METHODS: A 3D-printed cardiac insert and Catphan 500 phantoms were scanned using CCTA protocols at 120 and 100 kVp tube voltages. All CT acquisitions were reconstructed using filtered back projection (FBP) and Adaptive Statistical Iterative Reconstruction (ASIR) algorithm at 40% and 60% strengths. Image quality characteristics such as image noise, signal-noise ratio (SNR), contrast-noise ratio (CNR), high spatial resolution, and low contrast resolution were analyzed.
RESULTS: There was no significant difference (P > 0.05) between 120 and 100 kVp measures for image noise for FBP vs ASIR 60% (16.6 ± 3.8 vs 16.7 ± 4.8), SNR of ASIR 40% vs ASIR 60% (27.3 ± 5.4 vs 26.4 ± 4.8), and CNR of FBP vs ASIR 40% (31.3 ± 3.9 vs 30.1 ± 4.3), respectively. Based on the Modulation Transfer Function (MTF) analysis, there was a minimal change of image quality for each tube voltage but increases when higher strengths of ASIR were used. The best measure of low contrast detectability was observed at ASIR 60% at 120 kVp.
CONCLUSIONS: Changing the IR strength has yielded different image quality noise characteristics. In this study, the use of 100 kVp and ASIR 60% yielded comparable image quality noise characteristics to the standard CCTA protocols using 120 kVp of ASIR 40%. A combination of 3D-printed and Catphan® 500 phantoms could be used to perform CT dose optimization protocols.
OBJECTIVE: The aim of the study was to characterize the perfusion patterns on perfusion computed tomography (PCT) in patients with seizures masquerading as acute stroke.
METHODS: We conducted a study on patients with acute seizures as stroke mimics. The inclusion criteria for this study were patients (1) initially presenting with stroke-like symptoms but finally diagnosed to have seizures and (2) with PCT performed within 72 h of seizures. The PCT of seizure patients (n = 27) was compared with that of revascularized stroke patients (n = 20) as the control group.
RESULTS: Among the 27 patients with seizures as stroke mimics, 70.4% (n = 19) showed characteristic PCT findings compared with the revascularized stroke patients, which were as follows: (1) multi-territorial cortical hyperperfusion {(73.7% [14/19] vs. 0% [0/20], p = 0.002), sensitivity of 73.7%, negative predictive value (NPV) of 80%}, (2) involvement of the ipsilateral thalamus {(57.9% [11/19] vs. 0% [0/20], p = 0.007), sensitivity of 57.9%, NPV of 71.4%}, and (3) reduced perfusion time {(84.2% [16/19] vs. 0% [0/20], p = 0.001), sensitivity of 84.2%, NPV of 87%}. These 3 findings had 100% specificity and positive predictive value in predicting patients with acute seizures in comparison with reperfused stroke patients. Older age was strongly associated with abnormal perfusion changes (p = 0.038), with a mean age of 66.8 ± 14.5 years versus 49.2 ± 27.4 years (in seizure patients with normal perfusion scan).
CONCLUSIONS: PCT is a reliable tool to differentiate acute seizures from acute stroke in the emergency setting.
MATERIALS AND METHODS: This was a retrospective study using computed tomography (CT) scans from 3 hospitals. Inclusion criteria were scans with 1-5 nodules of diameter ≥5 mm; exclusion criteria were poor-quality scans or those with nodules measuring <5mm in diameter. In the lesion detection phase, 2,147 nodules from 219 scans were used to develop and train the deep learning 3D-CNN to detect lesions. The 3D-CNN was validated with 235 scans (354 lesions) for sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) analysis. In the path planning phase, Bayesian optimization was used to propose possible needle trajectories for lesion biopsy while avoiding vital structures. Software-proposed needle trajectories were compared with actual biopsy path trajectories from intraprocedural CT scans in 150 patients, with a match defined as an angular deviation of <5° between the 2 trajectories.
RESULTS: The model achieved an overall AUC of 97.4% (95% CI, 96.3%-98.2%) for lesion detection, with mean sensitivity of 93.5% and mean specificity of 93.2%. Among the software-proposed needle trajectories, 85.3% were feasible, with 82% matching actual paths and similar performance between supine and prone/oblique patient orientations (P = .311). The mean angular deviation between matching trajectories was 2.30° (SD ± 1.22); the mean path deviation was 2.94 mm (SD ± 1.60).
CONCLUSIONS: Segmentation, lesion detection, and path planning for CT-guided lung biopsy using an AI-guided software showed promising results. Future integration with automated robotic systems may pave the way toward fully automated biopsy procedures.