Displaying publications 1701 - 1720 of 1723 in total

Abstract:
Sort:
  1. Yap SP, Yuen KH
    Int J Pharm, 2004 Aug 20;281(1-2):67-78.
    PMID: 15288344
    A single dose comparative bioavailability study was conducted to evaluate the bioavailability of tocotrienols from two self-emulsifying formulations, one of which produced an emulsion that readily lipolysed under in vitro condition (SES-A), while the other produced a finer dispersion with negligible lipolysis (SES-B) in comparison with that of a non-self-emulsifying formulation in soya oil. The study was conducted according to a three-way crossover design using six healthy human volunteers. Statistically significant differences were observed between the logarithmic transformed peak plasma concentration (Cmax) and total area under the plasma concentration-time curve (AUC(0-infinity)) values of both SES-A and -B compared to NSES-C indicating that SES-A and -B achieved a higher extent of absorption compared to NSES-C. Moreover, the 90% confidence interval of the AUC(0-infinity) values of both SES-A and -B over those of NSES-C were between 2-3 suggesting an increase in bioavailability of about two-three times compared to NSES-C. Both SES-A and -B also achieved a faster onset of absorption. However, both SES-A and -B had comparable bioavailability, despite the fact that SES-B was able to form emulsions with smaller droplet size. Thus, it appeared that both droplet sizes as well as the rate and extent of lipolysis of the emulsion products formed were important for enhancing the bioavailability of the tocotrienols from the self-emulsifying systems.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  2. Dehghan F, Soori R, Gholami K, Abolmaesoomi M, Yusof A, Muniandy S, et al.
    Sci Rep, 2016 12 05;6:37819.
    PMID: 27917862 DOI: 10.1038/srep37819
    The aim of this study was to investigate the responses of atherosclerosis plaque biomarkers to purslane seed consumption and aerobic training in women with T2D. 196 women with T2D were assigned into; (1) placebo (PL), (2) aerobic training+placebo (AT + PL), 3) purslane seeds (PS), aerobic training+purslane seeds (AT + PS). The training program and purslane seeds consumption (2.5 g lunch and 5 g dinner) were carried out for 16 weeks. The components of purslane seed were identified and quantified by GC-MS. Blood samples were withdrawn via venipuncture to examine blood glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol, triglycerides (TG), creatinine, urea, uric acid, NF-κB, GLP1, GLP1R, TIMP-1, MMP2, MMP9, CRP, CST3, and CTSS expressions. Blood glucose, LDL, cholesterol, TG, creatinine, urea, and uric acid levels in the (P), (AT), and (AT + PS) groups were significantly decreased compared to the pre-experimental levels or the placebo group, while HDL, significantly increased. Furthermore, the protein and mRNA levels of NF-κB, TIMP-1, MMP2 &9, CRP, CST3, and CTSS in the (P), (AT), (AT + PS) significantly decreased compared to pre-experimental or the placebo group, while level of GLP1 and GLP1-R increased drastically. Findings suggest that purslane seed consumption alongside exercising could improve atherosclerosis plaque biomarkers through synergistically mechanisms in T2D.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  3. Singh D, Yeou Chear NJ, Narayanan S, Leon F, Sharma A, McCurdy CR, et al.
    J Ethnopharmacol, 2020 Mar 01;249:112462.
    PMID: 31816368 DOI: 10.1016/j.jep.2019.112462
    ETHNOPHARMACOLOGICAL RELEVANCE: Kratom (Mitragyna speciosa) is a native medicinal plant of Southeast Asia widely reported to be used to reduce opioid dependence and mitigate withdrawal symptoms. There is also evidence to suggest that opioid poly-drug users were using kratom to abstain from opioids.

    AIM OF THE STUDY: To determine the patterns and reasons for kratom use among current and former opioid poly-drug users in Malaysia.

    MATERIALS AND METHODS: A total of 204 opioid poly-drug users (142 current users vs. 62 former users) with current kratom use history were enrolled into this cross-sectional study. A validated UPLC-MS/MS method was used to evaluate the alkaloid content of a kratom street sample.

    RESULTS: Results from Chi-square analysis showed that there were no significant differences in demographic characteristics between current and former opioid poly-drug users except with respect to marital status. Current users had higher odds of being single (OR: 2.2: 95%CI: 1.21-4.11; p 

    Matched MeSH terms: Chromatography, High Pressure Liquid
  4. Yusoff MM, Ibrahim H, Hamid NA
    Chem Biodivers, 2011 May;8(5):916-23.
    PMID: 21560240 DOI: 10.1002/cbdv.201000270
    Two poorly studied, morphologically allied Alpinia species endemic to Borneo, viz., A. ligulata and A. nieuwenhuizii, were investigated here for their rhizome essential oil. The oil compositions and antimicrobial activities were compared with those of A. galanga, a better known plant. A fair number of compounds were identified in the oils by GC-FID and GC/MS analyses, with large differences in the oil composition between the three species. The rhizome oil of A. galanga was rich in 1,8-cineole (29.8%), while those of A. ligulata and A. nieuwenhuizii were both found to be extremely rich in (E)-methyl cinnamate (36.4 and 67.8%, resp.). The three oils were screened for their antimicrobial activity against three Gram-positive and three Gram-negative bacteria and two fungal species. The efficiency of growth inhibition of Staphylococcus aureus var. aureus was found to decline in the order of A. nieuwenhuizii>A. ligulata ∼ A. galanga, while that of Escherichia coli decreased in the order of A. galanga>A. nieuwenhuzii ∼ A. ligulata. Only the A. galanga oil inhibited the other bacteria and the fungi tested.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  5. Awang K, Ibrahim H, Rosmy Syamsir D, Mohtar M, Mat Ali R, Azah Mohamad Ali N
    Chem Biodivers, 2011 Apr;8(4):668-73.
    PMID: 21480512 DOI: 10.1002/cbdv.201000225
    The essential oils from the leaves and rhizomes of Alpinia pahangensis Ridl., collected from Pahang, Peninsular Malaysia, were obtained by hydrodistillation, and their chemical compositions were determined by GC and GC/MS analyses. The major components of the rhizome oil were γ-selinene (11.60%), β-pinene (10.87%), (E,E)-farnesyl acetate (8.65%), and α-terpineol (6.38%), while those of the leaf oil were β-pinene (39.61%), α-pinene (7.55%), and limonene (4.89%). The investigation of the antimicrobial activity of the essential oils using the broth microdilution technique revealed that the rhizome oil of A. pahangensis inhibited five Staphylococcus aureus strains with minimum inhibitory concentration (MIC) values between 0.08 and 0.31 μg/μl, and four selected fungi with MIC values between 1.25 and 2.50 μg/μl.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  6. Kuo X, Herr DR, Ong WY
    Neuromolecular Med, 2021 03;23(1):176-183.
    PMID: 33085066 DOI: 10.1007/s12017-020-08621-3
    Clinacanthus nutans (Lindau) (C. nutans) has diverse uses in traditional herbal medicine for treating skin rashes, insect and snake bites, lesions caused by herpes simplex virus, diabetes mellitus and gout in Singapore, Malaysia, Indonesia, Thailand and China. We previously showed that C. nutans has the ability to modulate the induction of cytosolic phospholipase A2 (cPLA2) expression in SH-SY5Y cells through the inhibition of histone deacetylases (HDACs). In the current study, we elucidated the effect of C. nutans on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induced a dose-dependent loss of hCMEC/D3 cell viability, and such damage was significantly inhibited by C. nutans leaf extracts but not stem extracts. 7KC also induced a marked increase in mRNA expression of pro-inflammatory cytokines, IL-1β IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX-2) in brain endothelial cells, and these increases were significantly inhibited by C. nutans leaf but not stem extracts. HPLC analyses showed that leaf extracts have a markedly different chemical profile compared to stem extracts, which might explain their different effects in counteracting 7KC-induced inflammation. Further study is necessary to identify the putative phytochemicals in C. nutans leaves that have anti-inflammatory properties.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  7. Ameer OZ, Salman IM, Siddiqui MJ, Yam MF, Sriramaneni RN, Sadikun A, et al.
    Am J Chin Med, 2009;37(5):991-1008.
    PMID: 19885958
    In the present study, L. ferrugineus methanol extract (LFME) was evaluated for its blood pressure lowering effect in anesthetized normotensive Sprague Dawley (SD) rats and its spasmogenic effect in isolated guinea pig ileum. The possible mechanism(s) of action were also investigated. LFME was obtained by Soxhlet extraction. The rats were fasted overnight and anesthetized with sodium pentobarbitone (60 mg/kg i.p.). LFME was administered in i.v. boluses in the concentrations of 25, 50, 100 and 200 mg/kg respectively, with concomitant monitoring of mean arterial pressure (MAP). It was found that LFME dose-dependently reduced MAP. An i.v. bolus injection of atropine significantly decreased the blood pressure lowering effect of LFME. Similarly, L-NAME (Nomega-nitro-L-arginine methyl ester) significantly lowered both the MAP and the action duration. Conversely, no significant change in MAP was seen following i.v. injections of neostigmine, hexamethonium, prazosin and propranolol. LFME also produced a dose-dependent contractile effect in guinea pig ileum. This contraction was significantly reduced in atropine pre-incubated tissue segments, yet it was significantly enhanced in the presence of neostigmine. No appreciable change in the ability of LFME to contract guinea pig ileum was seen in the presence of hexamethonium. Accordingly, it can be postulated that LFME possesses a marked hypotensive effect that can be attributed to stimulation of muscarinic receptors and/or stimulation of nitric oxide (NO) release. Moreover, LFME retains a considerable spasmogenic action due to its cholinergic properties. The hypotensive and spasmogenic effects of LFME justify its traditional uses.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  8. Abdul Ahmad SA, Palanisamy UD, Tejo BA, Chew MF, Tham HW, Syed Hassan S
    Virol J, 2017 11 21;14(1):229.
    PMID: 29162124 DOI: 10.1186/s12985-017-0895-1
    BACKGROUND: The rapid rise and spread in dengue cases, together with the unavailability of safe vaccines and effective antiviral drugs, warrant the need to discover and develop novel anti-dengue treatments. In this study the antiviral activity of geraniin, extracted from the rind of Nephelium lappaceum, against dengue virus type-2 (DENV-2) was investigated.

    METHODS: Geraniin was prepared from Nephelium lappaceum rind by reverse phase C-18 column chromatography. Cytotoxicity of geraniin towards Vero cells was evaluated using MTT assay while IC50 value was determined by plaque reduction assay. The mode-of-action of geraniin was characterized using the virucidal, attachment, penetration and the time-of-addition assays'. Docking experiments with geraniin molecule and the DENV envelope (E) protein was also performed. Finally, recombinant E Domain III (rE-DIII) protein was produced to physiologically test the binding of geraniin to DENV-2 E-DIII protein, through ELISA competitive binding assay.

    RESULTS: Cytotoxicity assay confirmed that geraniin was not toxic to Vero cells, even at the highest concentration tested. The compound exhibited DENV-2 plaque formation inhibition, with an IC50 of 1.75 μM. We further revealed that geraniin reduced viral infectivity and inhibited DENV-2 from attaching to the cells but had little effect on its penetration. Geraniin was observed to be most effective when added at the early stage of DENV-2 infection. Docking experiments showed that geraniin binds to DENV E protein, specifically at the DIII region, while the ELISA competitive binding assay confirmed geraniin's interaction with rE-DIII with high affinity.

    CONCLUSIONS: Geraniin from the rind of Nephelium lappaceum has antiviral activity against DENV-2. It is postulated that the compound inhibits viral attachment by binding to the E-DIII protein and interferes with the initial cell-virus interaction. Our results demonstrate that geraniin has the potential to be developed into an effective antiviral treatment, particularly for early phase dengue viral infection.

    Matched MeSH terms: Chromatography, Reverse-Phase
  9. Ihara H, Kasamatsu S, Kitamura A, Nishimura A, Tsutsuki H, Ida T, et al.
    Chem Res Toxicol, 2017 09 18;30(9):1673-1684.
    PMID: 28837763 DOI: 10.1021/acs.chemrestox.7b00120
    Electrophiles such as methylmercury (MeHg) affect cellular functions by covalent modification with endogenous thiols. Reactive persulfide species were recently reported to mediate antioxidant responses and redox signaling because of their strong nucleophilicity. In this study, we used MeHg as an environmental electrophile and found that exposure of cells to the exogenous electrophile elevated intracellular concentrations of the endogenous electrophilic molecule 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), accompanied by depletion of reactive persulfide species and 8-SH-cGMP which is a metabolite of 8-nitro-cGMP. Exposure to MeHg also induced S-guanylation and activation of H-Ras followed by injury to cerebellar granule neurons. The electrophile-induced activation of redox signaling and the consequent cell damage were attenuated by pretreatment with a reactive persulfide species donor. In conclusion, exogenous electrophiles such as MeHg with strong electrophilicity impair the redox signaling regulatory mechanism, particularly of intracellular reactive persulfide species and therefore lead to cellular pathogenesis. Our results suggest that reactive persulfide species may be potential therapeutic targets for attenuating cell injury by electrophiles.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  10. Chua LS, Lau CH, Chew CY, Ismail NIM, Soontorngun N
    Phytomedicine, 2018 Jan 15;39:49-55.
    PMID: 29433683 DOI: 10.1016/j.phymed.2017.12.015
    BACKGROUND: Orthosiphon aristatus (Blume) Miq. is a medicinal herb which is traditionally used for the treatment of diabetes and kidney diseases in South East Asia. Previous studies reported higher concentration of antioxidative phytochemicals, especially rosmarinic acid (ester of caffeic acid) and other caffeic acid derivatives in this plant extract than the other herbs such as rosemary and sage which are usually used as raw materials to produce rosmarinic acid supplement in the market.

    PURPOSE: The phytochemical profile of O. aristatus was investigated at different storage durations for quality comparison.

    METHODS: The phytochemicals were extracted from the leaves and stems of O. aristatus using a reflux reactor. The extracts were examined for total phenolic and flavonoid contents, as well as their antioxidant capacities, in terms of radical scavenging, metal chelating and reducing power. The phytochemical profiles were also analyzed by unsupervised principal component analysis and hierarchical cluster analysis, in relation to the factor of storage at 4 °C for 5 weeks.

    RESULTS: The leaf extract was likely to have more phytochemicals than stem extract, particularly caffeic acid derivatives including glycosylated and alkylated caffeic acids. This explains higher ratio of total phenolic content to total flavonoid content with higher antioxidant capacities for the leaf extracts. Rosmarinic acid dimer and salvianolic acid B appeared to be the major constituents, possibly contributing to the previously reported pharmacological properties. However, the phytochemical profiles were found changing, even though the extracts were stored in the refrigerator (4 °C). The change was significantly observed at the fifth week based on the statistical pattern recognition technique.

    CONCLUSION: O. aristatus could be a promising source of rosmarinic acid and its dimer, as well as salvianolic acid B with remarkably antioxidant properties. The phytochemical profile was at least stable for a month stored at 4 °C. It is likely to be a good choice of herbal tea with comparable radical scavenging activity, but lower caffeine content than other tea samples.

    Matched MeSH terms: Chromatography, Liquid
  11. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 07 05;23(7).
    PMID: 29976903 DOI: 10.3390/molecules23071646
    Gingerols and shogaols are compounds found in ginger (Zingiber officinale Roscoe); shogaols are found in lower concentration than gingerols but exhibit higher biological activities. This work studied the effects of different drying methods including open sun drying (OSD) solar tunnel drying (STD) and hot air drying (HAD) with various temperature on the formation of six main active compounds in ginger rhizomes, namely 6-, 8-, and 10-gingerols and 6-, 8-, and 10-shogaols, as well as essential oil content. Antioxidant and antimicrobial activity of dried ginger was also evaluated. High performance liquid chromatography (HPLC) analysis showed that after HAD with variable temperature (120, 150 and 180 °C), contents of 6-, 8-, and 10-gingerols decreased, while contents of 6-, 8-, and 10-shogaol increased. High formation of 6-, 8-, and 10-shogaol contents were observed in HAD (at 150 °C for 6 h) followed by STD and OSD, respectively. OSD exhibited high content of essential oil followed by STD and HAD method. Ginger-treated with HAD exhibited the highest DPPH (IC50 of 57.8 mg/g DW) and FRAP (493.8 µM of Fe(II)/g DM) activity, compared to STD and OSD method. HAD ginger exhibited potent antimicrobial activity with lower minimum inhibition concentration (MIC) value against bacteria strains followed by STD and OSD, respectively. Ginger extracts showed more potent antimicrobial activity against Gram positive bacteria than Gram negative bacteria strains. Result of this study confirmed that conversion of gingerols to shogaols was significantly affected by different drying temperature and time. HAD at 150 °C for 6 h, provides a method for enhancing shogaols content in ginger rhizomes with improving antioxidant and antimicrobial activities.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  12. Ghasemzadeh A, Jaafar HZ, Karimi E
    Int J Mol Sci, 2012 Nov 13;13(11):14828-44.
    PMID: 23203096 DOI: 10.3390/ijms131114828
    The effect of foliar application of salicylic acid (SA) at different concentrations (10-3 M and 10-5 M) was investigated on the production of secondary metabolites (flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity (against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid chromatography (HPLC) analysis showed that application of SA induced the synthesis of anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) decreased significantly in plants treated with different concentrations of SA. The present study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in Halia Bara with the 10-5 M SA treatment. As the SA concentration was decreased from 10-3 M to 10-5 M, the free radical scavenging power (FRAP) increased about 23% in Halia Bentong and 10.6% in Halia Bara. At a concentration of 350 μg mL-1, the DPPH antioxidant activity recorded the highest value of 58.30%-72.90% with the 10-5 M SA treatment followed by the 10-3 M SA (52.14%-63.66%) treatment. The lowest value was recorded in the untreated control plants (42.5%-46.7%). These results indicate that SA can act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for H. Bara extracts treated with 10-5 M SA with values of 61.53 and 59.88%, respectively. The results suggest that the high anticancer activity in these varieties may be related to the high concentration of potent anticancer components including fisetin and anthocyanin. The results thus indicate that the synthesis of flavonoids in ginger can be increased by foliar application of SA in a controlled environment and that the anticancer activity in young ginger extracts could be improved.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  13. Mangzira Kemung H, Tan LT, Chan KG, Ser HL, Law JW, Lee LH, et al.
    Molecules, 2020 Aug 03;25(15).
    PMID: 32756432 DOI: 10.3390/molecules25153545
    There is an urgent need to search for new antibiotics to counter the growing number of antibiotic-resistant bacterial strains, one of which is methicillin-resistant Staphylococcus aureus (MRSA). Herein, we report a Streptomyces sp. strain MUSC 125 from mangrove soil in Malaysia which was identified using 16S rRNA phylogenetic and phenotypic analysis. The methanolic extract of strain MUSC 125 showed anti-MRSA, anti-biofilm and antioxidant activities. Strain MUSC 125 was further screened for the presence of secondary metabolite biosynthetic genes. Our results indicated that both polyketide synthase (pks) gene clusters, pksI and pksII, were detected in strain MUSC 125 by PCR amplification. In addition, gas chromatography-mass spectroscopy (GC-MS) detected the presence of different chemicals in the methanolic extract. Based on the GC-MS analysis, eight known compounds were detected suggesting their contribution towards the anti-MRSA and anti-biofilm activities observed. Overall, the study bolsters the potential of strain MUSC 125 as a promising source of anti-MRSA and antibiofilm compounds and warrants further investigation.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  14. Jahromi MF, Liang JB, Ho YW, Mohamad R, Goh YM, Shokryazdan P
    J Biomed Biotechnol, 2012;2012:196264.
    PMID: 23118499 DOI: 10.1155/2012/196264
    Ability of two strains of Aspergillus terreus (ATCC 74135 and ATCC 20542) for production of lovastatin in solid state fermentation (SSF) using rice straw (RS) and oil palm frond (OPF) was investigated. Results showed that RS is a better substrate for production of lovastatin in SSF. Maximum production of lovastatin has been obtained using A. terreus ATCC 74135 and RS as substrate without additional nitrogen source (157.07 mg/kg dry matter (DM)). Although additional nitrogen source has no benefit effect on enhancing the lovastatin production using RS substrate, it improved the lovastatin production using OPF with maximum production of 70.17 and 63.76 mg/kg DM for A. terreus ATCC 20542 and A. terreus ATCC 74135, respectively (soybean meal as nitrogen source). Incubation temperature, moisture content, and particle size had shown significant effect on lovastatin production (P < 0.01) and inoculums size and pH had no significant effect on lovastatin production (P > 0.05). Results also have shown that pH 6, 25°C incubation temperature, 1.4 to 2 mm particle size, 50% initial moisture content, and 8 days fermentation time are the best conditions for lovastatin production in SSF. Maximum production of lovastatin using optimized condition was 175.85 and 260.85 mg/kg DM for A. terreus ATCC 20542 and ATCC 74135, respectively, using RS as substrate.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  15. Lay MM, Karsani SA, Malek SN
    Int J Mol Sci, 2014 Jan 02;15(1):468-83.
    PMID: 24451128 DOI: 10.3390/ijms15010468
    1-(2,6-Dihydroxy-4-methoxyphenyl)-2-(4-hydroxyphenyl) ethanone (DMHE) was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl fruits and the structure confirmed by GC-MS (gas chromatography-mass spectrometry) and NMR (nuclear magnetic resonance) analysis. This compound was tested on the HT-29 human colon adenocarcinoma cell line using MTT (method of transcriptional and translational) cell proliferation assay. The results of MTT assay showed that DMHE exhibited good cytotoxic effect on HT-29 cells in a dose- and time-dependent manner but no cytotoxic effect on the MRC-5 cell line after 72 h incubation. Morphological features of apoptotic cells upon treatment by DMHE, e.g., cell shrinkage and membrane blebbing, were examined by an inverted and phase microscope. Other features, such as chromatin condension and nuclear fragmentation were studied using acridine orange and propidium iodide staining under the fluorescence microscope. Future evidence of apoptosis/necrosis was provided by result fromannexin V-FITC/PI (fluorescein-isothiocyanate/propidium iodide) staining revealed the percentage of early apoptotic, late apoptotic, necrotic and live cells in a dose- and time-dependent manner using flow cytometry. Cell cycle analysis showed G0/G1 arrest in a time-dependent manner. A western blot analysis indicated that cell death might be associated with the up-regulation of the pro-apoptotic proteins Bax PUMA. However, the anit-apotptic proteins Bcl-2, Bcl-xL, and Mcl-1 were also found to increase in a time-dependent manner. The expression of the pro-apoptotic protein Bak was not observed.
    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  16. Adam SH, Giribabu N, Kassim N, Kumar KE, Brahmayya M, Arya A, et al.
    Biomed Pharmacother, 2016 Jul;81:439-452.
    PMID: 27261624 DOI: 10.1016/j.biopha.2016.04.032
    INTRODUCTION: Protective effects of Vitis Vinifera seed aqueous extract (VVSAE) against pancreatic dysfunctions and elevation of oxidative stress, inflammation and apoptosis in the pancreas in diabetes were investigated. Histopathological changes in the pancreas were examined under light microscope.

    METHODS: Blood and pancreas were collected from adult male diabetic rats receiving 28days treatment with VVSAE orally. Fasting blood glucose (FBG), glycated hemoglobin (HbA1c), insulin and lipid profile levels and activity levels of anti-oxidative enzymes (superoxide dismutase-SOD, catalase-CAT and glutathione peroxidase-GPx) in the pancreas were determined by biochemical assays. Histopathological changes in the pancreas were examined under light microscopy and levels of insulin, glucose transporter (GLUT)-2, tumor necrosis factor (TNF)-α, Ikkβ and caspase-3 mRNA and protein were analyzed by real-time PCR (qPCR) and immunohistochemistry respectively. Radical scavenging activity of VVSAE was evaluated by in-vitro anti-oxidant assay while gas chromatography-mass spectrometry (GC-MS) was used to identify the major compounds in the extract.

    RESULTS: GC-MS analyses indicated the presence of compounds that might exert anti-oxidative, anti-inflammatory and anti-apoptosis effects. Near normal FBG, HbAIc, lipid profile and serum insulin levels with lesser signs of pancreatic destruction were observed following administration of VVSAE to diabetic rats. Higher insulin, GLUT-2, SOD, CAT and GPx levels but lower TNF-α, Ikkβ and caspase-3 levels were also observed in the pancreas of VVSAE-treated diabetic rats (p<0.05 compared to non-treated diabetic rats). The extract possesses high in-vitro radical scavenging activities.

    CONCLUSION: In conclusions, administration of VVSAE to diabetic rats could help to protect the pancreas against oxidative stress, inflammation and apoptosis-induced damage while preserving pancreatic function near normal in diabetes.

    Matched MeSH terms: Gas Chromatography-Mass Spectrometry
  17. Hazalin NA, Lim SM, Cole AL, Majeed AB, Ramasamy K
    Anticancer Drugs, 2013 Sep;24(8):852-61.
    PMID: 23764760 DOI: 10.1097/CAD.0b013e3283635a47
    There is growing interest in the discovery of bioactive metabolites from endophytes as an alternative source of therapeutics. Identification of their therapeutic targets is essential in understanding the underlying mechanisms and enhancing the resultant therapeutic effects. As such, bioactive compounds produced by endophytic fungi from plants at the National Park, Pahang, Malaysia, were investigated. Five known compounds were identified using LC-UV-MS-NMR and they include trichodermol, 7-epi-brefeldin A, (3R,4S)-4-hydroxymellein, desmethyl-lasiodiplodin and cytochalasin D. The present study went on to investigate the potential anticancer effects of these compounds and the corresponding molecular mechanisms of the lead compound against human breast adenocarcinoma, MCF-7. For the preliminary screening, the cytotoxicity and apoptotic effects of these compounds against MCF-7 were examined. The compounds were also tested against noncarcinogenic hepatocytes (WRL68). The differential cytotoxicity was then determined using the MTT assay. Desmethyl-lasiodiplodin was found to suppress the growth of MCF-7, yielding an inhibitory concentration (IC50) that was seven-fold lower than that of the normal cells. The cytotoxic effect of desmethyl-lasiodiplodin was accompanied by apoptosis. Subsequent analysis demonstrated increased expression levels of caspase 3, c-myc and p53. Further, desmethyl-lasiodiplodin resulted in inhibition of monocyte chemotactic protein (MCP)-3, a cytokine involved in cell survival and metastasis. Hence, this study proposed that desmethyl-lasiodiplodin inhibited growth and survival of MCF-7 through the induction of apoptosis. This anticancer effect is mediated, in part, by upregulation of apoptotic genes and downregulation of MCP-3. As desmethyl-lasiodiplodin elicited minimal impact against normal hepatocytes, our findings also imply its potential use as a specific apoptotic agent in breast cancer treatment.
    Matched MeSH terms: Chromatography, Liquid
  18. Chen BC, McGown IN, Thong MK, Pitt J, Yunus ZM, Khoo TB, et al.
    J Inherit Metab Dis, 2010 Dec;33 Suppl 3:S159-62.
    PMID: 20177786 DOI: 10.1007/s10545-010-9056-z
    Most cases of adenylosuccinate lyase (ADSL OMIM 103050) deficiency reported to date are confined to the various European ethnic groups. We report on the first Malaysian case of ADSL deficiency, which appears also to be the first reported Asian case. The case was diagnosed among a cohort of 450 patients with clinical features of psychomotor retardation, global developmental delay, seizures, microcephaly and/or autistic behaviour. The patient presented with frequent convulsions and severe myoclonic jerk within the first few days of life and severe psychomotor retardation. The high performance liquid chromatography (HPLC) profile of the urine revealed the characteristic biochemical markers of succinyladenosine (S-Ado) and succinyl-aminoimidazole carboximide riboside (SAICAr). The urinary S-Ado/SAICAr ratio was found to be 1.02 (type I ADSL deficiency). The patient was compound heterozygous for two novel mutations, c.445C > G (p.R149G) and c.774_778insG (p.A260GfsX24).
    Matched MeSH terms: Chromatography, High Pressure Liquid
  19. Al-Salahi OS, Kit-Lam C, Majid AM, Al-Suede FS, Mohammed Saghir SA, Abdullah WZ, et al.
    Microvasc Res, 2013 Nov;90:30-9.
    PMID: 23899415 DOI: 10.1016/j.mvr.2013.07.007
    Targeting angiogenesis could be an excellent strategy to combat angiogenesis-dependent pathophysiological conditions such as cancer, rheumatoid arthritis, obesity, systemic lupus erythematosus, psoriasis, proliferative retinopathy and atherosclerosis. Recently a number of clinical investigations are being undertaken to assess the potential therapeutic application of various anti-angiogenic agents. Many of these angiogenesis inhibitors are directed against the functions of endothelial cells, which are considered as the building blocks of blood vessels. Similarly, roots of a traditional medicinal plant, Eurycoma longifolia, can be used as an alternative treatment to prevent and treat the angiogenesis-related diseases. In the present study, antiangiogenic potential of partially purified quassinoid-rich fraction (TAF273) of E. longifolia root extract was evaluated using ex vivo and in vivo angiogenesis models and the anti-angiogenic efficacy of TAF273 was investigated in human umbilical vein endothelial cells (HUVEC). TAF273 caused significant suppression in sprouting of microvessels in rat aorta with IC50 11.5μg/ml. TAF273 (50μg/ml) showed remarkable inhibition (63.13%) of neovascularization in chorioallantoic membrane of chick embryo. Tumor histology also revealed marked reduction in extent of vascularization. In vitro, TAF273 significantly inhibited the major angiogenesis steps such as proliferation, migration and differentiation of HUVECs. Phytochemical analysis revealed high content of quassinoids in TAF273. Specially, HPLC characterization showed that TAF273 is enriched with eurycomanone, 13α(21)-epoxyeurycomanone and eurycomanol. These results demonstrated that the antiangiogenic activity of TAF273 may be due to its inhibitory effect on endothelial cell proliferation, differentiation and migration which could be attributed to the high content of quassinoids in E. longifolia.
    Matched MeSH terms: Chromatography, High Pressure Liquid
  20. Gorain B, Choudhury H, Tekade RK, Karan S, Jaisankar P, Pal TK
    Regul Toxicol Pharmacol, 2016 Dec;82:20-31.
    PMID: 27815174 DOI: 10.1016/j.yrtph.2016.10.020
    Poor aqueous solubility and unfavourable de-esterification of olmesartan medoxomil (a selective angiotensin II receptor blocker), results in low oral bioavailability of less than 26%. Improvement of oral bioavailability with prolonged pharmacodynamics activity of olmesartan in Wistar rats had been approached by nanoemulsification strategy in our previous article [Colloid Surface B, 115, 2014: 286]. In continuation to that work, we herewith report the biodistribution behaviour and 28-day repeated dose sub-chronic toxicity of olmesartan medoxomil nanoemulsion in Wistar rats following oral administration. The levels of olmesartan in collected biological samples were estimated using our validated LC-MS/MS technique. Our biodistribution study showed significantly higher brain concentrations of olmesartan (0.290 ± 0.089 μg/mL, 0.333 ± 0.071 μg/mL and 0.217 ± 0.062 μg/mL at 0.5, 2.0 and 8.0 h post dosing, respectively) when administered orally as nanoemulsion formulation as compared to the aqueous suspension. In addition, the olmesartan nanoemulsion was found to be safe and non-toxic, as it neither produced any lethality nor remarkable haematological, biochemical and structural adverse effects as observed during the 28-days sub-chronic toxicity studies in experimental Wistar rats. It is herewith envisaged that the developed nanoemulsion formulation approach for the delivery of olmesartan medoxomil via oral route can further be explored in memory dysfunction and brain ischemia, for better brain penetration and improved clinical application in stroke patients.
    Matched MeSH terms: Chromatography, Liquid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links