jurisdictions participated in the online survey and the first in-person workshop, 10 participated in the second in-person workshop, and 8 participated in the in-depth face-to-face interviews. The guidance document was iteratively reviewed by all working group members and the International Advisory Panel. There was substantial variation in: (a) sources and types of RWD being used in HTA, and (b) the relative importance and prioritization of RWE being used for policy-making. A list of national-level databases and other sources of RWD available in each country was compiled. A list of useful guidance on data collection, quality assurance and study design were also compiled.

    CONCLUSION: The REALISE guidance document serves to align the collection of better quality RWD and generation of reliable RWE to ultimately inform HTA in Asia.

    Matched MeSH terms: Technology Assessment, Biomedical*
  14. Shabbir A, Rizvi S, Alam MM, Shirazi F, Su'ud MM
    PLoS One, 2024;19(2):e0296392.
    PMID: 38408070 DOI: 10.1371/journal.pone.0296392
    The quest for energy efficiency (EE) in multi-tier Heterogeneous Networks (HetNets) is observed within the context of surging high-speed data demands and the rapid proliferation of wireless devices. The analysis of existing literature underscores the need for more comprehensive strategies to realize genuinely energy-efficient HetNets. This research work contributes significantly by employing a systematic methodology, utilizing This model facilitates the assessment of network performance by considering the spatial distribution of network elements. The stochastic nature of the PPP allows for a realistic representation of the random spatial deployment of base stations and users in multi-tier HetNets. Additionally, an analytical framework for Quality of Service (QoS) provision based on D-DOSS simplifies the understanding of user-base station relationships and offers essential performance metrics. Moreover, an optimization problem formulation, considering coverage, energy maximization, and delay minimization constraints, aims to strike a balance between key network attributes. This research not only addresses crucial challenges in creating EE HetNets but also lays a foundation for future advancements in wireless network design, operation, and management, ultimately benefiting network operators and end-users alike amidst the growing demand for high-speed data and the increasing prevalence of wireless devices. The proposed D-DOSS approach not only offers insights for the systematic design and analysis of EE HetNets but also systematically outperforms other state-of-the-art techniques presented. The improvement in energy efficiency systematically ranges from 67% (min side) to 98% (max side), systematically demonstrating the effectiveness of the proposed strategy in achieving higher energy efficiency compared to existing strategies. This systematic research work establishes a strong foundation for the systematic evolution of energy-efficient HetNets. The systematic methodology employed ensures a comprehensive understanding of the complex interplay of network dynamics and user requirements in a multi-tiered environment.
    Matched MeSH terms: Wireless Technology*
  15. Phing SH, Mazhorova A, Shalaby M, Peccianti M, Clerici M, Pasquazi A, et al.
    Sci Rep, 2015;5:8551.
    PMID: 25711343 DOI: 10.1038/srep08551
    Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 μm) directly in its emission plane.
    Matched MeSH terms: Technology
  16. Kaiwartya O, Kumar S, Lobiyal DK, Abdullah AH, Hassan AN
    Sensors (Basel), 2014;14(12):22342-71.
    PMID: 25429415 DOI: 10.3390/s141222342
    Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed.
    Matched MeSH terms: Wireless Technology
  17. Akbari M, Manesh MR, El-Saleh AA, Reza AW
    ScientificWorldJournal, 2014;2014:128195.
    PMID: 25045725 DOI: 10.1155/2014/128195
    In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods.
    Matched MeSH terms: Wireless Technology
  18. Abass AK, Al-Mansoori MH, Jamaludin MZ, Abdullah F, Al-Mashhadani TF
    Appl Opt, 2013 Jun 1;52(16):3764-9.
    PMID: 23736332 DOI: 10.1364/AO.52.003764
    We experimentally investigate the performance of L-band multiwavelength Brillouin-Raman fiber laser (MBRFL) under forward and backward pumped environments utilizing a linear cavity. A short length of 1.18 km dispersion compensating fiber is used as a nonlinear gain medium for both Brillouin and Raman gain. Experimental results indicate that the gain in the copumped laser configuration is higher than the gain in the counterpumped configuration. A stable and constant number of Brillouin Stokes lines up to 23 Stokes, with channel spacing of 0.08 nm and more than 20 dB of optical signal to noise ratio, can be generated as well as tuning over 20 nm in the L-band region from 1570 to 1590 nm. The laser generating the Brillouin Stokes lines exhibits flat amplitude bandwidth and high average output power of 0.8 and 1.6 dBm for the copropagation and counterpropagation pumps, respectively. Moreover, the tuning range bandwidth of the MBRFL can be predicted from the oscillated Brillouin pump gain profile.
    Matched MeSH terms: Fiber Optic Technology
  19. Shamsan Saleh AM, Ali BM, Rasid MF, Ismail A
    Sensors (Basel), 2012;12(8):11307-33.
    PMID: 23112658 DOI: 10.3390/s120811307
    Planning of energy-efficient protocols is critical for Wireless Sensor Networks (WSNs) because of the constraints on the sensor nodes' energy. The routing protocol should be able to provide uniform power dissipation during transmission to the sink node. In this paper, we present a self-optimization scheme for WSNs which is able to utilize and optimize the sensor nodes' resources, especially the batteries, to achieve balanced energy consumption across all sensor nodes. This method is based on the Ant Colony Optimization (ACO) metaheuristic which is adopted to enhance the paths with the best quality function. The assessment of this function depends on multi-criteria metrics such as the minimum residual battery power, hop count and average energy of both route and network. This method also distributes the traffic load of sensor nodes throughout the WSN leading to reduced energy usage, extended network life time and reduced packet loss. Simulation results show that our scheme performs much better than the Energy Efficient Ant-Based Routing (EEABR) in terms of energy consumption, balancing and efficiency.
    Matched MeSH terms: Wireless Technology
  20. Yang BM
    J Comp Eff Res, 2012 May;1(3):221-4.
    PMID: 24237405 DOI: 10.2217/cer.12.20
    Bong-min Yang, PhD (in economics), is Professor and former Dean of the School of Public Health at the Seoul National University, South Korea. Professor Yang has led research and written many papers in health economics and healthcare systems in Korea and Asia. His recent research and publications focus on the field of economic evaluation and outcomes research. He played a key role in the introduction of a formal health technology assessment system within Korean healthcare. He is currently serving as Executive Director, Institute of Health and Environment, Seoul National University. In addition to his research and publications, Professor Yang is Associate Editor for Journal of Comparative Effectiveness Research, is co-editor-in-chief for Value in Health Regional Issues, and is currently chair of the Management Advisory Board of Value in Health and a member of the editorial board of the Journal of Medical Economics. He has been a policy consultant to China, Japan, Indonesia, Hong Kong, Malaysia, Taiwan, Thailand and India. He has also worked as a short-term consultant at the WHO, ADB, UNDP and the World Bank. For the Korean government, he served as Chairperson of the Health Insurance Reform Committee, and Chairperson of the Drug Pricing and Reimbursement Committee. He is currently serving as Chair of the International Society of Pharmacoeconomics and Outcomes Research-Asia Consortium, and a member of the Board of Directors of the International Society of Pharmacoeconomics and Outcomes Research.
    Matched MeSH terms: Technology Assessment, Biomedical/organization & administration*; Biomedical Technology/standards*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links