METHODS: A population-based survey of bacterial carriage was undertaken in participants of all ages from rural communities in Sarawak, Malaysia. Nasopharyngeal, nasal, mouth and oropharyngeal swabs were taken. Bacteria were isolated from each swab and identified by culture-based methods and antimicrobial susceptibility testing conducted by disk diffusion or E test.
RESULTS: 140 participants were recruited from five rural communities. Klebsiella pneumoniae was most commonly isolated from participants (30.0%), followed by Staphylococcus aureus (20.7%), Streptococcus pneumoniae (10.7%), Haemophilus influenzae (9.3%), Moraxella catarrhalis (6.4%), Pseudomonas aeruginosa (6.4%) and Neisseria meningitidis (5.0%). Of the 21 S. pneumoniae isolated, 33.3 and 14.3% were serotypes included in the 13 valent PCV (PCV13) and 10 valent PCV (PCV10) respectively. 33.8% of all species were resistant to at least one antibiotic, however all bacterial species except S. pneumoniae were susceptible to at least one type of antibiotic.
CONCLUSION: To our knowledge, this is the first bacterial carriage study undertaken in East Malaysia. We provide valuable and timely data regarding the epidemiology and AMR of respiratory pathogens commonly associated with pneumonia. Further surveillance in Malaysia is necessary to monitor changes in the carriage prevalence of upper respiratory tract pathogens and the emergence of AMR, particularly as PCV is added to the National Immunisation Programme (NIP).
METHODS: They have also been used for antibacterial, antifungal, anticancer, antitubercular activities. Novel synthesised Schiff's base 2-methoxy-4-((3-methylpyridin-2-ylimino)methyl)phenol (SB) and its metal complexes (Zn[II], Cu[II], Co[II] and Ni[II]) were characterised by UV, IR and NMR spectroscopy. Formation of the Schiff base and the metal (Zn[II], Cu[II], Co[II] and Ni[II]) chelates was supported by spectral and analytical data. The ligand and metal complexes have been screened for their antibacterial activity against Staphylococcus aureus, Salmonella typhi, Escherichia coli, Klebsiella pneumoniae and antifungal activity against the fungi Candida albicans and Aspergillus niger. Further, the synthesised compounds were also screened for antiproliferative activity against the human colorectal carcinoma (HCT116) cell line using the Sulforhodamine B assay.
RESULT: Metal complexes formed were found to enhance the potency of the Schiff base due to coordination with a copper complex, showing better activity than others.
CONCLUSION: Copper complex was observed to be more potent than other complexes against all the pathogenic microbes and cancer cell line (HCT116).
METHODS: Swab and fluid samples (n=358) from healthcare workers' hands, frequently touched surfaces, medical equipment, patients' immediate surroundings, ward sinks and toilets, and solutions or fluids of 12 selected wards were collected. Biochemical tests, PCR and 16S rRNA sequencing were used for identification following isolation from CHROMagar™ Orientation medium. Clinically important bacteria such as Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter spp., Pseudomonas aeruginosa and Enterobacter spp. were further characterised by disc diffusion method and rep-PCR.
RESULTS: The 24 Gram-negative and 19 Gram-positive bacteria species identified were widely distributed in the hospital environment. Staphylococci were predominant, followed by Bacillus spp. and P. aeruginosa. Frequently touched surfaces, medical equipment, and ward sinks and toilets were the top three sources of bacterial species. Nine S. aureus, four Acinetobacter spp., one K. pneumoniae and one Enterobacter spp. were multidrug-resistant (MDR). The ESKAPE organisms were genetically diverse and widely dispersed across the hospital wards. A MDR MRSA clone was detected in a surgical ward isolation room.
CONCLUSION: The large variety of cultivable, clinically important bacteria, especially the genetically related MDR S. aureus, K. pneumoniae, Acinetobacter spp. and Enterobacter spp., from various sampling sites indicated that the surfaces and fomites in the hospital were potential exogenous sources of nosocomial infection in the hospital.
METHODS: A search was conducted in PubMed, Science Direct, and Google Scholar databases to identify eligible studies. Studies that reported the impact of COVID-19 pandemic on carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum beta-lactamase inhibitor (ESBL)-producing Enterobacteriaceae, vancomycin-resistant enterococci (VRE), methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Pseudomonas aeruginosa (CPE) were selected. Studies published in English language from the start of COVID-19 pandemic to July 2022 were considered for inclusion.
RESULTS: Thirty eligible studies were selected and most of them were from Italy (n = 8), Turkey (n = 3) and Brazil (n = 3). The results indicated changes in the rate of multidrug resistant bacteria, and the changes varied between the studies. Most studies (54.5%) reported increase in MRSA infection/colonization during the pandemic, and the increase ranged from 4.6 to 170.6%. Five studies (55.6%) reported a 6.8-65.1% increase in VRE infection/colonization during the pandemic. A 2.4-58.2% decrease in ESBL E. coli and a 1.8-13.3% reduction in ESBL Klebsiella pneumoniae was observed during the pandemic. For CRAB, most studies (58.3%) reported 1.5-621.6% increase in infection/colonization during the pandemic. Overall, studies showed increase in the rate of CRE infection/colonization during the pandemic. There was a reduction in carbapenem-resistant E. coli during COVID-19 pandemic, and an increase in carbapenem-resistant K. pneumoniae. Most studies (55.6%) showed 10.4 - 40.9% reduction in the rate of CRPA infection during the pandemic.
CONCLUSION: There is an increase in the rate of multidrug resistant gram positive and gram negative bacteria during the COVID-19 pandemic. However, the rate of ESBL-producing Enterobacteriaceae and CRPA has decrease during the pandemic. Both infection prevention and control strategies and antimicrobial stewardship should be strengthen to address the increasing rate of multidrug resistant gram positive and gram negative bacteria.