Displaying publications 141 - 160 of 213 in total

Abstract:
Sort:
  1. Zulaziz N, Azhim A, Himeno N, Tanaka M, Satoh Y, Kinoshita M, et al.
    Hum. Cell, 2015 Oct;28(4):159-66.
    PMID: 25997703 DOI: 10.1007/s13577-015-0118-2
    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages.
    Matched MeSH terms: Macrophages/immunology*; Macrophages/metabolism
  2. Tan GM, Looi CY, Fernandez KC, Vadivelu J, Loke MF, Wong WF
    Sci Rep, 2015;5:11046.
    PMID: 26078204 DOI: 10.1038/srep11046
    Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.
    Matched MeSH terms: Macrophages/metabolism*; Macrophages/microbiology
  3. Mohd Aluwi MF, Rullah K, Yamin BM, Leong SW, Abdul Bahari MN, Lim SJ, et al.
    Bioorg Med Chem Lett, 2016 05 15;26(10):2531-8.
    PMID: 27040659 DOI: 10.1016/j.bmcl.2016.03.092
    The syntheses and bioactivities of symmetrical curcumin and its analogues have been the subject of interest by many medicinal chemists and pharmacologists over the years. To improve our understanding, we have synthesized a series of unsymmetrical monocarbonyl curcumin analogues and evaluated their effects on prostaglandin E2 production in lipopolysaccharide-induced RAW264.7 and U937 cells. Initially, compounds 8b and 8c exhibited strong inhibition on the production of PGE2 in both LPS-stimulated RAW264.7 (8b, IC50=12.01μM and 8c, IC50=4.86μM) and U937 (8b, IC50=3.44μM and 8c, IC50=1.65μM) cells. Placing vanillin at position Ar2 further improved the potency when both compounds 15a and 15b significantly lowered the PGE2 secretion level (RAW264.7: 15a, IC50=0.78μM and 15b, IC50=1.9μM while U937: 15a, IC50=0.95μM and 15b, IC50=0.92μM). Further experiment showed that compounds 8b, 8c, 15a and 15b did not target the activity of downstream inflammatory COX-2 mediator. Finally, docking simulation on protein targets COX-2, IKK-β, ERK, JNK2, p38α and p38β were performed using the conformation of 15a determined by single-crystal XRD.
    Matched MeSH terms: Macrophages/drug effects*; Macrophages/metabolism
  4. Yu EPK, Reinhold J, Yu H, Starks L, Uryga AK, Foote K, et al.
    Arterioscler Thromb Vasc Biol, 2017 12;37(12):2322-2332.
    PMID: 28970293 DOI: 10.1161/ATVBAHA.117.310042
    OBJECTIVE: Mitochondrial DNA (mtDNA) damage is present in murine and human atherosclerotic plaques. However, whether endogenous levels of mtDNA damage are sufficient to cause mitochondrial dysfunction and whether decreasing mtDNA damage and improving mitochondrial respiration affects plaque burden or composition are unclear. We examined mitochondrial respiration in human atherosclerotic plaques and whether augmenting mitochondrial respiration affects atherogenesis.

    APPROACH AND RESULTS: Human atherosclerotic plaques showed marked mitochondrial dysfunction, manifested as reduced mtDNA copy number and oxygen consumption rate in fibrous cap and core regions. Vascular smooth muscle cells derived from plaques showed impaired mitochondrial respiration, reduced complex I expression, and increased mitophagy, which was induced by oxidized low-density lipoprotein. Apolipoprotein E-deficient (ApoE-/-) mice showed decreased mtDNA integrity and mitochondrial respiration, associated with increased mitochondrial reactive oxygen species. To determine whether alleviating mtDNA damage and increasing mitochondrial respiration affects atherogenesis, we studied ApoE-/- mice overexpressing the mitochondrial helicase Twinkle (Tw+/ApoE-/-). Tw+/ApoE-/- mice showed increased mtDNA integrity, copy number, respiratory complex abundance, and respiration. Tw+/ApoE-/- mice had decreased necrotic core and increased fibrous cap areas, and Tw+/ApoE-/- bone marrow transplantation also reduced core areas. Twinkle increased vascular smooth muscle cell mtDNA integrity and respiration. Twinkle also promoted vascular smooth muscle cell proliferation and protected both vascular smooth muscle cells and macrophages from oxidative stress-induced apoptosis.

    CONCLUSIONS: Endogenous mtDNA damage in mouse and human atherosclerosis is associated with significantly reduced mitochondrial respiration. Reducing mtDNA damage and increasing mitochondrial respiration decrease necrotic core and increase fibrous cap areas independently of changes in reactive oxygen species and may be a promising therapeutic strategy in atherosclerosis.

    Matched MeSH terms: Macrophages/metabolism; Macrophages/pathology
  5. Huang L, Qi W, Zuo Y, Alias SA, Xu W
    Dev Comp Immunol, 2020 12;113:103779.
    PMID: 32735958 DOI: 10.1016/j.dci.2020.103779
    The present study reported the first pathogenic Aeromonas salmonicida (SRW-OG1) isolated from the warm water fish orange-spotted grouper (Epinephelus coioides), and investigated the function of Aryl hydrocarbon receptor (AhR), a ligand-dependent transcriptional factor which has been recently found to be closely associated with immune response in mammals and E. coioides. Our results showed that AhR was activated by an unknown ligand in the spleen, intestine and macrophages. Meanwhile, ahr1a and ahr1b were significantly increased in the spleen, intestine and macrophages, whereas ahr2 was only increased in the intestine, which indicated that the contribution of AhR2 to the immune response may be less than that of AhR1a and AhR1b. Some key genes involved in the macrophage inflammatory response, bacterial recognition, and intestinal immunity were significantly up-regulated in the SRW-OG1 infected E. coioides. Nevertheless, declining macrophage ROS production and down-regulation of related genes were also observed, suggesting that SRW-OG1 utilized its virulence mechanisms to prevent macrophage ROS production. Furthermore, AhR inhibitor 3', 4'-DMF and the silence of ahr1a or ahr1b significantly rescued the increased IL-1β and IL-8 induced by SRW-OG1 infection, which proved that the induction of IL-1β and IL-8 in E. coioides macrophages was mediated by AhR. However, BPI/LBP, ROS production and related genes were not affected by AhR. The survival rate and immune escape rate of SRW-OG1 in the ahr1a/ahr1b knocked-down and 3', 4'-DMF treated macrophages were significantly increased compared with those in wild type macrophages. Taken together, it was preliminarily confirmed that ahr1a and ahr1b played an important role in the immune response against A. salmonicida SRW-OG1.
    Matched MeSH terms: Macrophages/immunology*; Macrophages/microbiology
  6. Saad HM, Sim KS, Tan YS
    Int J Med Mushrooms, 2018;20(2):141-153.
    PMID: 29773006 DOI: 10.1615/IntJMedMushrooms.2018025463
    Five culinary-medicinal mushrooms are commonly available in the Malaysian market: Agaricus bisporus (white and brown), Ganoderma lucidum, Hypsizygus marmoreus, Pleurotus floridanus, and P. pulmonarius. These species were selected for use in the current study, the aim of which was to investigate the antimelanogenesis and anti-inflammatory activity of these mushrooms in an attempt to evaluate their potential use in cosmeceuticals. Mushroom fruiting bodies were extracted with hot water, and the extracts were freeze-dried before testing. The antimelanogenesis activity of the extracts was determined by cell viability assay, measurement of intracellular melanin content, and cellular tyrosinase assay with B16F10 melanoma cells. The anti-inflammatory activity of the mushroom extracts was tested by measuring the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-10 excreted by RAW264.7 macrophages. Brown A. bisporus reduced intracellular melanin content to the largest extent-up to 57.05 ± 3.90%-without a cytotoxic effect on B16F10 melanoma cells. This extract also reduced cellular tyrosinase activity to 17.93 ± 2.65%, performing better than kojic acid, the positive control. In parallel, the extract from brown A. bisporus, at the highest concentration tested, has appreciable anti-inflammatory activity through reductions of NO and TNF-α levels. The other 5 extracts showed moderate antimelanogenesis and anti-inflammatory activities. In summary, our findings show that A. bisporus (brown) extract has the potential to be used as an ingredient in whitening skincare products and to sooth the inflammatory response on the skin.
    Matched MeSH terms: Macrophages/drug effects; Macrophages/immunology
  7. BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M
    BMC Complement Altern Med, 2017 Jan 14;17(1):47.
    PMID: 28088220 DOI: 10.1186/s12906-017-1555-0
    Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells.
    Matched MeSH terms: Macrophages/drug effects; Macrophages/immunology
  8. Ooi TC, Chan KM, Sharif R
    Immunopharmacol Immunotoxicol, 2017 Oct;39(5):259-267.
    PMID: 28697633 DOI: 10.1080/08923973.2017.1344987
    CONTEXT: Zinc L-carnosine (ZnC) is a chelate of Zn and L-carnosine and is used clinically in the treatment of peptic ulcer.

    OBJECTIVE: In this study, we aim to investigate the involvement of heme oxygenase-1 (HO-1) in the anti-inflammatory effects of ZnC in lipopolysaccharide (LPS)-induced RAW 264.7 murine macrophages.

    MATERIALS AND METHODS: We used immunoblotting analysis to evaluate the involvement of HO-1 in the anti-inflammatory effects of ZnC and the signaling pathway involved was measured using Dual luciferase reporter assay.

    RESULTS: Results from immunoblotting analysis demonstrated that pretreatment of cells with ZnC enhanced the expression of HO-1 in RAW 264.7 cells. Pretreatment of cells with HO-1 inhibitor (tin protoporphyrin IX dichloride) significantly attenuated the inhibitory effects of ZnC on nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression and NF-κB activation in LPS-induced RAW 264.7 cells, suggesting that HO-1 play an important role in the suppression of inflammatory responses induced by ZnC. Furthermore, results from co-immunoprecipitation of Nrf2 and Keap1 and dual luciferase reporter assay showed that pretreatment of ZnC was able to activate the Nrf2 signaling pathway. Treatment of cells with p38 inhibitor (SB203580), c-Jun N-terminal kinase inhibitor (SP600125), and MEK 1/2 inhibitor (U0126) did not significantly suppress the induction of HO-1 by ZnC. Moreover, our present findings suggest that the effects of ZnC on NO production, HO-1 expression, and Nrf2 activation were attributed to its Zn subcomponent, but not l-carnosine.

    CONCLUSION: Pretreatment with ZnC was able to activate Nrf2/HO-1 signaling pathway, thus suppressing the expression of inflammatory mediators, such as NO and iNOS in LPS-induced RAW 264.7 cells.

    Matched MeSH terms: Macrophages/metabolism*; Macrophages/pathology
  9. Sok SPM, Ori D, Wada A, Okude H, Kawasaki T, Momota M, et al.
    Int Immunol, 2021 06 18;33(7):373-386.
    PMID: 33830232 DOI: 10.1093/intimm/dxab016
    The nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing (NLRP) 3 inflammasome is a multiprotein complex that triggers Caspase-1-mediated IL-1β production and pyroptosis, and its dysregulation is associated with the pathogenesis of inflammatory diseases. 1'-Acetoxychavicol acetate (ACA) is a natural compound in the rhizome of tropical ginger Alpinia species with anti-microbial, anti-allergic and anti-cancer properties. In this study, we found that ACA suppressed NLRP3 inflammasome activation in mouse bone marrow-derived macrophages and human THP-1 monocytes. ACA inhibited Caspase-1 activation and IL-1β production by NLRP3 agonists such as nigericin, monosodium urate (MSU) crystals, and ATP. Moreover, it suppressed oligomerization of the adapter molecule, apoptosis-associated speck-like protein containing a CARD (ASC), and Caspase-1-mediated cleavage of pyroptosis executor Gasdermin D. Mechanistically, ACA inhibited generation of mitochondrial reactive oxygen species (ROS) and prevented release of oxidized mitochondrial DNA, which trigger NLRP3 inflammasome activation. ACA also prevented NLRP3 inflammasome activation in vivo, as evidenced in the MSU crystal-induced peritonitis and dextran sodium sulfate-induced colitis mouse models accompanied by decreased Caspase-1 activation. Thus, ACA is a potent inhibitor of the NLRP3 inflammasome for prevention of NLRP3-associated inflammatory diseases.
    Matched MeSH terms: Macrophages/drug effects; Macrophages/metabolism
  10. Wang S, Tan KS, Beng H, Liu F, Huang J, Kuai Y, et al.
    Pharmacol Res, 2021 Oct;172:105781.
    PMID: 34302975 DOI: 10.1016/j.phrs.2021.105781
    Sepsis is a severe inflammatory disorder that can lead to multiple organ injury. Isosteviol sodium (STV-Na) is a terpenoid derived from stevioside that exerts anti-inflammatory, antioxidant and antiapoptotic activities. However, the influence of STV-Na on sepsis remains unknown. Here, we assessed the potential effects of STV-Na on sepsis and multiple organ injury induced by lipopolysaccharide (LPS). We found that STV-Na increased the survival rate of mice treat with LPS, significantly improved the functions of the heart, lung, liver, and kidney, reduced the production of inflammatory cytokines and decreased macrophage infiltration. Moreover, Multiorgan metabolomics analysis demonstrated that glutathione metabolism, purine metabolism, glycerophospholipid metabolism and pantothenate and CoA biosynthesis, were significantly altered by STV-Na. This study provides novel insights into the metabolite changes of multiple organ injury in septic mice, which may help characterize the underlying mechanism and provide an improved understanding of the therapeutic effects of STV-Na on sepsis.
    Matched MeSH terms: Macrophages/drug effects; Macrophages/immunology
  11. Keong CY, B V, Daker M, Hamzah MY, Mohamad SA, Lan J, et al.
    Int J Med Mushrooms, 2016;18(2):141-54.
    PMID: 27279536 DOI: 10.1615/IntJMedMushrooms.v18.i2.50
    This study investigated antioxidant and anti-inflammatory properties, and the direct cytotoxic effect of Lignosus rhinocerotis fractions, especially the polysaccharide fraction, on nasopharyngeal carcinoma cells. L. rhinocerotis crude extract was obtained through hot water extraction. The precipitate saturated with 30% ammonium sulfate was purified with ion-exchanged chromatography. Gel permeation chromatography multiangle laser light scattering analysis equipped with light scattering and UV signals revealed two district groups of polymers. A total of four peaks were observed in the total carbohydrate test. Fraction C, which was the second region of the second peak eluted with 0.3 M NaOH, showed the highest integrated molecular weight, whereas fraction E had the lowest integrated molecular weight of 19,790 Da. Fraction A contained the highest β-D-glucan content. Enzymatic analysis showed that most of the polysaccharide fractions contained β-1-3 and β-1-6 skeletal backbones. The peak eluted with 0.6 M NaOH was separated in fraction D (flask 89-92) and fraction E (93-96). The results showed that fraction E expressed higher antioxidant activities than fraction D whereas fraction D expressed higher chelating activity than fraction E. The extract saturated with 30% ammonium sulfate exhibited higher reducing power than the extract saturated with 100% ammonium sulfate. Fractions D and E significantly inhibited the secretion of tumor necrosis factor-α in lipopolysaccharide-stimulated RAW 264.7 macrophages in a dose-dependent manner. There was no apparent difference in the viability of cells exposed or unexposed to L. rhinocerotis fractions.
    Matched MeSH terms: Macrophages/drug effects
  12. Chieng S, Mohamed R, Nathan S
    Microb Pathog, 2015 Feb;79:47-56.
    PMID: 25616255 DOI: 10.1016/j.micpath.2015.01.006
    Burkholderia pseudomallei, the causative agent of melioidosis, is able to survive extreme environments and utilizes various virulence factors for survival and pathogenicity. To compete and survive within these different ecological niches, B. pseudomallei has evolved specialized pathways, including the Type VI secretion systems (T6SSs), that have a role in pathogenesis as well as interbacterial interactions. We examined the expression profile of B. pseudomallei T6SS six gene clusters during infection of U937 macrophage cells. T6SS-5 was robustly transcribed while the other five clusters were not significantly regulated proposing the utility of T6SS-5 as a potential biomarker of exposure to B. pseudomallei. Transcription of T6SS regulators VirAG and BprB was also not significant during infection when compared to bacteria grown in culture. Guided by these findings, three highly expressed T6SS genes, tssJ-4, hcp1 and tssE-5, were expressed as recombinant proteins and screened against melioidosis patient sera by western analysis and ELISA. Only Hcp1 was reactive by both types of analysis. The recombinant Hcp1 protein was further evaluated against a cohort of melioidosis patients (n = 32) and non-melioidosis individuals (n = 20) sera and the data clearly indicates a higher sensitivity (93.7%) and specificity (100%) for Hcp1 compared to bacterial lysate. The detection of anti-Hcp1 antibodies in patients' sera indicating the presence of B. pseudomallei highlights the potential of Hcp1 to be further developed as a serodiagnostic marker for melioidosis.
    Matched MeSH terms: Macrophages/microbiology
  13. Daud SB, Ee GC, Malek EA, Teh SS, See I
    Nat Prod Res, 2014;28(19):1534-8.
    PMID: 24897077 DOI: 10.1080/14786419.2014.924001
    A new coumarin, hoseimarin (1), together with four other xanthones, trapezifolizanthone (2), osajaxanthone (3), β-mangostin (4) and caloxanthone A (5), were isolated from the stem bark of Calophyllum hosei. The structures of these compounds were established by using spectroscopic analysis which included (1)H NMR, (13)C NMR, COSY, DEPT, HMQC and HMBC experiments.
    Matched MeSH terms: Macrophages/drug effects
  14. Abdulla MA, Fard AA, Sabaratnam V, Wong KH, Kuppusamy UR, Abdullah N, et al.
    Int J Med Mushrooms, 2011;13(1):33-9.
    PMID: 22135902
    This study was conducted to evaluate the effects of topical application of aqueous extract of Hericium erinaceus fruiting bodies (HEFB) on the rate of wound healing enclosure and histology of the healed wound. Five groups of male Sprague-Dawley rats were experimentally wounded in the posterior neck area. A uniform wound area of 2.00 cm in diameter, using a circular stamp, was excised from the nape of the dorsal neck of all rats with the aid of a round seal. The animal groups were topically treated, respectively, with 0.2 mL each of sterilized distilled water (sdH2O); Intrasite gel; and 20, 30, and 40 mg/mL HEFB. Macroscopically, those rats whose wounds were dressed with HEFB and those in the Intrasite gel-treated group healed earlier than those treated with sdH2O. Histological analysis of healed wounds dressed with HEFB showed less scar width at wound enclosure and the healed wound contained fewer macrophages and more collagen with angiogenesis, compared to wounds dressed with sdH2O. In conclusion, wounds dressed with HEFB significantly enhanced the acceleration of wound healing enclosure in rats.
    Matched MeSH terms: Macrophages/drug effects
  15. Yaacob NS, Goh KS, Norazmi MN
    Exp. Toxicol. Pathol., 2012 Jan;64(1-2):127-31.
    PMID: 20674317 DOI: 10.1016/j.etp.2010.07.005
    The peroxisome proliferator-activated receptors (PPARs) have been implicated in regulating the immune response. We determined the relative changes in the transcriptional expression of PPAR isoforms (α, γ1 and γ2) and cytokines involved in the pathogenesis of type 1 diabetes (T1D) in the immune cells of 5 weeks, 10 weeks and diabetic male non-obese diabetic (NOD) mice compared to those of female NOD mice from our previous studies, "normalized" against their respective non-obese diabetic resistant (NOR) mice controls. Overall PPARα was significantly more elevated in the macrophages of female NOD mice of all age groups whereas PPARγ, particularly the PPARγ2 isoform was more depressed in the macrophages and CD4(+) lymphocytes of female NOD mice compared to their male counterparts. The pro-inflammatory cytokines, IL-1 and TNFα, as well as the Th1 cytokines, IL-2 and IFNγ were more elevated in female NOD mice whereas the Th2 cytokine, IL-4, was more depressed in these mice compared to their male counterparts. These findings suggest that the preponderance of T1D in female NOD mice may be influenced by the more pronounced changes in the expression of PPAR isoforms and pathogenic cytokines compared to those in male NOD mice.
    Matched MeSH terms: Macrophages, Peritoneal/immunology
  16. Kassim M, Achoui M, Mustafa MR, Mohd MA, Yusoff KM
    Nutr Res, 2010 Sep;30(9):650-9.
    PMID: 20934607 DOI: 10.1016/j.nutres.2010.08.008
    Natural honey has been used in traditional medicine of different cultures throughout the world. This study looked into the extraction of Malaysian honey and the evaluation of the anti-inflammatory activity of these extracts. It was hypothesized that honey extracts contain varying amounts of phenolic compounds and that they possess different in vitro anti-inflammatory activities. Honey extracts were analyzed using liquid chromatography-mass spectrometry to identify and compare phenolic compounds, whereas high-performance liquid chromatography was used for their quantification. Subsequently, honey methanol extract (HME) and honey ethyl acetate extract (HEAE) were tested in vitro for their effect on nitric oxide production in stimulated macrophages. The extracts were also tested for their effects on tumor necrosis factor-α (TNF) cytotoxicity in L929 cells. The major phenolics in the extracts were ellagic, gallic, and ferulic acids; myricetin; chlorogenic acid; and caffeic acid. Other compounds found in lower concentrations were hesperetin, p-coumaric acid, chrysin, quercetin, luteolin, and kaempferol. Ellagic acid was the most abundant of the phenolic compounds recorded, with mean concentrations of 3295.83 and 626.74 μg/100 g of honey in HME and HEAE, respectively. The median maximal effective concentrations for in vitro nitric oxide inhibition by HEAE and HME were calculated to be 37.5 and 271.7 μg/mL, respectively. The median maximal effective concentrations for protection from TNF cytotoxicity by HEAE and HME were 168.1 and 235.4 μg/mL, respectively. In conclusion, HEAE exhibited greater activity in vitro, whereas HME contained a higher concentration of phenolic compounds per 100 g of honey.
    Matched MeSH terms: Macrophages/drug effects*
  17. Harasstani OA, Moin S, Tham CL, Liew CY, Ismail N, Rajajendram R, et al.
    Inflamm Res, 2010 Sep;59(9):711-21.
    PMID: 20221843 DOI: 10.1007/s00011-010-0182-8
    OBJECTIVES: We evaluated several flavonoid combinations for synergy in the inhibition of proinflammatory mediator synthesis in the RAW 264.7 cellular model of inflammation.

    METHODS: The inhibitory effect of chrysin, kaempferol, morin, silibinin, quercetin, diosmin and hesperidin upon nitric oxide (NO), prostaglandin E(2) (PGE(2)) and tumour necrosis factor-alpha (TNF-alpha) secretion from the LPS-induced RAW 264.7 monocytic macrophage was assessed and IC(50) values obtained. Flavonoids that showed reasonable inhibitory effects in at least two out of the three assays were combined in a series of fixed IC(50) ratios and reassessed for inhibition of NO, PGE(2) and TNF-alpha. Dose-response curves were generated and interactions were analysed using isobolographic analysis.

    RESULTS: The experiments showed that only chrysin, kaempferol, morin, and silibinin were potent enough to produce dose-response effects upon at least two out of the three mediators assayed. Combinations of these four flavonoids showed that several combinations afforded highly significant synergistic effects.

    CONCLUSIONS: Some flavonoids are synergistic in their anti-inflammatory effects when combined. In particular chrysin and kaempferol significantly synergised in their inhibitory effect upon NO, PGE(2) and TNF-alpha secretion. These findings open further avenues of research into combinatorial therapeutics of inflammatory-related diseases and the pharmacology of flavonoid synergy.

    Matched MeSH terms: Macrophages/drug effects*
  18. Gopinath VK, Musa M, Samsudin AR, Lalitha P, Sosroseno W
    Arch Oral Biol, 2006 Apr;51(4):339-44.
    PMID: 16214104
    The aim of this study was to determine the role of nitric oxide (NO) in hydroxyapatite (HA)-induced phagocytosis by a murine macrophage cell line (RAW264.7). The cells were incubated with HA particles at various incubation time and phagocytosis was assessed using phagocytic index (PI). NO production from the culture supernatants was determined by the Griess reagent. The inducible nitric oxide synthase (iNOS) expression was determined by Western blot. The particles were also incubated with cells pretreated with various concentrations of L-N(6)-(1-iminoethyl) lysine hydrochloride (L-NIL) or L-arginine. Latex beads were used as a control. Our results showed that macrophage phagocytosis induced by HA was higher than that induced by the beads. However, NO production by HA-stimulated cells was lower than that by bead-stimulated cells. iNOS expression in both bead- and HA-stimulated cells was observed expressed at 7, 15, 30, and 60 min. l-Arginine enhanced but l-NIL inhibited both phagocytosis and NO production by HA-stimulated cells. The results of the present study suggest that nitric oxide may play a crucial role in HA-induced phagocytosis by RAW264.7 cells.
    Matched MeSH terms: Macrophages/immunology*
  19. Lee SY, Wong WF, Dong J, Cheng KK
    Molecules, 2020 Aug 20;25(17).
    PMID: 32825228 DOI: 10.3390/molecules25173783
    Macrophage activation is a key event that triggers inflammatory response. The activation is accompanied by metabolic shift such as upregulated glucose metabolism. There are accumulating evidences showing the anti-inflammatory activity of Momordica charantia. However, the effects of M. charantia on inflammatory response and glucose metabolism in activated macrophages have not been fully established. The present study aimed to examine the effect of M. charantia in modulating lipopolysaccharide (LPS)-induced inflammation and perturbed glucose metabolism in RAW264.7 murine macrophages. The results showed that LPS-induced NF-κB (p65) nuclear translocation was inhibited by M. charantia treatment. In addition, M. charantia was found to reduce the expression of inflammatory genes including IL6, TNF-α, IL1β, COX2, iNOS, and IL10 in LPS-treated macrophages. Furthermore, the data showed that M. charantia reduced the expression of GLUT1 and HK2 genes and lactate production (-28%), resulting in suppression of glycolysis. Notably, its effect on GLUT1 gene expression was found to be independent of LPS-induced inflammation. A further experiment also indicated that the bioactivities of M. charantia may be attributed to its key bioactive compound, charantin. Taken together, the study provided supporting evidences showing the potential of M. charantia for the treatment of inflammatory disorders.
    Matched MeSH terms: Macrophages/metabolism*
  20. Parumasivam T, Ashhurst AS, Nagalingam G, Britton WJ, Chan HK
    Mol Pharm, 2017 01 03;14(1):328-335.
    PMID: 27977216 DOI: 10.1021/acs.molpharmaceut.6b00905
    Rifapentine is an anti-tuberculosis (anti-TB) drug with a prolonged half-life, but oral delivery results in low concentrations in the lungs because of its high binding (98%) to plasma proteins. We have shown that inhalation of crystalline rifapentine overcomes the limitations of oral delivery by significantly enhancing and prolonging the drug concentration in the lungs. The delivery of crystalline particles to the lungs may promote inflammation. This in vivo study characterizes the inflammatory response caused by pulmonary deposition of the rifapentine particles. The rifapentine powder was delivered to BALB/c mice by intratracheal insufflation at a dose of 20 mg/kg. The inflammatory response in the lungs and bronchoalveolar lavage (BAL) was examined at 12 h, 24 h, and 7 days post-treatment by flow cytometry and histopathology. At 12 and 24 h post-treatment, there was a significant influx of neutrophils into the lungs, and this returned to normal by day 7. A significant recruitment of macrophages occurred in the BAL at 24 h. Consistent with these findings, histopathological analysis demonstrated pulmonary vascular congestion and significant macrophage recruitment at 12 and 24 h post-treatment. In conclusion, the pulmonary delivery of crystalline rifapentine caused a transient neutrophil-associated inflammatory response in the lungs that resolved over 7 days. This observation may limit pulmonary delivery of rifapentine to once a week at a dose of 20 mg/kg or less. The effectiveness of weekly dosing with inhalable rifapentine will be assessed in murine Mycobacterium tuberculosis infection.
    Matched MeSH terms: Macrophages/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links